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1. Introduction. Let A and B be semisimple Banach algebras, and let M,(A) (resp.
Mt(B)) be the algebra of left multipliers on A (resp. B). Suppose that A is an abstract
Segal algebra in B. We find conditions on A and B which imply that M,(A) is
topologically algebra isomorphic to M,(B). As a special case we obtain the result of [8]
which states that if A is an v4*-algebra that is a *-ideal in its S*-algebra completion B and
A2 is dense in A then M,{A) is topologically algebra isomorphic to M,(B). We make an
application of our main result to right complemented Banach algebras.

2. Preliminaries. Let A be a semisimple Banach algebra. A linear mapping
T.A^A is called a left multiplier if T(xy) = T(x)y, for all x,yeA. Let M,(A) be the
algebra of all left multipliers on A. Since every left multiplier on A is continuous [7],
M,{A) is a Banach algebra under the operator bound norm. For each a eA, let L,, be the
operator given by La(x) = ax, for all xeA. Then LaeMi(A), for all aeA, and the
mapping a^>LA is a norm-decreasing algebra isomorphism of A into M,(A). In what
follows we will identify A as a subalgebra of M,(A).

PROPOSITION 2.1. Let A be a semisimple Banach algebra. Let B be a closed subalgebra
of M,(A) which contains A. Then

(i) A is a left ideal of B,
(ii) B is a semisimple Banach algebra.

Proof, (i) Let TeB and ae A. Then T(a)eA and TLa{x) = T{ax) = T(a)x =
LT(a)(x), for all x eA. Hence, TLa = LT(a).

(ii) Let J be the radical of B. Since A is a left ideal of B, J C\A is also a left ideal of
B. Every xeJHA is left quasi-regular in B and so has a left quasi-inverse in A.
Therefore J D A = (0) as ,4 is semisimple, so that also JA = (0). Let TeJ. Then
0 = TLr = Lr(j.). From the semisimplicity of A we see that T(x) = 0 for all x in A and so
7 = 0. This completes the proof.

Let LA be the closure of A in M,(A). By Proposition 2.1, LA is a semisimple Banach
algebra and contains A as a dense left ideal. In the terminology of [9], A is an abstract
Segal algebra in LA. We call LA the left regular representation of A.

NOTATION. Let A and B be Banach algebras such that A is an abstract Segal algebra
in B. We will denote the norm on A(B) by \\-\\A (||-||B). If T is a linear map on B, then
T | A will denote the restriction of T to A.

PROPOSITION 2.2. Let A be an abstract Segal algebra in a C*-algebra B. Then there
exists a topological algebra isomorphism of B onto LA which maps a onto La, for all aeA.

Proof. By [9, p. 303, Theorem 3.3], A is semisimple and therefore the mapping
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a-* La is an algebra isomorphism of A into LA. By [9, p. 299, Theorem 1.6], there exists
a constant C > 0 such that \\ba\\A =s C \\b\\B \\a\\A, for all b e B and aeA. This shows that
\\Lb\\ =£ C \\b\\B for all b eA. Hence the mapping cp: a—>La of A with the norm ||-||B into
LA is continuous and extends to a continuous algebra homomorphism rp of B into LA. Let
K be the kernel of tp. Then /C is a closed ideal of B and KC\A = (0). Since KAcKDA,
KA = (0) and therefore KB = (0). By the semisimplicity of B, K = (0) and so i/> is an
isomorphism. By [4, p. 1104, Lemma 5.3], ip(B) is closed in LA. Since tp(B) is dense in
LA, we obtain tp(B) = LA. Thus i/» is onto LA and therefore bicontinuous. Clearly,
ip(a) = La, for all a eA.

For a more complete treatment of LA see [13].

3. Main result. We first prove the following.

PROPOSITION 3.1. Let A be a semisimple Banach algebra. Then every left multiplier
S on A has a unique extension to a left multiplier T on LA and \\T\\^\\S\\.

Proof. For convenience of notation let B = LA. Then, for every aeA,

Therefore 5 is bounded on A with respect to the norm \\-\\B and so has a unique extension
T to B with | | r | | s s | | 5 | | . Clearly, TeM,(B) and T\A = S.

A left (right) approximate identity {«„.} in a Banach algebra A is said to be
quasi-bounded if the set {LUJ is bounded in LA. It is easy to see that if {u^} is a
quasi-bounded left (right) approximate identity in A then {LUo} is a bounded left (right)
approximate identity in LA.

THEOREM 3.2. Let A be a semisimple Banach algebra with a quasi-bounded left
approximate identity. Then M,(A) is topologically algebra isomorphic to M,{LA).

Proof. For convenience of notation, let B = LA. Let TeMt{B). Since A has a
quasi-bounded left approximate identity, we see that A2 is dense in A and therefore, by
the Hewitt-Cohen factorization theorem [6, p. 268, Theorem 32.22], A = B-A =
{ba-.beBandaeA}. Hence T(A)aA and so T \AeM,(A) [8, p . 316]. Let T' = T\A,
and let {ua} be a quasi-bounded left approximate identity in A. Since T is continuous,
there is a constant D>0 such that \\T(ua)\\B^D for all a. By [9, p. 299, Proposition
1.6], there exists a constant O O s u c h that | |fra|U« C \\b\\B \\a\\A for all beB and aeA.
Thus, for each aeA,

\\T'(a)\\A = lim \\T'(uaa)\\A = lim | | 7 ( U > | U
a a

whence | |7" | | =sCD | | r | | . Now, by Proposition 3.1, every SeM,(A) has a unique
extension T t o B, TeM,(B) and | | r | | =£ | |S| | . Hence the mapping T-+T' is a continuous
algebra isomorphism from Mt{LA) onto Mt(A).
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COROLLARY 3.3. Let A be an abstract Segal algebra in B. Assume that (i) A2 is dense
in A and (ii) B is semisimple and has a bounded left approximate identity contained in A. If
B is topologically algebra isomorphic to LA (in the sense of Proposition 2.2), then Mt(A) is
topologically algebra isomorphic to Mf(B).

Proof. Let {ua} be a bounded left approximate identity of B contained in A. Since A2

is dense in A, by [3, p. 5, Proposition 3.3], {ua} is a left approximate identity of A. If the
mapping ip of Proposition 2.2 takes B onto LA, then {ua} is also a quasi-bounded left
approximate identity of A and M,(LA) is topologically algebra isomorphic to M,(B). The
conclusion now follows from Theorem 3.2.

COROLLARY 3.4. Let A be a Banach algebra which is a dense two-sided ideal in a
B*-algebra B. Assume that A2 is dense in A. Then Mj(A) is topologically algebra
isomorphic to Mt(B).

Proof. By [5, p. 15, 1.7.1], B has a bounded approximate identity contained in A.
We may now apply Proposition 2.2 and Corollary 3.3 to complete the proof.

COROLLARY 3.5. Let A be an A*-algebra of the first kind and let B be its B*-algebra
completion. Then Mt(A) is topologically algebra isomorphic to M,(B).

We will now consider an application of Theorem 3.2 to right complemented Banach
algebras. For the definition and basic properties of right (left) complemented Banach
algebras see [11]. (See also [1], [14]).

THEOREM 3.6. Let A be a semisimple annihilator right complemented Banach algebra.
Then A has a quasi-bounded left approximate identity.

Proof. Let p denote the right complementer on A and let {ea: a e Q} be a maximal
family of mutually orthogonal minimal p-projections in A. We recall that an idempotent e
in A is called a minimal /^-projection if e is a minimal idempotent and (eAy = (1 - e)A.
Since A is an annihilator algebra, every non-zero closed right ideal of A contains a
minimal p-projection. Moreover, if e is a minimal p-projection in a closed right ideal /
and / is a minimal p-projection in Ip then ef=fe = 0 (see [11, p. 654]). It follows that the
family {e^A-.aeQ} has a dense linear span in A and, for each a'eQ, eaAC\

cl/» (Ee(W4) = (0). Furthermore, by [12, p. 268, Theorem 5.9], for every xeA,

x= S eax, where convergence is with respect to the net of finite partial sums. Thus the

family {eaA:aeQ) forms an unconditional decomposition for A and, in particular, the
directed set E of all finite sums eai +. . . +ean, ait . . . , an e Q, is a left approximate
identity of A. Therefore, by [2, p. 231, Theorem 3.4], there exists a constant /T>0 such
that, for any au . . . , an e Q,

for all x eA. Hence if we let La — Lea, a eQ, then the set of all finite sums Lax + . . . +
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Lan, ax,..., an e Q, is bounded and consequently £ is a quasi-bounded left approximate
identity of A.

COROLLARY 3.7. Let A be a semisimple annihilator right complemented Banach
algebra. Then M,(A) is topologically algebra isomorphic to M,(LA).

Proof. This follows immediately from Theorems 3.2 and 3.6.

THEOREM 3.8. Let A be a topologically simple, semisimple annihilator right comple-
mented Banach algebra. Then there exists a Hilbert space H such that M,(A) is
topologically algebra isomorphic to L(H), the algebra of all bounded linear operators on
H.

Proof. By [1, p. 40, Theorem 1], A can be continuously embedded as an abstract
Segal algebra in the algebra LC(H) of all compact linear operators on a Hilbert space H.
(If A is finite dimensional then H is finite dimensional and the embedding is onto
LC(H) = L(H).) Since LC(H) is a B*-algebra, by Proposition 2.2, LA is topologically
algebra isomorphic to LC(H). Therefore, by Corollary 3.7, M,(A) is topologically algebra
isomorphic to M,(LC(H)). Observing that M,(LC{H)) is topologically algebra isomorphic
to L(H) [10, p. 506, Lemma 2.1] completes the proof.

Let A be the algebra of trace-class operators or the algebra of Hilbert-Schmidt
operators on a Hilbert space H. Then A is a dual /i*-algebra which is a dense *-ideal in
LC(H). We note that A is also a topologically simple, semi-simple right complemented
Banach algebra. Hence M,(A) is topologically algebra isomorphic to M,(LC(H)) and
consequently topologically algebra isomorphic to L{H).
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