On the Fontaine-Mazur Conjecture for CM-Fields

KAY WINGBERG
Mathematisches Institut, der Universität Heidelberg, Im Neuenheimer Feld 288, 69120
Heidelberg, Germany.e-mail: wingberg@mathi.uni-heidelberg.de

(Received: 9 November 2000)

Abstract

Fontaine and Mazur conjecture that a number field k has no infinite unramified Galois extension such that its Galois group is a p-adic analytic pro- p-group. We consider this conjecture for the maximal unramified p-extension of a CM-field k.

Mathematics Subject Classifications (2000). 11R23; 11R32; 20E18; 22E35.
Key words. CM-field, unramified extension, p-adic Lie group.

Introduction

In [3] Fontaine and Mazur conjecture (as a consequence of a general principle) that a number field k has no infinite unramified Galois extension such that its Galois group is a p-adic analytic pro- p-group. A counter-example to this conjecture would produce an unramified Galois representation with infinite image, that could not 'come from geometry'. Some evidence for this conjecture is shown in [1] and [4].

Since every p-adic analytic pro- p-group contains an open powerful resp. uniform subgroup, one is led to the question whether a given number field possesses an infinite unramified Galois p-extension with powerful resp. uniform Galois group. With regard to this problem, we would like to mention a result of Boston [1]:

Let p be a prime number and let $k \mid k_{0}$ be a finite cyclic Galois extension of degree prime to p such that p does not divide the class number of k_{0}. Then, if the Galois group $G(M \mid k)$ of an unramified Galois p-extension M of k, Galois over k_{0}, is powerful, it is finite.

In this paper we will prove a statement which is in some sense weaker as the above and in another sense stronger (and in view of the general conjecture very weak):

Let p be odd and let k be a CM-field with maximal totally real subfield k^{+} containing the group μ_{p} of p th roots of unity. Let $M=L(p)$ be the maximal unramified p-extension of k. Assume that the p-rank of the ideal class group $C l\left(k^{+}\right)$of k^{+}is not equal to 1 . Then, if the Galois group $G(L(p) \mid k)$ is powerful, it is finite.

If the p-rank of $C l\left(k^{+}\right)$is equal to 1 , we have two weaker results. First, replacing the word powerful by uniform and assuming that the first step in the p-cyclotomic tower of k is not unramified, then the above statement holds without any condition on $C l\left(k^{+}\right)$. Secondly, we consider the conjecture in the p-cyclotomic tower of the number field k. Denote the nth layer of the cyclotomic \mathbb{Z}_{p}-extension k_{∞} of k by k_{n} and let $G\left(L_{n}(p) \mid k_{n}\right)$ be the Galois group of the maximal unramified p-extension $L_{n}(p)$ of k_{n}. Then the following statement holds.

Let $p \neq 2$ and let k be a CM-field containing μ_{p}. Assume that the Iwasawa μ-invariant of $k_{\infty} \mid k$ is zero. Then there exists a number n_{0} such that for all $n \geqslant n_{0}$ the following holds: If the Galois group $G\left(L_{n}(p) \mid k_{n}\right)$ is powerful, then it is finite.

Similar results hold for the maximal unramified p-extension $L_{S}(p)$ which is completely decomposed at all primes in S, and for the maximal p-extension $k_{S}(p)$ of k which is unramified outside S, if S contains no prime above p.

Of course, our main interest is the conjecture for general p-adic analytic groups. We will prove the following result.

Let $p \neq 2$ and let k be a CM-field containing μ_{p} with maximal totally real subfield k^{+}and assume that $\mu_{p} \nsubseteq k_{\mathfrak{p}}^{+}$for all primes \mathfrak{p} of k^{+}above p. Then, if $G\left(L_{k}(p) \mid k\right)$ is p-adic analytic, $G\left(L_{k^{+}}(p) \mid k^{+}\right)$is finite.

Unfortunately, we do not have Boston's result for general analytic pro-p-groups. Otherwise, in the situation above it would follow that $G\left(L_{k}(p) \mid k\right)$ is not an infinite p-adic analytic group.

1. A Duality Theorem

We use the following notation:
$p \quad$ is a prime number,
k is a number field,
$S_{\infty} \quad$ is the set of Archimedean primes of k,
$S \quad$ is a set of primes of k containing S_{∞},
$E_{S}(k) \quad$ is the group of S-units of k,
$C l_{S}(k)$ is the S-ideal class group of k,
$L_{S} \quad$ is the maximal unramified extension of k which is completely decomposed at S,
$L_{S}(p) \quad$ is the maximal p-extension of k inside L_{S},
$L \quad$ is the maximal unramified extension of k,
$L(p) \quad$ is the maximal p-extension of k inside L.

We write $E(k)$ for the group $E_{S_{\infty}}(k)$ of units of k and $C l(k)$ for the ideal class group
$C l_{S_{\infty}}(k)$ of k. Obviously,
$L=L_{S_{\infty}}, \quad$ if k is totally imaginary,
$L(p)=L_{S_{\infty}}(p), \quad$ if $p \neq 2$ or k totally imaginary.
If K is an infinite algebraic extension of \mathbb{Q}, then $E_{S}(K)=\lim _{\rightarrow k} E_{S}(k)$ where k runs through the finite subextensions of K.

For a profinite group G, a discrete G-module M and any integer i the i th Tate cohomology is defined by

$$
\hat{H}^{i}(G, M)=H^{i}(G, M) \quad \text { for } i \geqslant 1
$$

and

$$
\hat{H}^{i}(G, M)=\underset{U, \text { def }}{\lim _{\leftarrow}} \hat{H}^{i}\left(G / U, M^{U}\right) \quad \text { for } i \leqslant 0
$$

where U runs through all open normal subgroups of G and the transition maps are given by the deflation (see [7]).

THEOREM 1.1. Let S be a set of primes of k containing S_{∞}. Then the following holds:
(i) There are canonical isomorphisms

$$
\hat{H}^{i}\left(G\left(L_{S} \mid k\right), E_{S}\left(L_{S}\right)\right) \cong \hat{H}^{2-i}\left(G\left(L_{S} \mid k\right), \mathbb{Q} / \mathbb{Z}\right)^{\vee}
$$

for all $i \in \mathbb{Z}$. Here ${ }^{\vee}$ denotes the Pontryagin dual.
(ii) There are canonical isomorphisms

$$
\hat{H}^{i}\left(G\left(L_{S}(p) \mid k\right), E_{S}\left(L_{S}(p)\right)\right) \cong \hat{H}^{2-i}\left(G\left(L_{S}(p) \mid k\right), \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)^{\vee}
$$

for all $i \in \mathbb{Z}$.
Proof. Let $C_{S}\left(L_{S}\right)$ be the S-idele class group of L_{S}. The subgroup $C_{S}^{0}\left(L_{S}\right)$ of $C_{S}\left(L_{S}\right)$ given by the ideles of norm 1 is a level-compact class formation for $G\left(L_{S} \mid k\right)$ with divisible group of universal norms. From the duality theorem of Nakayama-Tate we obtain the isomorphisms

$$
\hat{H}^{i}\left(G\left(L_{S} \mid k\right), C_{S}\left(L_{S}\right)\right) \cong \hat{H}^{2-i}\left(G\left(L_{S} \mid k\right), \mathbb{Z}\right)^{\vee}, \quad i \in \mathbb{Z},
$$

since $\hat{H}^{i}\left(G\left(L_{S} \mid k\right), C_{S}\left(L_{S}\right)\right) \cong \hat{H}^{i}\left(G\left(L_{S} \mid k\right), C_{S}^{0}\left(L_{S}\right)\right)$, see [7], Proposition 4.
Let $K \mid k$ be a finite Galois extension inside L_{S}. From the exact sequence

$$
0 \longrightarrow E_{S}(K) \longrightarrow J_{S}(K) \longrightarrow C_{S}(K) \longrightarrow C l_{S}(K) \longrightarrow 0
$$

where $J_{S}(K)$ denotes the group of S-ideles of K, which is a cohomological trivial $G(K \mid k)$-module ($K \mid k$ is completely decomposed at S), we obtain isomorphisms

$$
\hat{H}^{i+1}\left(G(K \mid k), E_{S}(K)\right) \cong \hat{H}^{i}(G(K \mid k), D(K))
$$

where $D(K)$ denotes the kernel of the surjection $C_{S}(K) \longrightarrow C l_{S}(K)$, and a long exact sequences

$$
\longrightarrow \hat{H}^{i}(G(K \mid k), D(K)) \longrightarrow \hat{H}^{i}\left(G(K \mid k), C_{S}(K)\right) \longrightarrow \hat{H}^{i}\left(G(K \mid k), C l_{S}(K)\right) \longrightarrow
$$

If K^{\prime} is the maximal Abelian extension of K in L_{S}, then $G\left(L_{S} \mid K^{\prime}\right)$ is an open subgroup of $G\left(L_{S} \mid K\right)$ by the finiteness of the class number of K. The commutative diagram

shows, since can is the zero map, that

$$
C l_{S}\left(K^{\prime}\right) \xrightarrow{\text { norm }} C l_{S}(K)
$$

is trivial. It follows that

$$
\lim _{K} \hat{H}^{i}\left(G(K \mid k), C l_{S}(K)\right)=0 \quad \text { for } i \leqslant 0
$$

Since all groups in the exact sequence above are finite, we can pass to the projective limit and we obtain isomorphisms

$$
\lim _{K} \hat{H}^{i}(G(K \mid k), D(K)) \cong \hat{H}^{i}\left(G\left(L_{S} \mid k\right), C_{S}\left(L_{S}\right)\right) \quad \text { for } i \leqslant 0
$$

and therefore isomorphisms

$$
\hat{H}^{i+1}\left(G\left(L_{S} \mid k\right), E_{S}\left(L_{S}\right)\right) \cong \hat{H}^{i}\left(G\left(L_{S} \mid k\right), C_{S}\left(L_{S}\right)\right) \quad \text { for } i \leqslant-1
$$

The last assertion also holds for $i=0$: from the commutative diagram

where $k \subseteq K \subseteq K^{\prime}$ are finite Galois extensions inside L_{S}, it follows that the limit $\lim _{\leftarrow_{K}} H^{1}\left(G(K \mid k), E_{S}(K)\right)$ exists. Since

$$
H^{1}\left(G(K \mid k), E_{S}(K)\right) \subseteq H^{1}\left(G\left(L_{S} \mid k\right), E_{S}\left(L_{S}\right)\right) \cong C l_{S}(k)
$$

and

$$
\begin{aligned}
{\underset{K}{\overleftarrow{~ l i m}}}^{\operatorname{H}^{0}}(G(K \mid k), D(K)) & \cong \hat{H}^{0}\left(G\left(L_{S} \mid k\right), C_{S}\left(L_{S}\right)\right) \cong H^{2}\left(G\left(L_{S} \mid k\right), \mathbb{Z}\right)^{\vee} \\
& \cong H^{1}\left(G\left(L_{S} \mid k\right), \mathbb{Q} / \mathbb{Z}\right)^{\vee}=G\left(L_{S} \mid k\right)^{a b} \cong C l_{S}(k),
\end{aligned}
$$

the projective limit $\lim _{H^{1}} H^{1}\left(G(K \mid k), E_{S}(K)\right)$ becomes stationary and is equal to
$H^{1}\left(G\left(L_{S} \mid k\right), E_{S}\left(L_{S}\right)\right)$.
For $i \geqslant 1$ the exact sequence

$$
0 \longrightarrow E_{S}\left(L_{S}\right) \longrightarrow J_{S}\left(L_{S}\right) \longrightarrow C_{S}\left(L_{S}\right) \longrightarrow 0
$$

induces isomorphisms

$$
H^{i}\left(G\left(L_{S} \mid k\right), C_{S}\left(L_{S}\right)\right) \cong H^{i+1}\left(G\left(L_{S} \mid k\right), E_{S}\left(L_{S}\right)\right)
$$

Putting all together, we obtain canonical isomorphisms

$$
\hat{H}^{i+1}\left(G\left(L_{S} \mid k\right), E_{S}\left(L_{S}\right)\right) \cong \hat{H}^{2-i}\left(G\left(L_{S} \mid k\right), \mathbb{Z}\right)^{\vee} \cong \hat{H}^{1-i}\left(G\left(L_{S} \mid k\right), \mathbb{Q} / \mathbb{Z}\right)^{\vee}
$$

for all $i \in \mathbb{Z}$. The proof for the field $L_{S}(p)$ is analogous.

Let k be a number field of CM-type with maximal totally real subfield k^{+}and let $\Delta=G\left(k \mid k^{+}\right)=\langle\sigma\rangle \cong \mathbb{Z} / 2 \mathbb{Z}$. If $p \neq 2$, we put as usual

$$
M=(1 \pm \sigma) M
$$

for a $\mathbb{Z}_{p}[4]$-module M. For a \mathbb{Z}_{p}-module N let ${ }_{p} N=\{x \in N \mid p x=0\}$.
COROLLARY 1.2. Let p be an odd prime number and let k be a CM-field. Let S be a set of primes of k^{+}containing S_{∞} and assume that no prime of S splits in the extension $k \mid k^{+}$. Then

$$
\operatorname{dim}_{\mathbb{F}_{p} p} H^{2}\left(G\left(L_{S}(p) \mid k\right), \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)^{-} \leqslant \delta
$$

where δ is equal to 1 ifk contains the group μ_{p} of p-th roots of unity and otherwise equal to 0 .

Proof. By Theorem 1.1, there is a Δ-invariant surjection

$$
E_{S}(k) \longrightarrow \hat{H}^{0}\left(G\left(L_{S}(p) \mid k\right), E_{S}\left(L_{S}(p)\right)\right) \cong H^{2}\left(G\left(L_{S}(p) \mid k\right), \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)^{\vee}
$$

and so a surjection

$$
\left(E_{S}(k) / p\right)^{-} \longrightarrow\left({ }_{p} H^{2}\left(G\left(L_{S}(p) \mid k\right), \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)^{-}\right)^{\vee}
$$

Since no prime of S splits in the extension $k \mid k^{+}$, we have $\left(E_{S}(k) / p\right)^{-} \cong \mu_{p}(k)$ which gives us the desired result.

2. Powerful Pro-p-Groups with Involution

Let p be a prime number. For a pro-p-group G the descending p-central series is defined by

$$
G_{1}=G, \quad G_{i+1}=\left(G_{i}\right)^{p}\left[G_{i}, G\right] \quad \text { for } i \geqslant 1 .
$$

If a group $\Delta \cong \mathbb{Z} / 2 \mathbb{Z}$ acts on G and p is odd, then we define

$$
d(G)^{ \pm}=\operatorname{dim}_{\mathbb{F}_{p}}\left(G / G_{2}\right)^{ \pm}=\operatorname{dim}_{\mathbb{F}_{p}} H^{1}(G, \mathbb{Z} / p \mathbb{Z})^{ \pm}
$$

The following proposition also follows from Boston result (resp. its proof), but in our situation, where only an involution acts on G, we will give a simple proof.

PROPOSITION 2.1. Let $p \neq 2$ and let G be a finitely generated powerful pro-p-group with an action by the group $\Delta \cong \mathbb{Z} / 2 \mathbb{Z}$. Then the following holds:

If $d(G)^{+}=0$, then G is Abelian.
In particular, if $d(G)^{+}=0$ and $G^{a b}$ is finite, then G is finite.
Proof. Since G is powerful, we have

$$
[G, G] / H \subseteq G^{p} H / H \quad \text { where } H=([G, G])^{p}[G, G, G]
$$

From $G / G_{2}=\left(G / G_{2}\right)^{-}$it follows that

$$
[G, G] / H=([G, G] / H)^{+} \quad \text { and } G^{p} H / H=\left(G^{p} H / H\right)^{-},
$$

since $G /[G, G]=(G /[G, G])^{-}$and $G^{p}=\left\{x^{p} \mid x \in G\right\}$, ([2], Theorem 3.6(iii)), and so

$$
\left(x^{p}\right)^{\sigma} \equiv x^{-p} \bmod H \quad \text { for } 1 \neq \sigma \in \Delta \text { and } x \in G
$$

We obtain
$[G, G] \subseteq([G, G])^{p}[G, G, G]$.
This implies $[G, G]=1$.

LEMMA 2.2. Let $p \neq 2$ and let G be a finitely generated pro-p-group with an action by the group $\Delta \cong \mathbb{Z} / 2 \mathbb{Z}$. Then the following inequalities hold:

$$
\begin{aligned}
d(G)^{+} \cdot d(G)^{-} & \leqslant \operatorname{dim}_{\mathbb{F}_{p}}\left(G_{2} / G_{3}\right)^{-}-\operatorname{rank}_{\mathbb{Z}_{p}}\left(G^{a b}\right)^{-}+\operatorname{dim}_{\mathbb{F}_{p} p} H^{2}\left(G, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)^{-} \\
\binom{d(G)^{+}}{2}+\binom{d(G)^{-}}{2} & \leqslant \operatorname{dim}_{\mathbb{F}_{p}}\left(G_{2} / G_{3}\right)^{+}-\operatorname{rank}_{\mathbb{Z}_{p}}\left(G^{a b}\right)^{+}+\operatorname{dim}_{\mathbb{F}_{p} p} H^{2}\left(G, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)^{+}
\end{aligned}
$$

Proof. Let $d^{ \pm}=d(G)^{ \pm}$. From the exact sequences

$$
\begin{aligned}
0 \longrightarrow H^{1}\left(G / G_{2}, \mathbb{Z} / p \mathbb{Z}\right) & \xrightarrow{\longrightarrow} H^{1}(G, \mathbb{Z} / p \mathbb{Z}) \longrightarrow H^{1}\left(G_{2}, \mathbb{Z} / p \mathbb{Z}\right)^{G} \\
& \longrightarrow H^{2}\left(G / G_{2}, \mathbb{Z} / p \mathbb{Z}\right) \longrightarrow H^{2}(G, \mathbb{Z} / p \mathbb{Z})
\end{aligned}
$$

and

$$
0 \longrightarrow\left({ }_{p} G^{a b}\right)^{\vee} \longrightarrow H^{2}(G, \mathbb{Z} / p \mathbb{Z}) \longrightarrow_{p} H^{2}\left(G, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right) \longrightarrow 0
$$

we obtain the inequalities

$$
\begin{aligned}
& \operatorname{dim}_{\mathbb{F}_{p}} H^{2}\left(G / G_{2}, \mathbb{Z} / p \mathbb{Z}\right)^{ \pm} \\
& \quad \leqslant \operatorname{dim}_{\mathbb{F}_{p}}\left(G_{2} / G_{3}\right)^{ \pm}+\operatorname{dim}_{\mathbb{F}_{p}}\left({ }_{p} G^{a b}\right)^{ \pm}+\operatorname{dim}_{\mathbb{F}_{p}} p H^{2}\left(G, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)^{ \pm}
\end{aligned}
$$

Let

$$
G / G_{2} \cong A_{1} \oplus \cdots \oplus A_{d^{+}} \oplus B_{1} \oplus \cdots \oplus B_{d^{-}}
$$

be a Δ-invariant decomposition into cyclic groups of order p such that $A_{i}=A_{i}^{+}$ and $B_{j}=B_{j}^{-}$. For $H^{2}\left(G / G_{2}, \mathbb{Z} / p \mathbb{Z}\right)$ we obtain the Δ-invariant Künneth decomposition:

$$
\begin{aligned}
H^{2}\left(G / G_{2}, \mathbb{Z} / p \mathbb{Z}\right) \cong & \bigoplus_{i=1}^{d^{+}} H^{2}\left(A_{i}, \mathbb{Z} / p \mathbb{Z}\right) \\
& \oplus \bigoplus_{i<j} H^{1}\left(A_{i}, \mathbb{Z} / p \mathbb{Z}\right) \otimes H^{1}\left(A_{j}, \mathbb{Z} / p \mathbb{Z}\right) \\
& \oplus \bigoplus_{i<j}^{\theta^{\prime}} H^{1}\left(B_{i}, \mathbb{Z} / p \mathbb{Z}\right) \otimes H^{1}\left(B_{j}, \mathbb{Z} / p \mathbb{Z}\right) \\
& \oplus \bigoplus_{i=1}^{d^{-}} H^{2}\left(B_{i}, \mathbb{Z} / p \mathbb{Z}\right) \\
& \oplus \bigoplus_{i, j} H^{1}\left(A_{i}, \mathbb{Z} / p \mathbb{Z}\right) \otimes H^{1}\left(B_{j}, \mathbb{Z} / p \mathbb{Z}\right)
\end{aligned}
$$

Counting dimensions yields

$$
\begin{aligned}
& \operatorname{dim}_{\mathbb{F}_{p}} H^{2}\left(G / G_{2}, \mathbb{Z} / p \mathbb{Z}\right)^{+}=d^{+}+\binom{d^{+}}{2}+\binom{d^{-}}{2}, \\
& \operatorname{dim}_{\mathbb{F}_{p}} H^{2}\left(G / G_{2}, \mathbb{Z} / p \mathbb{Z}\right)^{-}=d^{-}+d^{+} d^{-}
\end{aligned}
$$

Since

$$
d^{ \pm}=\operatorname{rank}_{\mathbb{Z}_{p}}\left(G^{a b}\right)^{ \pm}+\operatorname{dim}_{\mathbb{F}_{p}}\left(G^{a b}\right)^{ \pm}
$$

we obtain the desired result.

PROPOSITION 2.3. Let $p \neq 2$ and let G be a finitely generated powerful pro-p-group with an action by the group $\Delta \cong \mathbb{Z} / 2 \mathbb{Z}$. Then the following inequalities hold:
(i) $d(G)^{+} \cdot d(G)^{-} \leqslant d(G)^{-}+\operatorname{dim}_{\mathbb{F}_{p} p} H^{2}\left(G, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)^{-}$,
(ii) $\binom{d(G)^{+}}{2}+\binom{d(G)^{-}}{2} \leqslant d(G)^{+}+\operatorname{dim}_{\mathbb{F}_{p} p} H^{2}\left(G, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)^{+}$.

Proof. Since G is powerful, the Δ-invariant homomorphism $G / G_{2} \xrightarrow{p} G_{2} / G_{3}$ is surjective, see [2], Theorem 3.6, and we obtain $\operatorname{dim}_{\mathbb{F}_{p}}\left(G_{2} / G_{3}\right)^{ \pm} \leqslant d(G)^{ \pm}$. Using Lemma 2.2, this proves the proposition.

Now we analyze the case where G is a powerful pro-p-group which is a Poincaré group of dimension 3 .

PROPOSITION 2.4. Let p be odd and let P be a finitely generated powerful pro-p-group with an action of $\Delta \cong \mathbb{Z} / 2 \mathbb{Z}$.
(i) If P is uniform, then

$$
\begin{aligned}
& \operatorname{dim}_{\mathbb{F}_{p}} H^{2}(P, \mathbb{Z} / p \mathbb{Z})^{+}=\binom{d(P)^{+}}{2}+\binom{d(P)^{-}}{2}, \\
& \operatorname{dim}_{\mathbb{F}_{p}} H^{2}(P, \mathbb{Z} / p \mathbb{Z})^{-}=d(P)^{+} \cdot d(P)^{-}
\end{aligned}
$$

(ii) If P is uniform such that $P^{a b}$ is finite and $d(P)^{+}=1$, then

$$
\operatorname{dim}_{\mathbb{F}_{p} p} H^{2}\left(P, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)^{-}=0
$$

(iii) If P is a Poincaré group of dimension 3 such that $P^{a b}$ is finite, then

$$
\begin{array}{rlrl}
d(P)^{+} & =1 & \text { and } & d(P)^{-}=2 \\
& \text { or } \\
d(P)^{+} & =3 & \text { and } & d(P)^{-}=0 .
\end{array}
$$

Proof. Let P be uniform. By [2], Definition 4.1 and Theorem 4.26, we have

$$
\operatorname{dim}_{\mathbb{F}_{p}}\left(H^{1}\left(P_{2}, \mathbb{Z} / p \mathbb{Z}\right)^{P}\right)^{ \pm}=d(P)^{ \pm} \quad \text { and } \operatorname{dim}_{\mathbb{F}_{p}} H^{2}(P, \mathbb{Z} / p \mathbb{Z})=\binom{d(P)}{2}
$$

Counting dimensions shows that

$$
\operatorname{dim}_{\mathbb{F}_{p}} H^{2}\left(P / P_{2}, \mathbb{Z} / p \mathbb{Z}\right)=\operatorname{dim}_{\mathbb{F}_{p}} H^{1}\left(P_{2}, \mathbb{Z} / p \mathbb{Z}\right)^{P}+\operatorname{dim}_{\mathbb{F}_{p}} H^{2}(P, \mathbb{Z} / p \mathbb{Z})
$$

and so the sequence

$$
0 \longrightarrow H^{1}\left(P_{2}, \mathbb{Z} / p \mathbb{Z}\right)^{P} \longrightarrow H^{2}\left(P / P_{2}, \mathbb{Z} / p \mathbb{Z}\right) \longrightarrow H^{2}(P, \mathbb{Z} / p \mathbb{Z}) \longrightarrow 0
$$

is exact. Therefore,

$$
\operatorname{dim}_{\mathbb{F}_{p}} H^{2}(P, \mathbb{Z} / p \mathbb{Z})^{ \pm}=\operatorname{dim}_{\mathbb{F}_{p}} H^{2}\left(P / P_{2}, \mathbb{Z} / p \mathbb{Z}\right)^{ \pm}-\operatorname{dim}_{\mathbb{F}_{p}}\left(H^{1}\left(P_{2}, \mathbb{Z} / p \mathbb{Z}\right)^{P}\right)^{ \pm}
$$

which proves (i).

If $P^{a b}$ is finite, then $\operatorname{dim}_{\mathbb{F}_{p}}\left({ }_{p} P^{a b}\right)^{ \pm}=d(P)^{ \pm}$, and so by (i)

$$
\begin{aligned}
\operatorname{dim}_{\mathbb{F}_{p} p} H^{2}\left(P, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)^{-} & =\operatorname{dim}_{\mathbb{F}_{p}} H^{2}(P, \mathbb{Z} / p \mathbb{Z})^{-}-\operatorname{dim}_{\mathbb{F}_{p}}\left({ }_{p} P^{a b}\right)^{-} \\
& =d(P)^{+} \cdot d(P)^{-}-d(P)^{-}
\end{aligned}
$$

This gives us the desired result (ii).
Now let P be a powerful Poincaré group of dimension 3 ; in particular, P is torsionfree and therefore P is uniform, see [2], Theorem 4.8. Since

$$
\operatorname{dim}_{\mathbb{F}_{p}} H^{1}(P, \mathbb{Z} / p \mathbb{Z})=\operatorname{dim}_{\mathbb{F}_{p}} H^{2}(P, \mathbb{Z} / p \mathbb{Z})
$$

and since $P^{a b}$ is finite, the exact sequence

$$
0 \longrightarrow\left({ }_{p} P^{a b}\right)^{\vee} \longrightarrow H^{2}(P, \mathbb{Z} / p \mathbb{Z}) \longrightarrow_{p} H^{2}\left(P, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right) \longrightarrow 0
$$

shows that

$$
\left({ }_{p} P^{a b}\right)^{\vee} \xrightarrow{\sim} H^{2}(P, \mathbb{Z} / p \mathbb{Z})
$$

It follows that

$$
\operatorname{dim}_{\mathbb{F}_{p}} H^{2}(P, \mathbb{Z} / p \mathbb{Z})^{ \pm}=d(P)^{ \pm}
$$

and so by (i)

$$
d(P)^{+} \cdot d(P)^{-}=d(P)^{-}
$$

This proves (iii).

3. On the Fontaine-Mazur Conjecture

We keep the notation of Sections 1 and 2. Let

$$
d_{k}^{ \pm}=\operatorname{dim}_{\mathbb{F}_{p}}(C l(k) / p)^{ \pm}=d(G(L(p) \mid k))^{ \pm}
$$

THEOREM 3.1. Let p be an odd prime number and let k be a CM-field such that
(i) $d_{k}^{-} \neq 0$, if $\mu_{p} \nsubseteq k$,
(ii) $d_{k}^{+} \neq 1$.

Then, if the Galois group $G(L(p) \mid k)$ of the maximal unramified p-extension $L(p)$ of k is powerful, it is finite.

Proof. If $d_{k}^{+}=0$, then the theorem follows from Proposition 2.1. Therefore we assume that $d_{k}^{+} \geqslant 2$ (assumption (ii)). From assumption (i) and Leopoldt's Spiegelungssatz, see [8], Theorem 10.11, it follows that $d_{k}^{-} \geqslant 1$. From Proposition 2.3 and Corollary 1.2 we obtain the inequality $d_{k}^{+} d_{k}^{-} \leqslant d_{k}^{-}+\delta$ and it follows that $d_{k}^{+}=2, d_{k}^{-}=1($ and $\delta=1)$, and so $d(G(L(p) \mid k))=3$.
If $P=G(L(p) \mid k)_{i}, i$ large enough, then P is uniform, [2], Theorem 4.2, and $d(P) \leqslant 3$, [2], Theorem 3.8. Suppose that P is nontrivial. Then P is a Poincaré group
of dimension $\operatorname{dim}(P)=d(P) \leqslant 3$ (see [5], chap. V, Theorem (2.2.8) and (2.5.8)). But Poincaré groups of dimension $\operatorname{dim}(P) \leqslant 2$ have the group \mathbb{Z}_{p} as homomorphic image, and so we can assume that $\operatorname{dim}(P)=d(P)=3$. Since $G(L(p) \mid k)$ is powerful, we have a surjection

$$
G(L(p) \mid k) / G(L(p) \mid k)_{2} \longrightarrow G(L(p) \mid k)_{i} / G(L(p) \mid k)_{i+1}
$$

Furthermore, by [2], Theorem 3.6(ii), $G(L(p) \mid k)_{i+1}=\left(G(L(p) \mid k)_{i}\right)_{2}=P_{2}$, and so $G(L(p) \mid k)_{i} / G(L(p) \mid k)_{i+1}=P / P_{2}$. Therefore, $d(P)^{+}=2$ and $d(P)^{-}=1$. By Proposition 2.4(iii) we get a contradiction.

If $\mu_{p} \subseteq k$, then $d_{k}^{+}=1$ is the only remaining case. Here we only get a weaker result. Let k_{∞} be the cyclotomic \mathbb{Z}_{p}-extension of k and denote by k_{n} the nth layer of $k_{\infty} \mid k$.

THEOREM 3.2. Let $p \neq 2$ and let k be a $C M$-field containing μ_{p}. Assume that $k_{1} \mid k$ is not unramified if $d_{k}^{+}=1$. Then the Galois group $G(L(p) \mid k)$ of the maximal unramified p-extension $L(p)$ of k is not uniform.

Proof. Suppose that $G=G(L(p) \mid k)$ is uniform. Using Theorem 3.1, we may assume that $d(G)^{+}=1$, and so, by Proposition 2.4(ii),

$$
\operatorname{dim}_{\mathbb{F}_{p} p} H^{2}\left(G, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)^{-}=0
$$

On the other hand, by Theorem 1.1, we have a surjection

$$
H^{2}\left(G, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)^{\vee} \cong \hat{H}^{0}(G, E(L(p))) \longrightarrow \hat{H}^{0}(G(K \mid k), E(K)),
$$

where $K \mid k$ is a finite unramified Galois p-extension of CM -fields (recall that $\left.d(G)^{+} \neq 0\right)$, and so a surjection

$$
\left(H^{2}\left(G, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)^{-}\right)^{\vee} \longrightarrow \hat{H}^{0}(G(K \mid k), E(K))^{-}
$$

Since K is of CM-type, it follows that

$$
\hat{H}^{0}(G(K \mid k), E(K))^{-} \cong \hat{H}^{0}(G(K \mid k), \mu(K)(p))
$$

By our assumption, K is disjoint to k_{∞}, i.e. $\mu(K)(p)=\mu(k)(p)$, and so

$$
\operatorname{dim}_{\mathbb{F}_{p}} \hat{H}^{0}(G(K \mid k), \mu(K)(p)) / p=1
$$

It follows that $\operatorname{dim}_{\mathbb{F}_{p} p} H^{2}\left(G, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)^{-}=1$. This contradiction proves the theorem.

Remarks. (1) Theorems 3.1 and 3.2 also hold in the following situation: Replace $L(p)$ by $L_{S}(p)$ and $C l$ by $C l_{S}$ where $S \supseteq S_{\infty}$ is a set of primes which do not split in the extension $k \mid k^{+}$. Use Corollary 1.2 for S instead of S_{∞}.
(2) Theorem 3.1 is also true, if we replace $L(p)$ by the maximal p-extension $k_{S}(p)$ of k which is unramified outside a finite set S which contains S_{∞} but no prime above p. Instead of $C l(k)$ one has to take the ray class group $C(k) / C^{m}(k) \bmod$
$\mathfrak{m}=\prod_{p \in S} \mathfrak{p}$ (which is finite). In order to prove an analog of Corollary 1.2, use the exact sequence

$$
0 \longrightarrow E^{S}(K) \longrightarrow J_{S_{\infty}}(K) \times U_{S^{\prime}}^{1}(K) \longrightarrow C_{S}(K) \longrightarrow C(K) / C^{\mathrm{m}}(K) \longrightarrow 0
$$

where $S^{\prime}=S \backslash S_{\infty}$ and $U_{S^{\prime}}^{1}(K)$ is the product over the principal units at the places of S^{\prime} and $E^{S}(K)=\operatorname{ker}\left(E(K) \rightarrow U_{S^{\prime}}(K) / U_{S^{\prime}}^{1}(K)\right)$.

Now we consider the Galois groups $G\left(L_{n}(p) \mid k_{n}\right)$ of the maximal unramified p-extension $L_{n}(p)$ of k_{n} in the p-cyclotomic tower of k.

THEOREM 3.3. Let $p \neq 2$ and let k be a $C M$-field containing μ_{p}. Assume that the Iwasawa μ-invariant of the cyclotomic \mathbb{Z}_{p}-extension $k_{\infty} \mid k$ is zero. Then there exists a number n_{0} such that for all $n \geqslant n_{0}$ the following holds: If the Galois group $G\left(L_{n}(p) \mid k_{n}\right)$ is powerful, then it is finite.
Proof. Let $1 \longrightarrow G_{\infty} \longrightarrow G\left(L_{\infty}(p) \mid k\right) \longrightarrow \Gamma \longrightarrow 1$, where $G_{\infty}=G\left(L_{\infty}(p) \mid k_{\infty}\right)$ is the Galois group of the maximal unramified p-extension $L_{\infty}(p)$ of k_{∞} and $\Gamma=G\left(k_{\infty} \mid k\right)=\langle\gamma\rangle$. Let $\Gamma_{n}=\left\langle\gamma^{p^{n}}\right\rangle, n \geqslant 0$, be the open subgroups of Γ of index p^{n}. By our assumption on the Iwasawa μ-invariant G_{∞} is a finitely generated pro-p-group.

Let n_{1} be large enough such that all primes of $k_{n_{1}}$ above p are totally ramified in $k_{\infty} \mid k_{n_{1}}$ and let $\left\langle\gamma_{j}\right\rangle \subseteq G\left(L_{\infty}(p) \mid k_{n_{1}}\right), j=1, \ldots, s$, be the inertia groups of some extensions of the finitely many primes $\mathfrak{p}_{1}, \ldots \mathfrak{p}_{s}$ of $k_{n_{1}}$ above p.

For $n \geqslant n_{1}$ let

$$
M_{n}=\left(\gamma_{j}^{p^{n-n_{1}}}, j=1, \ldots, s\right) \subseteq G\left(L_{\infty}(p) \mid k_{n}\right)
$$

be the normal subgroup generated by all conjugates of the elements $\gamma_{j}^{p^{n-n_{1}}}$ and

$$
N_{n}:=M_{n} \cap G_{\infty}=\left(\gamma_{i}^{p^{n-n_{1}}} \gamma_{j}^{-p^{n-n_{1}}},\left[\gamma_{j}^{p^{n-n_{1}}}, g\right], i, j=1, \ldots, s, g \in G_{\infty}\right)
$$

Then the commutative exact diagram

shows that $G_{\infty} / N_{n} \cong G\left(L_{n}(p) \mid k_{n}\right)$ and we have canonical surjections

$$
G_{\infty} \longrightarrow G\left(L_{m}(p) \mid k_{m}\right) \longrightarrow G\left(L_{n}(p) \mid k_{n}\right)
$$

for $m \geqslant n \geqslant n_{1}$.
Let $n_{0} \geqslant n_{1}$ be large enough such that

$$
G_{\infty} /\left(G_{\infty}\right)_{3} \xrightarrow{\sim} G\left(L_{n}(p) \mid k_{n}\right) /\left(G\left(L_{n}(p) \mid k_{n}\right)\right)_{3}
$$

for all $n \geqslant n_{0}$, i.e.

$$
\begin{aligned}
& G\left(L_{\infty}(p) \mid k_{n}\right) /\left(G_{\infty}\right)_{3} \\
& \quad=G_{\infty} /\left(G_{\infty}\right)_{3} \times \Gamma_{n} \cong G\left(L_{n}(p) \mid k_{n}\right) /\left(G\left(L_{n}(p) \mid k_{n}\right)\right)_{3} \times \Gamma_{n} .
\end{aligned}
$$

Then $\left\langle\gamma_{j}^{p^{n-n_{1}}}\right\rangle$ acts trivially on $G_{\infty} /\left(G_{\infty}\right)_{3}$ for all $j \leqslant s$ and N_{n} is contained in $\left(G_{\infty}\right)_{3}$.
Suppose that $G\left(L_{n}(p) \mid k_{n}\right), n \geqslant n_{0}$, is powerful. Then $\left[G_{\infty}, G_{\infty}\right] \subseteq\left(G_{\infty}\right)^{p} N_{n}$. By assumption on n_{0} the group N_{n} is contained in $\left(G_{\infty}\right)_{3}$, and so

$$
\left[G_{\infty}, G_{\infty}\right] \subseteq\left(G_{\infty}\right)^{p}\left[G_{\infty},\left[G_{\infty}, G_{\infty}\right]\right] .
$$

From this inclusion it follows that $\left[G_{\infty}, G_{\infty}\right] \subseteq\left(G_{\infty}\right)^{p}$, thus G_{∞} is powerful.
Using Proposition 2.1, we can assume that

$$
d_{k_{n}}^{+}=\operatorname{dim}_{\mathbb{F}_{p}}\left(C l\left(k_{n}\right) / p\right)^{+} \geqslant 1 .
$$

Let $K \mid k_{n}$ be an unramified Galois extension of degree p such that $G\left(K \mid k_{n}\right)=G\left(K \mid k_{n}\right)^{+}$and let $K_{\infty}=k_{\infty} K$. Because of our definition of n_{1} the field K is not contained in k_{∞} and $G\left(L_{\infty}(p) \mid K_{\infty}\right)$ is a normal subgroup of $G\left(L_{\infty}(p) \mid k_{\infty}\right)$ of index p.
Using results of Iwasawa theory, [6] (11.4.13) and (11.4.8), we obtain

$$
d\left(G\left(L_{\infty}(p) \mid K_{\infty}\right)\right)^{-}=p\left(d\left(G\left(L_{\infty}(p) \mid k_{\infty}\right)\right)^{-}-1\right)+1 .
$$

From [2], Theorem 3.8 and the equality above it follows that

$$
\begin{aligned}
& d\left(G\left(L_{\infty}(p) \mid k_{\infty}\right)\right)^{+}+d\left(G\left(L_{\infty}(p) \mid k_{\infty}\right)\right)^{-} \\
& \quad=d\left(G\left(L_{\infty}(p) \mid k_{\infty}\right)\right) \\
& \quad \geqslant d\left(G\left(L_{\infty}(p) \mid K_{\infty}\right)\right) \\
& \quad=d\left(G\left(L_{\infty}(p) \mid K_{\infty}\right)\right)^{+}+d\left(G\left(L_{\infty}(p) \mid K_{\infty}\right)\right)^{-} \\
& \quad=d\left(G\left(L_{\infty}(p) \mid K_{\infty}\right)\right)^{+}+p\left(d\left(G\left(L_{\infty}(p) \mid k_{\infty}\right)\right)^{-}-1\right)+1 .
\end{aligned}
$$

The maximal quotient $G\left(L_{\infty}(p) \mid k_{\infty}\right)_{\Delta}$ of $G\left(L_{\infty}(p) \mid k_{\infty}\right)$ with trivial action of Δ is also powerful and we have $d\left(G\left(L_{\infty}(p) \mid k_{\infty}\right)_{\Delta}\right)=d\left(G\left(L_{\infty}(p) \mid k_{\infty}\right)\right)^{+}$. Using again [2], Theorem 3.8, we get

$$
d\left(G\left(L_{\infty}(p) \mid k_{\infty}\right)\right)^{+} \geqslant d\left(G\left(L_{\infty}(p) \mid K_{\infty}\right)\right)^{+} .
$$

Both inequalities together imply $d\left(G\left(L_{\infty}(p) \mid k_{\infty}\right)\right)^{-} \leqslant 1$.
Using [6], (11.4.4), we finally obtain

$$
d\left(G\left(L_{\infty}(p) \mid k_{\infty}\right)\right)^{+}, d\left(G\left(L_{\infty}(p) \mid k_{\infty}\right)\right)^{-} \leqslant 1 .
$$

It follows that $G\left(L_{n}(p) \mid k_{n}\right)$ is a powerful pro- p-group with $d\left(G\left(L_{n}(p) \mid k_{n}\right)\right) \leqslant 2$. If $G\left(L_{n}(p) \mid k_{n}\right)$ is not finite, then it contains an open subgroup P which is a Poincaré group (see [5], chap. V, Theorem (2.2.8) and (2.5.8)) of dimension $\operatorname{dim} P=d(P) \leqslant 2$ (use again [2], Theorem 3.8). But these groups have the group
\mathbb{Z}_{p} as homomorphic image. By the finiteness of the class number it follows that $G\left(L_{n}(p) \mid k_{n}\right)$ is finite.

Remark. Theorem 3.3 also holds if we replace $L(p)$ by $L_{\Sigma}(p)$ and $C l$ by $C l_{\Sigma}$, where $\Sigma=S_{\infty} \cup S_{p}$ is the set of Archimedean primes and primes above p, and if we assume that no prime of S_{p} splits in the extension $k \mid k^{+}$.

Now we consider the conjecture for general p-adic analytic groups. Let

$$
1 \longrightarrow \mathcal{D} \longrightarrow \mathcal{G} \longrightarrow G \longrightarrow 1
$$

be an exact sequence of pro-p-groups. For an open normal subgroup H of G we denote the preimage of H in \mathcal{G} by \mathcal{H}. Thus we get a commutative exact diagram

PROPOSITION 3.4. With the notation as above assume that
(i) \mathcal{G} is finitely generated and $c d_{p} \mathcal{G} \leqslant 2$,
(ii) $c d_{p} G<\infty$,
(iii) the Euler-Poincaré characteristic of \mathcal{G} is zero, i.e.

$$
\chi(\mathcal{G})=\sum_{i=0}^{2}(-1)^{i} \operatorname{dim}_{\mathbb{F}_{p}} H^{i}(\mathcal{G}, \mathbb{Z} / p \mathbb{Z})=0
$$

Then $d(\mathcal{H})$ is unbounded for varying open normal subgroups H of G or $\operatorname{cd}_{p} G \leqslant 2$.
Proof. Suppose that $\operatorname{dim}_{\mathbb{F}_{p}} H^{1}(\mathcal{H}, \mathbb{Z} / p \mathbb{Z})$ is bounded for varying H. Since $\chi(\mathcal{G})=0$, the same is true for $\operatorname{dim}_{\mathbb{F}_{p}} H^{2}(\mathcal{H}, \mathbb{Z} / p \mathbb{Z})$. It follows that $H^{i}(\mathcal{D}, \mathbb{Z} / p \mathbb{Z})$ is finite for $i=1,2$. By [6], Proposition (3.3.7), we obtain

$$
c d_{p} \mathcal{G}=c d_{p} G+c d_{p} \mathcal{D} \geqslant c d_{p} G
$$

This proves the proposition.

As an application to our problem we get the following result for the maximal unramified p-extension $L_{k}(p)$ of a number field k.

THEORM 3.5. Let $p \neq 2$ and let k be a $C M$-field containing μ_{p} with maximal totally real subfield k^{+}. Assume that $\mu_{p} \not k_{\mathfrak{p}}^{+}$for all primes \mathfrak{p} of k^{+}above p. Then the following holds: either
(i) $G\left(L_{k^{+}}(p) \mid k^{+}\right)$is finite,
or
(ii) $G\left(L_{k}(p) \mid k\right)$ is not p -adic analytic,
with other words, if $G\left(L_{k}(p) \mid k\right)$ is p-adic analytic, then $G\left(L_{k+}(p) \mid k^{+}\right)$is finite.
Proof. Suppose that (i) and (ii) do not hold. Then the maximal quotient $G\left(L_{k^{+}}(p) \mid k^{+}\right)$of the p-adic analytic group $G\left(L_{k}(p) \mid k\right)$ with trivial action by $\Delta=G\left(k \mid k^{+}\right)$is an infinite analytic group. Passing to a finite extension of k^{+}, we may assume that $G\left(L_{k^{+}}(p) \mid k^{+}\right)$is uniform (our assumptions on k are still valid). The dimension of $G\left(L_{k^{+}}(p) \mid k^{+}\right)$is greater or equal to 3 , since otherwise it would have the group \mathbb{Z}_{p} as quotient which is impossible by the finiteness of the class number.

If $k_{S_{p}}^{+}(p)$ is the maximal p-extension of k^{+}which is unramified outside p, then $c d_{p} G\left(k_{S_{p}}^{+}(p) \mid k^{+}\right) \leqslant 2$ and $\chi\left(G\left(k_{S_{p}}^{+}(p) \mid k^{+}\right)\right)=0$, see [6], (8.3.17), (8.6.16) and (10.4.8). Applying Proposition 3.4, we obtain that

$$
\operatorname{dim}_{\mathbb{F}_{p}} H^{1}\left(G\left(k_{S_{p}}^{+}(p) \mid K^{+}\right), \mathbb{Z} / p \mathbb{Z}\right)=\operatorname{dim}_{\mathbb{F}_{p}} H^{1}\left(G\left(k_{S_{p}}(p) \mid K^{+}\left(\mu_{p}\right)\right), \mathbb{Z} / p \mathbb{Z}\right)^{+}
$$

is unbounded, if K^{+}varies over the finite Galois extension of k^{+}inside $L_{k^{+}}(p)$. By [6], Theorem (8.7.3) and the assumption that $\mu_{p} \nsubseteq k_{p}^{+}$for all primes $\mathfrak{p} \mid p$, it follows that

$$
\begin{aligned}
d\left(G\left(L_{k}(p) \mid K^{+}\left(\mu_{p}\right)\right)\right. & =\operatorname{dim}_{\mathbb{F}_{p}} C l\left(K^{+}\left(\mu_{p}\right)\right) / p \\
& \geqslant \operatorname{dim}_{\mathbb{F}_{p}}\left(C l_{S_{p}}\left(K^{+}\left(\mu_{p}\right)\right) / p\right)^{-} \\
& =\operatorname{dim}_{\mathbb{F}_{p}} H^{1}\left(G\left(k_{S_{p}}(p) \mid K^{+}\left(\mu_{p}\right)\right), \mathbb{Z} / p \mathbb{Z}\right)^{+}-1
\end{aligned}
$$

is unbounded for varying K^{+}inside $L_{k^{+}}(p)$ and therefore $G\left(L_{k}(p) \mid k\right)$ is not p-adic analytic. This contradiction proves the theorem.

References

1. Boston, N.: Some cases of the Fontaine-Mazur conjecture II, J. Number Theory $\mathbf{7 5}$ (1999), 161-169.
2. Dixon, J. D., du Sautoy, M. P. F., Mann, A. and Segal, D.: Analytic pro-p Groups. London Math. Soc. Lecture Notes 157, Cambridge Univ. Press 1991.
3. Fontaine, J-M. and Mazur B.: Geometric Galois representations, in: J. Coates and S. T. Yau (eds), Elliptic Curves, Modular Forms, and Fermat's Last Theorem, International Press, Boston, 1995.
4. Hajir, F.: On the groth of p-class groups in p-class towers, J. Algebra 188 (1997), 256-271.
5. Lazard, M.: Groupes analytiques p-adiques. IHES, Publ. Math. 26 (1965).
6. Neukirch, J., Schmidt, A. and Wingberg, K.: Cohomology of Number Fields, Springer, New York, 2000.
7. Schmidt, A.: On Poitou's duality theorem, J. reine angew. Math. 517 (1999), 145-160.
8. Washington, L. C.: Introduction to Cyclotomic Fields, 2nd edn, Springer, New York, 1997.
