On Non-Integral Dehn Surgeries Creating Non-Orientable Surfaces

Masakazu Teragaito

Abstract. For a non-trivial knot in the 3-sphere, only integral Dehn surgery can create a closed 3manifold containing a projective plane. If we restrict ourselves to hyperbolic knots, the corresponding claim for a Klein bottle is still true. In contrast to these, we show that non-integral surgery on a hyperbolic knot can create a closed non-orientable surface of any genus greater than two.

1 Introduction

For a knot K in the 3 -sphere, let $E(K)$ denote its exterior $S^{3}-\operatorname{Int} N(K)$, where $N(K)$ is a regular neighborhood of K. A slope on $\partial E(K)$ is the unoriented isotopy class of an essential simple closed curve on $\partial E(K)$. Then the slopes can be parameterized by the set $\mathbb{O}) \cup\{1 / 0\}$ in the usual way [8]. In particular, a slope corresponding to an integer is called an integral slope, otherwise it is a non-integral slope. For a slope r, $K(r)$ denotes the closed orientable 3-manifold obtained from S^{3} by r-surgery. That is, $K(r)=E(K) \cup V$, where V is a solid torus glued to $E(K)$ along their boundaries so that r bounds a meridian disk in V.

In this short note, we consider the situation where Dehn surgery on a knot creates a 3-manifold containing an embedded closed non-orientable surface. Recall that any closed non-orientable surface is a connected sum of projective planes, and its genus is defined to be the number of summands. Thus a projective plane has genus one, a Klein bottle has genus two, etc. We remark that it is well known that $K(p / q)$ contains a closed non-orientable surface if and only if p is even (cf. [1]).

Let K be a non-trivial knot. If $K(r)$ contains a projective plane, then $K(r)$ is either real projective 3 -space P^{3} or a reducible 3-manifold with P^{3}-summand. Recently, the former was shown to be impossible by [6]. Hence r must be integral by [3]. For some non-hyperbolic knot, non-integral surgery can create a Klein bottle. But, if K is hyperbolic and $K(r)$ contains a Klein bottle, then r is integral by [4]. Along the line, Matignon and Sayari [7, Conjecture A] conjecture that only integral surgery can produce a closed non-orientable surface of genus three. However, we can give a counterexample to this conjecture. In fact, for any integer $n \geq 3$, we will give infinitely many knots (most of them are hyperbolic), each of which admits non-integral surgery creating a closed non-orientable surface of genus n. Note that if a 3-manifold contains a closed non-orientable surface of genus n then it also contains a closed non-orientable surface of genus $n+2 h$ for any $h>0$, by attaching tubes locally.

[^0]

Figure 1

Theorem 1 Let K be the pretzel knot $p(-3,3, m)$ for $m \in \mathbb{Z}$. For any integers $n \geq 3$ and $h \geq 0$, the 3 -manifold $K\left(\frac{2 n-4}{2 n-3}\right)$ obtained from S^{3} by performing $(2 n-4) /(2 n-3)$ surgery on K contains a closed non-orientable surface of genus $n+2 h$.

By [5], $K=p(-3,3, m)$ is hyperbolic if $m \neq 0$. Of course, if $m=0$, then K is the square knot, and if $m= \pm 1$, then K is Stevedore's knot or its mirror image, which is 2-bridge. In fact, we will see that the core of the attached solid torus intersects a closed non-orientable surface of genus n only once as in Figure 4. Thus the cases $m=0, \pm 1$ show that Lemmas 6.1 and 6.2 (hence Lemma 1.3 and Corollary 1.5) of [7] are not correct. (In Section 3 of [7], S might be boundary-compressible when $s=1$.)

In general, it is interesting to find the minimum genus of which a closed nonorientable surface can be embedded in a given 3-manifold. For example, Bredon and Wood [1] determined this for lens spaces. See also [2]. It might be true that the minimum genus of closed non-orientable surfaces in our $K\left(\frac{2 n-4}{2 n-3}\right)$ is n. Indeed, this can be confirmed when $n=3$ and 4 , but we could not prove it generally.

2 Proof of Theorem 1

Let K be the pretzel knot $p(-3,3, m)$. Then it has a ribbon knot presentation as shown in Figure 1, where the box with $m+1$ denotes $m+1$ right-handed half-twists. Let $n \geq 3$ be an integer, and let $M=K\left(\frac{2 n-4}{2 n-3}\right)$ be the resulting manifold obtained from S^{3} by $(2 n-4) /(2 n-3)$-surgery on K. To prove Theorem 1, it is sufficient to show that M contains a closed non-orientable surface of genus n.

Take an unknotted circle C as in Figure 2, and perform (-1)-twisting on C. Then the result can be deformed as in Figure 3, and ($2 n-3$)-twisting yields the surgery description of M there.

Finally, Figure 4 shows a non-orientable surface S of genus n whose boundary circle has slope $2 n-4$. Here, S can be seen as the union of $n-2$ Möbius bands and

Figure 2

Figure 3

Figure 4
a twice-punctured disk with a tube attached. Then S can be capped off by a disk of the attached solid torus. Hence M contains a closed non-orientable surface of genus n. Also, the dotted circle indicates the core of the attached solid torus of M, which intersects S in one point. This completes the proof of Theorem 1.

We would like to thank the referee for helpful comments.

References

[1] G. E. Bredon and J. W. Wood, Non-orientable surfaces in orientable 3-manifolds. Invent. Math. 7(1969), 83-110.
[2] W. End, Non-orientable surfaces in 3-manifolds. Arch. Math. (Basel) 59(1992), no. 2, 173-185.
[3] C. McA. Gordon and J. Luecke, Only integral Dehn surgeries can yield reducible manifolds. Math. Proc. Cambridge Philos. Soc. 102(1987), no. 1, 97-101.
[4] , Dehn surgeries on knots creating essential tori. I. Comm. Anal. Geom. 3(1995), no. 3-4, 597-644
A. Kawauchi, Classification of pretzel knots. Kobe J. Math. 2(1985), no. 1, 11-22.
[5] P. Kronheimer, T. Mrowka, P. Ozsváth and Z. Szabó. Monopoles and lens space surgeries. Preprint. http://www.math.harvard.edu/~kronheim/lens.pdf
[7] D. Matignon and N. Sayari, Non-orientable surfaces and Dehn surgeries. Canad. J. Math. 56(2004), no. 5, 1022-1033.
[8] D. Rolfsen, Knots and Links. Mathematics Lecture Series 7, Publish or Perish, Berkeley, CA, 1976.

Department of Mathematics and Mathematics Education
Hiroshima University
1-1-1 Kagamiyama
Higashi-hiroshima
Japan 739-8524
e-mail: teragai@hiroshima-u.ac.jp

[^0]: Received by the editors November 30, 2004; revised January 7, 2005.
 Partially supported by Japan Society for the Promotion of Science, Grant-in-Aid for Scientific Research (C), 16540071.

 AMS subject classification: 57M25.
 Keywords: knot, Dehn surgery, non-orientable surface.
 (C)Canadian Mathematical Society 2006.

