A HELLY TYPE THEOREM FOR CONVEX SETS BY MEIR KATCHALSKI

ABSTRACT. A ray in Euclidean *n*-dimensional space \mathbb{R}^n is a set of the form $\{a + \lambda b: \lambda \ge 0\}$ where *a* and *b* are fixed points in \mathbb{R}^n and $b \ne 0$.

The subject of this paper is a Helly type theorem for convex sets in \mathbb{R}^n .

If \mathcal{A} is a finite family of at least 2n convex sets in \mathbb{R}^n and if the intersection of any 2n members of \mathcal{A} contains a ray then $\cap \mathcal{A}$ contains a ray.

1. Introduction. The subject of this paper is a Helly type theorem for convex sets in Euclidean *n*-dimensional space \mathbb{R}^n .

For related results consult [1] and for standard notation and terminology see [4].

For a set S in \mathbb{R}^n , conv S will denote the convex hull of S, aff S the affine hull of S and dim S the dimension of aff S. A ray with apex a in \mathbb{R}^n is a set of the form $\{a + \lambda b: \lambda \ge 0\}$ where a and b are fixed points in \mathbb{R}^n and $b \ne 0$.

The following two theorems are known.

THEOREM A. If \mathcal{A} is a family of at least 2n convex sets in \mathbb{R}^n and if the intersection of each 2n members of \mathcal{A} is at least 1-dimensional then the intersection $\cap \mathcal{A}$ is at least 1-dimensional.

THEOREM B. If \mathcal{A} is a family of at least n convex sets in \mathbb{R}^n and if the intersection of each n members of \mathcal{A} contains a line then $\cap \mathcal{A}$ contains a line.

For a short proof of Theorem A consult [3] or [5] (the values of h(k, n) in [3] are wrong for 1 < k < n, see [5] for the correct values). For a proof of Theorem B consult [2].

The gap between Theorem A and Theorem B is filled by

THEOREM C. If \mathcal{A} is a finite family of at least 2n convex sets in \mathbb{R}^n and if the intersection of each 2n members of \mathcal{A} contains a ray then $\cap \mathcal{A}$ contains a ray.

By constructing a suitable family of half spaces with the origin on their boundary it is possible to show that 2n in Theorem C cannot be replaced by a smaller number.

2. **Proof of Theorem C.** The proof is by induction on *n*. For n = 1 the theorem is obvious so assume that n > 1. By a standard argument it is sufficient to prove the theorem for $|\mathcal{A}| = 2n + 1$.

Let $\mathcal{A} = \{A_1, \ldots, A_{2n+1}\}$, let $s = \dim \cap \mathcal{A}$ and let $\mathbb{R}^s = \operatorname{aff} \cap \mathcal{A}$.

Received by the editors April, 20 1977

[March

By Theorem A dim $\cap \mathcal{A} = s \ge 1$. Assume, without loss of generality that $0 \in$ relint $\cap \mathcal{A}$. This implies that R^s is an s-dimensional subspace of R^n .

There are two cases to consider.

CASE 1. $1 \le s < n$.

Let I be the set of indexes i such that

 $R^{s} \cap \cap (\mathscr{A} \setminus \{A_{i}\})$ contains a ray.

If $|I| \ge 2s + 1$ then the family of convex sets

$$\mathscr{B} = \left\{ R^s \cap A_i \cap \bigcap_{j \in I} A_j : i \in I \right\}$$

satisfies the assumptions of Theorem C with s replacing n and \mathbb{R}^s replacing \mathbb{R}^n . By the induction hypothesis $\cap \mathcal{B}$ contains a ray and since $\cap \mathcal{A} = \cap \mathcal{B}$ the intersection $\cap \mathcal{A}$ contains a ray.

Suppose that $|I| \le 2s$. It will be shown that this assumption leads to a contradiction.

Let $H = H^{n-s}$ be a subspace of R^n which is complementary to R^s . Let

$$\mathscr{C} = \left\{ H \cap A_j \cap \bigcap_{i \in I} A_i \colon j \in I \right\}$$

be a family of convex sets in H. The family \mathscr{C} is of cardinality $|\mathscr{A}| = 2n+1-|I| \ge 2n+1-2s = 2(n-s)+1 = 2 \dim H+1$.

Since $R^s = aff \cap \mathcal{A}$ and $0 \in relint \cap \mathcal{A}$ and from the definition of I it follows that the intersection of any 2(n-s) members of \mathcal{A} with H contains a point different from 0, and is therefore of dimension at least 1.

By Theorem A with \mathscr{C} replacing \mathscr{A} and H replacing \mathbb{R}^n , $\cap \mathscr{C}$ contains a point different from 0. Since $\cap \mathscr{C} \subset \cap \mathscr{A}$, dim $\cap \mathscr{A} \ge s + 1$, a contradiction.

CASE 2. s = n.

The following observation will be used.

If a convex set S contains a ray C with apex p and if $q \in \text{relint } S$ then S contains the ray C-p+q with apex q.

Since $0 \in \operatorname{relint} \cap \mathcal{A} = \operatorname{int} \cap \mathcal{A}$, for each $1 \ge i \le n$ there is a ray C_i with apex 0 such that $C_i \subset \cap (\mathcal{A} \setminus \{A_i\})$.

Define for each $1 \le i \le 2n+1$

$$D_i = \operatorname{conv}\left(\bigcup_{\substack{j=1\\ i\neq i}}^{2n+1} C_j\right).$$

Then for each $1 \le i \le 2n+1$, D_i is a convex cone with apex 0, $D_i \subset A_i$, and $\bigcap_{j \ne 1} D_j \supset C_i$ so that dim $\bigcup_{j \ne i} D_j \ge 1$. By Theorem A applied to the family $\{D_i: 1 \le i \le 2n+1\}$ the convex cone $\bigcap_{i=1}^{2n+1} D_i$ is of dimension at least 1 and therefore contains a ray. It follows that $\bigcap \mathscr{A}$ contains a ray. This completes the proof of Theorem C.

ACKNOWLEDGEMENT. The author wishes to thank Professor M. A. Perles for his help and advice.

References

[1] L. Danzer, B. Grünbaum and V. Klee, Helly's theorem and its relatives, Proceedings of Symposia in Pure Mathematics, Vol. 7, Convexity, Amer. Math. Soc. (1962), 101-180.

[2] R. De Santis, A generalization of Helley's theorem, Proc. Amer. Math. Soc. 8 (1957), 336-340.

[3] B. Grünbaum, The dimension of intersections of convex sets, Pacific J. Math. 12 (1962), 197-202.

[4] B. Grünbaum, Convex Polytopes, Interscience, London/New York/Sydney, 1967.

[5] M. Katchalski, The dimensions of intersections of convex sets, Israel J. Math. 10 (1971), 465-470.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF ALBERTA EDMONTON, ALBERTA T6G 2G1