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DICKSON POLYNOMIALS OVER FINITE FIELDS 
AND COMPLETE MAPPINGS 

BY 

GARY L. MULLEN* AND HARALD NIEDERREITER 

ABSTRACT. Dickson polynomials over finite fields are familiar exam
ples of permutation polynomials, i.e. of polynomials for which the corre
sponding polynomial mapping is a permutation of the finite field. We prove 
that a Dickson polynomial can be a complete mapping polynomial only in 
some special cases. Complete mapping polynomials are of interest in com
binatorics and are defined as polynomials fix) over a finite field for which 
both/U) and/O) + x are permutation polynomials. Our result also verifies 
a special case of a conjecture of Chowla and Zassenhaus on permutation 
polynomials. 

1. Introduction and statement of result. A polynomial f(x) over a finite field Fq 

with q elements induces a mapping c E Fq —> f(c) of Fq into itself, and the Lagrange 
interpolation formula shows that any mapping of Fq into itself is induced by some 
polynomial. A polynomial over Fq is called a permutation polynomial of Fq if the 
induced mapping is a permutation of Fq\ see Lausch and Nôbauer [8, Ch. 4] and Lidl 
and Niederreiter [9, Ch. 8]. A polynomial/(x) over Fq is called a complete mapping 
polynomial of Fq if both/(x) and/(x) + x are permutation polynomials of Fq. The 
mapping of Fq into itself induced by a complete mapping polynomial of Fq is called a 
complete mapping (of the additive group) of Fq. Complete mappings of groups were 
introduced by Mann [10] in connection with the construction of orthogonal latin 
squares. A detailed account of the relationship between complete mappings and orthog
onal latin squares can be found in Denes and Keedwell [3J. Recently, the interest in 
complete mappings has been renewed because of other applications in combinatorics 
(see Atkin, Hay, and Larson [1], Hsu and Keedwell [5], and Keedwell [6]) and in 
nonassociative algebra (see Niederreiter and Robinson [11]). A detailed study of com
plete mappings of finite fields was carried out by Niederreiter and Robinson [12]. 

An important family of permutation polynomials is formed by the Dickson poly
nomials (see Dickson [4]). For a positive integer k and an element a of a commutative 
ring R with identity, the Dickson polynomial gk(x,a) is defined by 
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./-G k ~ J \ J ' 

where h is the greatest integer < k/2. We will be interested in the case R = Fq. For 

a = 0 we have gk(x, 0) = xk, so that gk(x, 0) is a permutation polynomial of Fq if and 

only if gcd(&, (7 — 1 ) = 1. For « E F,y with c/ ^ 0, gk (x, «) is a permutation polynomial 

of Fq if and only if gcd(k, q2 — 1) - 1. See Lausch and Nôbauer [8, Ch. 4], Lidl and 

Niederreiter [9, Ch. 8], and Williams 114] for proofs of these results. Since Dickson 

polynomials are frequently used as permutation polynomials, this raises the question to 

what extent they can also serve as complete mapping polynomials. We consider a 

slightly more general problem, namely whether a polynomial of the form bgk{x,a) + 

ex with b, e E Fq, be• ̂  0, can be a permutation polynomial of Fq. For a = 0 it was 

shown by Niederreiter and Robinson [12] that this can only happen if either k is a power 

of the characteristic of Fq or else q is small in terms of k. We prove that in the more 

complicated case where a 41 0 we have a rather similar situation. We exclude now the 

trivial case k = \. 

THEOREM. Let k>2be an integer and let a, b, e E Fq with abe ^ 0. Then bgk(x, a) 

+ ex ean be a permutation polynomial of Fq only in one of the following eases: 

(i) k = 3, c = 3ab, and q = 2 mod 3; 

(ii) k > 3 and the characteristic of Fq divides k\ 

(iii) k > 4, the characteristic of Fq does not divide k, and q < (9k2 — 21k + 22)2. 

We now show that in each of the cases (i), (ii), and (iii), permutation polynomials 

of the form bgk(x,a) + ex can indeed be constructed. To illustrate case (i), put k = 3, 

c = 3ab, and note that 

bg}(x, a) + ex = b{x} — 3ax) + 3abx = bx} 

is a permutation polynomial of Fq whenever q = 2 mod 3. To illustrate case (ii), let 

p be the characteristic of Fq and let k > 3 be a power of p. For a E Fq, a ± 0, we have 

gp(x, a) = x'\ and a repeated application of the substitution formula in [9, p. 359, Eq. 

(7.10)] yields gk(x,a) = xk. It follows then from [12, Theorem 10] that there exist 

infinitely many examples of a finite field Fq of characteristic p and a b E Fq, b ± 0, 

such that bgk(x, a) + x is a permutation polynomial of Fq. To illustrate case (iii), choose 

k = 5, q — 13, and a nonzero square a E F13, and note that 

g5(x,a) + 5a2x = (x5 — 5ax} + 5a2x) + 5a2x = x5 — 5<xr3 + 3( — 5a)2x 

is a permutation polynomial of F]} by [9, p. 352, Table 7.1] and evidently 13 < ( 112)2. 

We remark also that if q divides k, say k = q'u with t > 1 and gcd(<y, u) = 1, then 

bgk(x,a) + ex = bgu(x,a)l{' + cx7 

which induces the same mapping as the polynomial bglt(x,a) + ex. This case can 

therefore be reduced to the one where the characteristic of Fq does not divide the degree 
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of the Dickson polynomial, leaving only the possibility u = 1 or the cases (i) and (iii) 
in the theorem with u in the role of k. 

If we return to the original problem of complete mapping polynomials, then our 
theorem immediately yields the following result. We remark that the case (i) in the 
theorem can now be dropped since it follows from [12, Table 2] that for q = 2 mod 3 
there is no complete mapping polynomial of F q of degree 3. 

COROLLARY. Let k>2be an integer and let a, b, c E Fq with ah ± 0. Then bgk(x, a) 
+ ex can be a complete mapping polynomial of Fq only in one of the following cases: 

(i) k > 3 and the characteristic of Fq divides k; 
(ii) k > 4, the characteristic of F q does not divide k, and q < (9k2 — 21k + 22)2. 

We now show that in both cases (i) and (ii), complete mapping polynomials of the 
form bgk(x,a) + ex do indeed exist. Case (i) can be illustrated by taking k = pa and 
a, /?, c E Fq with ab 41 0 and c = 0. It follows from [12, Theorem 10] that there exist 
infinitely many examples of a finite field Fq of characteristic p and a b E Fq, b =£ 0, 
such that bgk(x,a) + ex = bxk is a complete mapping polynomial. Case (ii) can be 
illustrated by taking k = 5, q = 13 and letting a = 5d with a nonsquare d E F,3, b = 
5d~2, and c = 0, so that bgk(x, a) + ex = 5d~2(x5 + dx^ + 8d2x) which is a complete 
mapping polynomial by [12, Table 2]. 

The proof of the theorem is given in Section 3. A crucial lemma on absolute 
irreducibility is shown in Section 2. It should be noted that our theorem is also 
connected with a conjecture of Chowla and Zassenhaus [2] to the effect that if f(x) is 
a polynomial of degree > 2 over the ring Z of rational integers and p is a sufficiently 
large prime for which f(x) is a permutation polynomial of Fp when considered modulo 
/?, then for no c E Fp with c ± 0 isf(x) + ex a permutation polynomial of Fp. In fact, 
our theorem verifies this conjecture forf(x) = bgk(x,a) + ex with a, b, c E Z and 
ab 41 0. The case/(x) = /%(*, 0) + ex = frx* + or with b, c E Z and /? ^ 0 is settled 
by Theorem 9 of Niederreiter and Robinson [12]. 

2. Absolute irreducibility. A polynomial/U, y) over a field F is called absolutely 
irreducible over F if it is irreducible over the algebraic closure F of F. The following 
result plays an important role in the proof of the theorem and may also be of indepen
dent interest. 

LEMMA 1. Let k>2be an integer and let a, c E F with ac ± 0. Then the polynomial 

xk-akyu xk-\ 
f{x, y) = ; + cxk~ ]yk~ ' 

x — ay2 x — 1 
is absolutely irreducible over F in each of the following cases: 

(0 k = 2; 
(ii) k — 3, c =/= 3a, and the characteristic of F is ^ 3; 

(iii) k > 4 and the characteristic of F does not divide k. 
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PROOF. Suppose one of the conditions (i), (ii), (iii) is satisfied and that/(x, y) is not 
absolutely irreducible, i.e. that it has a nontrivial factorization over F. Since the 
coefficients of f(x, y), considered as a polynomial in y, are relatively prime, this 
factorization is of the form 

(1) /Or, v) = (fM)y'" +• . .+ /o00) (h„(x)y" +. . .+ h0(x)) 

in F[x] [y] with m, n> 1 and m . + n = 2k — 2. A comparison of leading coefficients 
yields 

(2) ak-l^^j=fm(x)hn(x), 
x — 1 

so that in particular one offm(x) and hn(x) has positive degree, say w.l.o.g./n(jt). We 
will frequently use the fact that in the cases (i), (ii), (iii) the polynomial (xk — 1)/ 
(x — 1) has no multiple roots. 

Let £ E F be a root of/„(jc) and substitute JC = £ in (1). This yields 

cç*- 1 / - 1 = (/,(£)/" + . . . + ./o(Ç))(UÇ)y" +•••+ M£)). 

Using /i„(£) =£ 0 and unique factorization in F(y], we obtain n < k — 1 ,/*,-(£) = 0 for 
0 <y < w - 1,./*-,_„(£) * 0, and/(£) = 0 for / ^ A: - 1 - n. As this holds for any 
root £ of/„(jc), it follows that 

(3) /H(*)|A,.(JC) for 0 < ; < * - 1 ,fjx)\f,(x) for 1 * A: - 1 - /1. 

If « < & — 1, then (3) implies/,, (x)|/70U),/,U)|/)(x). Comparing constant coefficients 
in (1), we get 

(4) xk~]^^=f0(x)h{)(x). 
x — 1 

It follows that/,"w(jc) divides (xk — \)/(x — 1), a contradiction. 
Thus we must have n — k — 1, hence also m — k — 1. If hk , (x) is constant, then 

(2) and (3) yield 

(5) 

(6) 

If hk-i(x) has positive degree, then the argument leading to (3) can be applied with 
hk-\(x) in place offm(x). This yields in analogy with (3): 

hk-](x)\f,(x) forO < / < k - 2, hk-{(x)\h,(x) for 1 < / < fc - 2. 

Combining this with (3) and observing (2) and the relative primality of/ ,(JC) and 
hk- 1 (JC), we see that (5) and (6) hold again in this case. 

Combining (2), (4), and (6), we conclude that 

xk - 1 
x- 1 m.^} 

fk-\(x)\h0(x 

hj(x) for 1 < / t 

),hk^(x)\f(){x). 
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(7) f0(x) = cixrhk-](x), h()(x) = c2x7^,(x) 

with c'i, c2 E F and 

(8) r + s = k ~ 1, c,c2 = a'~*. 

Substituting x = 0 in (1), we get 

û * - y * - 2 = ( i l - , ( 0 ) / " 1 ^ . ^ ( O ) ) ^ , ^ ) / - 1 + . . . + /20(0)). 

Unique factorization in F[y\ implies/CO) = /?,(0) = 0 for 0 < / < & - 2. In particular, 
we have r > 1 and s > 1 in (7). On account of the first identity in (8) this already settles 
the case (i), so that we can assume k ^ 3 from now on. Furthermore, for 1 < / < 
k — 2 each/(x) and each h,{x) is divisible by x, so that together with (5) we see that 
we can put 

fi(x) = ?—^- xFi(x), h,(x) = ^ - ^ xHXx) for 1 < / < k - 2. 
x— 1 x - 1 

Combining this with (7), we can write (1) in the form 

/U, v) = (fk-iWyk-] +^Lj-xFk.2(x)yk-2 + ...+ ^-z-^xJF1(x)y 
V x - 1 x — 1 

+ c.r'Tiit-it*)) 

(9) 

^ - . ( x ) / - ' + ^Z-xHk 2(x)yk~2 + . . . + ^—-x/ / , (x )y + c 2 ^ - , ( i ) ) . 
x — 1 x — 1 J 

We consider first the case where at least one F,(x) ^ 0 and at least one H,(x) =£ 0. 
Then 

max deg(F,(x)) = t > 0, max deg (//,•(*)) = w > 0. 
1 < / < k:- 2 1 < / < k: - 2 

Let J, be the coefficient of x? in F,(x) and let e-, be the coefficient of x" in Hj(x). Let 
c*3 be the coefficient of x̂  + ' in c\Xrhk-\(x) and let c4 be the coefficient of xk + " in 
c2xY, _,(*). Put 

£>(y) = dk-2y
k~2 +•••+ ^iV + c3, 

£(v) = ^ 2 / ~ 2 + . . . + e,y + c4. 

Since D(y) and £(y) are nonzero polynomials, there exists r\ G F with D(r|) ^ 0 and 
E(r)) 4= 0. Substitute y = r\ in (9) and consider the degree in x on both sides. On the 
left-hand side the degree is 2k — 2. On the right-hand side the degree is > (k 4- t) + 
(k + u) > 2k since D(r\) (resp. £(T])) is the coefficient of xk + t (resp. xk + ") in the first 
(resp. second) factor, and we obtain a contradiction. 

Thus we have shown that either all Fj(x) = 0 or all //,(x) = 0. Suppose all 
Fj(x) = 0, but not all //,(x) = 0. We choose the maximal / with H,{x) ± 0 and compare 
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the coefficients of yk ' + ' on both sides of (9). Depending on whether k — 1 + / is even 
or odd, we obtain 

xk — 1 
(k - 1 + i)/2x(k - I - 0/2 ± L x- 1 

0 

1 
^ • W / t - i W . 

The first alternative yields/*-, {x)\x(k ' ,)/2, and this is a contradiction to (2) and the 
fact that/t_i(x) has positive degree. The second alternative contradicts H((x) =£ 0. 

Thus it follows that all H,{x) = 0. If deg(^_,(x)) = 0, then deg (/*_,(*)) = 
k — 1 by (2), and a comparison of coefficients of yA_1 on both sides of (9) yields 
(depending on whether /c — 1 is even or odd) 

(k- D/2 ( * - D/2 *_ 1 
+ cxk 

cx 

= c2rv/;_ |U) + cxx
rh]_x(x). 

This is a contradiction since the degree of the left-hand side is < i(£ — 1), whereas the 
degree of the right-hand side is > 2(k — 1). Thus we must have deg(/zA_, (x)) > 0. 
In this case, however, the argument in the preceding paragraph can be used to show that 
all FM = 0. 

Therefore we are left with the case where F,-(JC) = ///(*) = 0 for 1 < / < / : — 2 and 
dtg(hk-](x)) > 0. We recall that deg(/*_i(jc)) > 0 is our standing assumption. For 
k > 4 we have 2k — 4 > k — 1, so that a comparison of coefficients of y2k~~A on both 
sides of (9) yields 

V * - 1 

0, 
x- 1 

an obvious contradiction. Hence the case (iii) is settled. 
In the remaining case k = 3 we have r + s = 2 from (8) and also r > 1, s ^ 1, hence 

r = s = 1. Thus (9) attains the form 

(10) (x2 + axy2 + a 2 / ) (x2 + x + 1) + CJC2)T = 

( / 2 U ) r + c,x/z2(x)) (/z2U)r + c2xf2(x)). 

Since deg(/2(jc)) > 0, deg(/z2(x)) > 0, we must have 

f2(x) = c5(x- Q,h2(x) = c6(x- i2) 

with c5, c6 E F and a primitive third root of unity ^ G F . Comparing the coefficients 
of j 2 on both sides of (10), we get 

(11) a(x2 \) + cx = c2c
2
5(x - 0 2 + c\c\(x - i2)2. 
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Substituting x = £ and x = Ç2 in (11) and using (£ - Ç2)2 = - 3 , we obtain 

(12) c£ = - 3 c , c i c£2 = -3c2Cs. 

Substituting x = 1 in (11) and using (12), we get 3a + c = 2c, hence c = 3<2, a 
contradiction to the condition c 41 3 a in case (ii). The proof of Lemma 1 is now 
complete. 

We remark that if k = 3, c = 3a, and the characteristic of F is ± 3, then/Or, y) has 
the nontrivial factorization 

f{x, y) = (x2 + axy2 + a2y4) (x2 + x + 1) 4- 3ax2;y2 

= (A(JC - Qy2 - £x(x - Ç2)) (a(x - fty2 - £x(x - £)) 

over T7, where £ G F is a primitive third root of unity. We note also that if k ^ 3 is 
a power of the characteristic of F, then 

/(JC, j ) = (x - a r ) * - 1 (JC - I ) *"1 + e x * - 1 / - 1 

has the nontrivial factor (x — <xy2) (x — 1) — axy, where a G F is a root of the 
polynomial xk~] + c. 

3. Proof of the theorem 

LEMMA 2. Let k > 2 be an integer and let a, c G Fq with ac ^ 0. If gk(x, a) + ex 
is a permutation polynomial ofFcj, then every solution (x0, Jo) EF^X Fq of the equation 

xk - aky2k
 x

k - 1 
f(x,y) = ; — + cxk~]yk-] = 0 

x — ay2 x 1 
satisfies either x0 = 1 or y0 = 0 or x0 = ay^. 

PROOF. Suppose gk(x, a) + ex is a permutation polynomial of Fq and that/(x, y) = 
0 has a solution (JC0, jo) ^ ^ x ^ with *o ^ 1, Jo ^ 0, and *o ^ #>V Then also 
x0 ^ 0, for otherwise 0 = f(x0, y0) = f(0, y0) = ak~ l y~0 ~", a contradiction. Put 

(13) d\ = y0 ' + ay0, J2 = x0yûl + tf*o V 

Then 

g*(d,, a) = gk(yû] 4- <ry0, a) = y0
k + a^J, 

gk(d2, a) = gk(x0yô] + ax0
lyih a) = x» y0

k + akx0
k yl 

by the functional equation 

/ a \ ,. ak 

4v + H = - v +7 
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for Dickson polynomials (see [9, p. 356, Eq. (7.8)]). Thus we get 

gk(du a) + cd\ - gk(d2, a) - cd2 

= y0
k(\ - 4 ) + «\vo(l - x^) + O'o'O - x0) + aey{)(\ - x0 ') 

xQ
ky0

k(\ - x0) 

k _ | 

(x{) - a v0 ) — — + cx{) y(} (x{) - ay{)) 
X() I 

and so 

x0
ky()

k(\ - x0) {X{) - ayl) /(*„, v()), 

gk{d\, a) + cdi = gk(d2, a) + cd2 

Since gk(x, a) + ex is a permutation polynomial of Fir it follows that d} = d2. By (13) 
this yields 

y ( )'( 1 - x{)) = axû\\)(\ - *„), 

so that either x() = 1 or x() = ay'(). This contradiction completes the proof of Lemma 2. 
To prove the theorem, we note first that we can assume b = 1 since the property of 

being a permutation polynomial of Fq is invariant under multiplication by a nonzero 
element of Fq. We recall the hypothesis ac 41 0. If now k = 2, then g2(x, a) + ex = 
x2 + ex — 2a cannot be a permutation polynomial of F(j by |9, p. 352, Table 7.1]. 
Therefore we can assume that k > 3 and that the characteristic of F(/ does not divide 
k. If in particular k = 3, then by [9, p. 352, Table 7.1 ] &3(A\ a) + ex = x} + (e — 3a)x 
can only be a permutation polynomial of Flf if e = 3a and q = 2 mod 3, which is case 
(i) of the theorem. 

It remains to consider the situation where k > 4, the characteristic of Fcj does not 
divide k, and gk(x, a) + ex is a permutation polynomial of Fq for some a, e E Fq with 
ae i= 0. By Lemma 2 we can bound the number /V of solutions of the equation/(.v, v) 
= 0 in Fq x /^ by considering the cases x = 1, y = 0, and JC = c/v2. The equation/( 1, v) 
= 0 is a polynomial equation in v of degree 2k — 2 and thus has at most 2k — 2 
solutions. The equation/(x, 0) = 0 has at most k solutions, including (0, 0). The 
equation f(ay2, y) = 0 has at most 2k — 2 solutions ^ (0, 0). Therefore 

(14) N < 5A: - 4. 

On the other hand, under the hypotheses above/(.v, v) is absolutely irreducible over Fq 

by Lemma 1, and its total degree is d = 3k — 3. By a well-known result of Lang and 
Weil [7], in the form given by Schmidt [13, p. 210], we have 

|JV - q\ < (d - 1) (d - 2)ql/2 + d2. 

In particular, 

N > q - (3k - 4) (3* - 5)q]/2 - (3k - 3)2 = G(q]/2), 
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where G(t) = t2 - (3 k - 4) (3*: - 5)t - (3k - 3)2. Now suppose we had q > 
(9k2 - 21k + 22)2. Since G(t) is increasing for t > { (9k2 - 21k + 20), we would get 

N > G(ql/2) > G(9£2 - 27* + 22) = 9k2 - 36k + 35 > 5* - 4 

for £ > 4. This contradiction to (14) completes the proof of the theorem. 
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