A HELLY TYPE THEOREM FOR CONVEX SETS

By
MEIR KATCHALSKI

> AbSTRACT. A ray in Euclidean n-dimensional space R^{n} is a set of the form $\{a+\lambda b: \lambda \geq 0\}$ where a and b are fixed points in R^{n} and $b \neq 0$.
> The subject of this paper is a Helly type theorem for convex sets in R^{n}.
> If \mathscr{A} is a finite family of at least $2 n$ convex sets in R^{n} and if the intersection of any $2 n$ members of \mathscr{A} contains a ray then $\cap \mathscr{A}$ contains a ray.

1. Introduction. The subject of this paper is a Helly type theorem for convex sets in Euclidean n-dimensional space R^{n}.

For related results consult [1] and for standard notation and terminology see [4].

For a set S in R^{n}, conv S will denote the convex hull of S, aff S the affine hull of S and $\operatorname{dim} S$ the dimension of aff S. A ray with apex a in R^{n} is a set of the form $\{a+\lambda b: \lambda \geq 0\}$ where a and b are fixed points in R^{n} and $b \neq 0$.

The following two theorems are known.
Theorem A. If \mathscr{A} is a family of at least $2 n$ convex sets in R^{n} and if the intersection of each $2 n$ members of \mathscr{A} is at least 1-dimensional then the intersection $\cap \mathscr{A}$ is at least 1-dimensional.

Theorem B. If \mathscr{A} is a family of at least n convex sets in R^{n} and if the intersection of each n members of \mathscr{A} contains a line then $\cap \mathscr{A}$ contains a line.

For a short proof of Theorem A consult [3] or [5] (the values of $h(k, n)$ in [3] are wrong for $1<k<n$, see [5] for the correct values). For a proof of Theorem B consult [2].

The gap between Theorem A and Theorem B is filled by
Theorem C. If \mathscr{A} is a finite family of at least $2 n$ convex sets in R^{n} and if the intersection of each $2 n$ members of \mathscr{A} contains a ray then $\cap \mathscr{A}$ contains a ray.

By constructing a suitable family of half spaces with the origin on their boundary it is possible to show that $2 n$ in Theorem C cannot be replaced by a smaller number.
2. Proof of Theorem C. The proof is by induction on n. For $n=1$ the theorem is obvious so assume that $n>1$. By a standard argument it is sufficient to prove the theorem for $|\mathscr{A}|=2 n+1$.

Let $\mathscr{A}=\left\{A_{1}, \ldots, A_{2 n+1}\right\}$, let $s=\operatorname{dim} \cap \mathscr{A}$ and let $R^{s}=\operatorname{aff} \cap \mathscr{A}$.

By Theorem $A \operatorname{dim} \cap \mathscr{A}=s \geq 1$. Assume, without loss of generality that $0 \in$ relint $\cap \mathscr{A}$. This implies that R^{s} is an s-dimensional subspace of R^{n}.

There are two cases to consider.
Case 1. $1 \leq s<n$.
Let I be the set of indexes i such that

$$
R^{s} \cap \cap\left(\mathscr{A} \backslash\left\{A_{i}\right\}\right) \text { contains a ray }
$$

If $|I| \geq 2 s+1$ then the family of convex sets

$$
\mathscr{B}=\left\{R^{s} \cap A_{i} \cap \bigcap_{i \notin I} A_{j}: i \epsilon I\right\}
$$

satisfies the assumptions of Theorem C with s replacing n and R^{s} replacing R^{n}. By the induction hypothesis $\cap \mathscr{B}$ contains a ray and since $\cap \mathscr{A}=\cap \mathscr{B}$ the intersection $\cap \mathscr{A}$ contains a ray.

Suppose that $|I| \leq 2 s$. It will be shown that this assumption leads to a contradiction.

Let $H=H^{n-s}$ be a subspace of R^{n} which is complementary to R^{s}. Let

$$
\mathscr{C}=\left\{H \cap A_{j} \cap \bigcap_{i \epsilon I} A_{i}: j \epsilon I\right\}
$$

be a family of convex sets in H. The family \mathscr{C} is of cardinality $|\mathscr{A}|=$ $2 n+1-|I| \geq 2 n+1-2 s=2(n-s)+1=2 \operatorname{dim} H+1$.

Since $R^{s}=\operatorname{aff} \cap \mathscr{A}$ and $0 \in$ relint $\cap \mathscr{A}$ and from the definition of I it follows that the intersection of any $2(n-s)$ members of \mathscr{A} with H contains a point different from 0 , and is therefore of dimension at least 1.

By Theorem A with \mathscr{C} replacing \mathscr{A} and H replacing $R^{n}, \cap \mathscr{C}$ contains a point different from 0 . Since $\cap \mathscr{C} \subset \cap \mathscr{A}, \operatorname{dim} \cap \mathscr{A} \geq s+1$, a contradiction.

Case 2. $s=n$.
The following observation will be used.
If a convex set S contains a ray C with apex p and if $q \in$ relint S then S contains the ray $C-p+q$ with apex q.

Since $0 \in$ relint $\cap \mathscr{A}=\operatorname{int} \cap \mathscr{A}$, for each $1 \geq i \leq n$ there is a ray C_{i} with apex 0 such that $C_{i} \subset \cap\left(\mathscr{A} \backslash\left\{A_{i}\right\}\right)$.

Define for each $1 \leq i \leq 2 n+1$

$$
D_{i}=\operatorname{conv}\left(\bigcup_{\substack{i=1 \\ j \neq i}}^{2 n+1} C_{j}\right) .
$$

Then for each $1 \leq i \leq 2 n+1, D_{i}$ is a convex cone with apex $0, D_{i} \subset A_{i}$, and $\bigcap_{j \neq 1} D_{j} \supset C_{i}$ so that $\operatorname{dim} \bigcup_{j \neq i} D_{j} \geq 1$. By Theorem A applied to the family $\left\{D_{i}: 1 \leq i \leq 2 n+1\right\}$ the convex cone $\bigcap_{i=1}^{2 n+1} D_{i}$ is of dimension at least 1 and therefore contains a ray. It follows that $\cap \mathscr{A}$ contains a ray. This completes the proof of Theorem C.

Acknowledgement. The author wishes to thank Professor M. A. Perles for his help and advice.

References

[1] L. Danzer, B. Grünbaum and V. Klee, Helly's theorem and its relatives, Proceedings of Symposia in Pure Mathematics, Vol. 7, Convexity, Amer. Math. Soc. (1962), 101-180.
[2] R. De Santis, A generalization of Helley's theorem, Proc. Amer. Math. Soc. 8 (1957), 336-340.
[3] B. Grünbaum, The dimension of intersections of convex sets, Pacific J. Math. 12 (1962), 197-202.
[4] B. Grünbaum, Convex Polytopes, Interscience, London/New York/Sydney, 1967.
[5] M. Katchalski, The dimensions of intersections of convex sets, Israel J. Math. 10 (1971), 465-470.

Department of Mathematics

University of Alberta
Edmonton, Alberta T6G 2G1

