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Let An (n > 0) denote the subset of the Euclidean (n + 1)-dimensional 
space defined by 

n 

An = { ( * o , / i , . . . , 0 : 0 < / « < l a n d ] £ *« = 1}. 

A subset a of An is called a face if there exists a sequence 0 < i\ < i2 < . . . 
< im K n such that 

o- = Aw H {(/o, ii, . . . , O : *ii = /i2 = . . . = *<TO = 0}, 

and the dimension of a is defined to be (n — m). Let A'n denote the union 
of all faces of An of dimensions less than n. A topological space Y is called 
solid if any continuous map on a closed subspace A of a normal space X into 
F can be extended to a map on X into F. By Tietz's extension theorem, each 
face of An is solid. The present paper is concerned with a generalization of 
the following theorem which seems well known. However, since it is used in 
an essential way later, we include a sketch of a proof. 

THEOREM 1. Let f be a continuous map on An into An such that f [a] C & for 
each face a of An. Then f is onto. 

Proof. Using the fact that each face is solid, by a step by step process, 
starting from the lowest dimensional faces, one can construct a continuous 
map F on An X [0, 1] into An such that F{x} 1) = x, F(x, 0) = / ( # ) , and 
F(x, t) 6 o- whenever a is a face and (x, /) Ç a X [0, 1]. Hence the m a p / , as 
a map of the pairf (Aw, A'n) into (An, A'n), is homotopic to the identity map. 
It follows tha t /* : Hn(Ani A'n) —> Hn(An, A'n) is the identity homomorphism 1. 
If/ is not onto, then there is a point Xo such that x0 $f[An].X Then by means 
of the radial projection through x0, / is homotopic to a continuous map g 
such that g[An] C A'n and the points on A'n are fixed during the homotopy. 
Hence § 1 = /* = g* = 0 : Hn(An, A'n) —> i7w(An, A"„), which implies that 
Hn(Am A'n) = 0. However, this contradicts the known result: Hn(Atl1 A'n) ~ Z. 

The purpose of this paper is to prove a generalization of Theorem 1, namely 

Received June 28, 1961. The present research was supported by NSF research grant 15984. 
fFor the terminology and the results of the algebraic topology we are using in this proof, 

consult the first chapter of Eilenberg and Steenrod (2). 
JThe point *o can be chosen in A„ ̂  A'„. For otherwise, f[An] D ^ n ^ A'„ and, since f[An] is 

compact, /[An] = /[An]~ 3 (A„ ~ A'n)~ = An which implies that / is onto. 
§g : (A», A'n) —» (A„, A'n) can be "factored "through (A'„, A'n) and H(A'n, A'„) = 0; there

fore g* = 0. 
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Theorem 2, and to give one immediate application (Theorem 4 and 4'). A 
deeper application of Theorem 2 is made in the paper by Kiefer (6). In fact, 
he conjectured Theorem 2, and I wish to acknowledge my indebtedness to 
him for many stimulating conversations we had on this subject. 

The following notation is used. If Z is a subset of the product X X Y and 
x is a point of X, then Zx — {y : {x, y) Ç Z\. If X is a subset of a linear space, 
the smallest convex set containing X (that is, the convex hull of X), is denoted 
by (X). Our terminology agrees with Kelley (5), and results in that book 
will be used freely. 

THEOREM 2. Let A be a convex compact subset of a {real or complex) Hausdorff 
locally convex linear topological space, let G be a closed subset of An X A such 
that, for each x in An, Gx is non-empty and convex, and let p be the projection 
of An X A onto An. If a is a continuous map of G into An such that q[G C\ p~l[a]] 
C <r whenever a is a face of An, then q maps G onto An. 

Notice that Theorem 1 is a special case of Theorem 2 in which A is a single 
point. If there is a continuous map h : An —> G such that p o h is the identity 
map, then Theorem 2 is an immediate consequence of Theorem 1. However, 
it can easily be seen that, in general, no such h exists, and this is the essential 
difficulty in the proof of Theorem 2. We shall prove it by establishing first 
that there is a continuous map h on An into An X A such that p o h is the 
identity and the range of h is arbitrarily near G. This is done in Theorem 3. 
We remark that, even in a simple case where A = [0, 1], G may not be arcwise 
connected nor simply connected. 

THEOREM 3. Let A be a convex compact subset of a (real or complex) Hausdorff 
locally convex linear topological space E, and let X be a compact Hausdorff topo
logical space. If G is a closed subset of X X A such that Gx is non-empty and 
convex for each x in X, and if U is an open neighbourhood of G in X X A, then 
there is a continuous map h : X —> U such that p oh is the identity map, where 
p denotes the projection of X X A onto X. 

Proof. By restricting the domain of the multiplication by scalars, we can 
always make a complex linear topological space into a real linear topological 
space. Therefore, without loss of generality, we can assume that £ is a real 
linear topological space. 

Let 23 = { V : V is open a n d G C ^ C ^ I ; then 23 is directed by O We 
prove first that, for some V in 23, (Vx) C Ux for each x in X. Assume that no 
such V exists; then, for each V in 23, there are points xv and zv such that 
xv £ X and zv 6 (VXv) ~ UXv. Since X and A are compact there are con
verging subnets of {xv, F G 23} and {zv, V Ç 23}. More precisely, there is a 
directed set {V, ^ } and a function T on V into 25 such that, for each F0 in 
23, there is a 70 in T with the property that 7 ^ 70 implies JX7) C Vo and 
furthermore new nets ( x ^ ) , 7 Ç r} and {zr(7), 7 Ç T\ converge to, say, x0 
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and ZQ respectively. We assert that z0 Ç Gxo. If not, by a standard separation 
theorem, there is a continuous linear functional f on E such that 

sup{f(y) :yeGX0] < / ( s 0 ) 

(see, for instance (1, p. 22)). Pick a real number a so that 

sup{/(;y) :y 6 Gxo] < a <f(z0). 

Let W = {y :y 6 A and f(y) < a}, then W is an open convex neighbour
hood of Gxo in A. There exists a neighbourhood N of x0 such thatf Gx QW 
for each x Ç N. Choose an open neighbourhood Nx of s0 such that N{~ C ^ , 
and let 

M = (N XW)KJ (X~ Nr) X A. 

Then Af is an open neighbourhood of G in J X i ; hence one can choose 
Yo in r so that 7 > 7o implies 

xny) e Ni and T(y) C M. 

For simplicity, we shall write x(y) for xT(y)- Then, if 7 > 70, 

T(y)xM C MtM = (NX W)xM = W, 

from which it follows that 

s™ e <r(7)x(T)> c W = w. 
Hence 7 > 70 implies that f{zT{y)) < a, and, since lim{zT(y), 7 G T} = z0, 
f(zo) < a, which contradicts our choice of a. Therefore, we must accept that 
Zo G Gxo. 

By our choice oî xv and zVl (xv, zv) ([U for each V in 35. Therefore, for 
each 7 in T, (xT(y), Zrw) $ £A and, since £/ is open, it follows that (x0, Zo) $ 27. 
Hence (xo, So) $ G or zo i GX01 which contradicts the conclusion of the last 
paragraph. This establishes that there is a member V in 33 such that, for 
each x in X, (Vx) C Ux. For each y £ A, let W(y) = {x : (x, y) Ç f } . Then 
Wiy) is an open subset of X and W{^F(y) ; y £ A} = X. Since X is compact 
there are points yh y2, . . . , yk in A such that W(yi) U TV(3̂ 2) W . . . W Wfy*) 
= X. Hence there are continuous functions hi, . . . , hk on X into [0, 1] 
such that ^2î=ikhi(x) = 1 for all x and ht(x) = 0 if x$.W(yt). (See, for 
instance (5, 5.W, p. 171).) Set h(x) = (x, £*=i*fti(aO:yi). Then clearly 
poh{x) = x for each x in X. Since ht(x) 5*0 implies that yt Ç F*, 
E M ^ Î W ^ € (Fx) C £Zr. Consequently, h(x) £ U for all x in X, and 
Theorem 3 is proved. 

Proof of Theorem 2. Assume that q is not onto. Then since the image of q 
is closed, there is a point x0 in An ^ A'n which is not in the image J of q. Let 

f This property of the point-set transformation x —*• Gx is known as the upper semi-continuity 
and is a consequence of the fact that G is closed and A is compact. See, for example, (3, Lemma 
2, p. 123). 

|See preceding footnote f. 
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r be a continuous map on An ~ {x0} onto A'„ such that r(x) = x for each x 
in A'n. (For instance, r can be defined by the radial projection from xo.) Let 
/ = r o q; t h e n / is a continuous map of G into A'w such that /[G H ^_1[o-]] C 0" 
for each face c of An. 

Let i£m be the union of all faces of An of dimensions < m, and let 
Gm = G U p " 1 ^ ] ; then Gm is a closed subset of A„ X A with the property 
that (Gm)x is convex for each x in An. For convenience Gm = G if m = — 1. By 
induction on m, m < w — 1, a continuous map fm on Gm into A'w will be 
defined so that / '"-1 = fm\Gm-1 and, for each face a of AnJ

m[Gm H p~l[(j}] C <r. 
For m = — 1, we take / _ 1 = / . Now assume that fm has been defined 
( — 1 < m < n — 1). Let a be an (m + l)-dimensional face. Then p~l[<r] = 
a X A is a normal space, and f1 maps Gm P\ ^_1[o*] into a. Since <r is solid, 
fm\Gm H i?_1k] can be extended to a map j \ m + l on £_1[(7] into o\ If a and r 
are two distinct (m + l)-dimensional faces, then a P\ r C ^ w - Hence /<rw+1 

and fT
m+1 agree on p-^tr] H ^ H = p-l[a C\ r] C Gm. Therefore, we can 

define fm+1 as follows: fm+1(x) = fm(x) if s G Gw, and /w + 1(*) = /«rw+1(*) if 
x Ç £_1[°"] a n d o" is an (m + l)-dimensional face of An. It is clear that 
/»+i[Gm+1 H p-l[<r]} C o- for each face a of An. Now } n ~ l maps G""1 into A"„ 
and A"n is an absolute neighbourhood retract (for the definition of absolute 
neighbourhood retract and the relevant facts used in this proof see (4, I, 
Ex. C, J, and L)); therefore, there is an open neighbourhood U of Gn~l in 
An X A and an extension f of fn~l on U into A'n. Now by Theorem 3, there 
is a map h on An into U such that p o h is the identity map. Set g = f o h; 
then g is a continuous map on An into A'n such that g[a] C & for each face 
a of An. For, if a is an ra-dimensional face and m < w, then &[o-] C ^"H0"] C Gn~l 

and hence g [a] = /[&M] C j^^lP^W]] C *. If v is w-dimensional, then 
trivially g[a] C 0". But by Theorem 1, g is necessarily onto, which contra
dicts the statement g[An] C A'n. Therefore, q must map G onto Aw, and the 
proof of theorem is complete. 

A real-valued function / o n a convex subset A of a real or complex linear 
space is called convex (resp. concave) if 

/(A* + (1 - X)y) < A / M + (1 - X)/(y) 

(resp. /(Ax) + (1 — \)y) > A/(x) + (1 — \)f(y))t whenever x, y £ A and 
0 < A < 1. The function / is called quasi-convex (resp. quasi-concave) if the 
set {x :/(x) < r} (resp. {x :/(x) > r}) is convex for each real number r. A 
convex (resp. concave) function is necessarily quasi-convex (resp. quasi-
concave). A real-valued function h on a subset P of the Euclidean (n + 1)-
dimensional space is non-decreasing, if (x0, . . . , xn), (x0', . . . , xn') £ P and 
x* < x / for i = 0, 1, . . . , n, then 

Jl(Xo, . . . , Xn) < /*(x0 ' , . . . , Xn
f). 

A real valued function is strictly-positive if the range is contained in the 
interval (0, » ) . 
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THEOREM 4. Let A be a convex compact subset of a Hausdorff locally convex 
linear topological space, let fo, . . . fn be strictly-positive continuous convex 
functions on A, and let h be a non-decreasing continuous quasi-convex function 
on the subset {(xo, . • . , xn) : x* > 0} of the (n + 1)-dimensional Euclidean 
space. Then there are positive numbers Xo, Xi, . . . , Xn and a point Xo in A such 
that £*«onXi = 1, h(\ofo(xo), . . . , Xw/W(x0)) = inî{h(\0fo(x), . . . , XWjfw(x)): x£ 
A}, and \0f0(x) = \ifi(x0) = . . . = \nfn(xo). 

THEOREM 4'. Let A be a convex compact subset of a Hausdorff locally convex 
linear topological space, let fo, . . . ,fn be strictly-positive continuous concave 
functions on A, and let h be a non-decreasing continuous quasi-concave function 
on the subset {(xo, . . . , xn) : x* > 0} of the (n + 1) -dimensional Euclidean 
space. Then there are positive numbers Xo, Xi, . . . , \n and a point Xo in A such 
thatY,i=0n\i = 1, /*(Xo/o(Xo), * • ' ' ^nfnipCo)) = SUp{^(X 0 /o(x) , . . . , \rfn(x)) '. X £ 

A}, and \ofo(x) = Xi/i(x0) = . . . = Xw/W(x0). 

Proof. Since the proof of Theorem 4' is completely analogous to that of 
Theorem 4, it suffices to prove Theorem 4. For X = (Xo, . . . , Xn) G An, let 
mx = mî{h(\0fo(x), . . . , \nfn(x)) :x Ç A] and Mx = {x :h(\0fo(x), . . . , XnJfn(x)) 
= w\). Then, for each X, M\ is non-empty and convex. It is convex, because, 
if x, x' G M\, 0 < M, M' < 1 and M + M' = 1> then rax < MX0/O(M# + M V ) , . . .) 
< h(fi\ofo(x) + n'\ofo(x'), . . .) < wx. Let M be a subset of An X 4̂ 
defined by i f = U{{X} X Mx : X Ç A„} ; then we assert that Jlf is closed 
in AnX A. For, if (X, x) Ç An X 4 ~ i f (that is, x <E A ~ ilfx), then there 
is a number r such that h(\ofo(x), . . . , Xw/n(x)) > r > rax. Choose neighbour
hoods U and F of X and x respectively so that \f £ U and x' Ç F imply that 

A(X5fo(x'),.. . ,X^(x')) >r>mx.. 

Then the neighbourhood Z7 X F of (X, x) is disjoint from M; hence M is 
closed. 

Now define a continuous map q on M into An by g(X, x) = (52i=on^ifi(x))~l 

(\ofo(x), . . . , Xw/n(x)). By Theorem 2, g maps M onto An; in particular, there 
is a point (X, Xo) in M such that 

g(X, xo) = ——- ( 1 , . . . , 1), 
n -\- i 

from which the theorem follows. 

ADDENDUM to THEOREM 4'—THEOREM 4". If in Theorem 4' we assume, in 
addition, that h(x0, . . . , xn) = 0 if and only if x0 = . . . = xn = 0, then the 
assumption that /o, . . . , fn be strictly positive can be replaced by that fo, . . . , fn 

be non-negative and not identically zero. 

Proof of 4". The only place in the proof of Theorem 4 (and 4') where the 
assumption of strict positiveness of fo, . . . ,fn is used is in the definition of 
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the map q. Let X = (X 0 , . . . , \n) be an arbitrary point in An, then because 
of the new assumption on hf 

sup{h(\ofo(x)> . . . , \nfn(x)) -x £ A} = rnx > 0. 

Therefore, if x is a point in A such that h(\of0(x), . . . , Xw/W(x)) = w\, then 
J^i^on\ift(x) > 0. Hence under the new set of conditions the map q can still 
be defined. 

COROLLARY. Let X be a compact Hausdorff space, and let f0, . . . ,fn be 
non-negative and not identically zero continuous functions on X. Then there 
are positive numbers X0, . . . , Xn and a positive Baire measure /x of total mass 1 
such that the function x —* g(x) = \ofo(x) + \ifi(x) + . . . + Xn/W(x) is almost 
everywhere [/x] equal to sup{g(x) : x Ç X] and 

Xo J fortu = Xi J fidn = . . . = Xn J / ^ . 

REFERENCES 

1. M. M. Day, Normed linear spaces, (Berlin, 1958). 
2. S. Eilenberg and N. Steenrod, Foundations of algebraic topology, (Princeton 1952). 
3. K. Fan, Fixed-point and minimax theorems in locally convex topological linear spaces, Proc. 

Nat. Acad. Sci. U.S.A., 38 (1952), 121-126. 
4. S-T. Hu, Homotopy theory, (New York, 1959). 
5. J. L. Kelley, General topology, (New York, 1955). 
6. J. Kiefer, An extremum result, Can. J. Math., 14 (1962), 000-000. 

Cornell University 

https://doi.org/10.4153/CJM-1962-036-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1962-036-9

