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MONTEL SUBSPACES IN THE COUNTABLE 
PROJECTIVE LIMITS OF Lp(/x)-SPACES 

BY 

J. C. DIAZ 

ABSTRACT. Let us suppose one of the following conditions: (a) p ^ 2 
and F is a closed subspace of a projective limit \im(LP(fj,n),Inm); (b) 
p = 1 and F is a complemented subspace of an echelon Kothe space 
of order 1, A(X,j3, M?g£); and (c) 1 < p < 2 and F is a quotient of a 
countable product of LP(fin) spaces. Then, F is Montel if and only if no 
infinite dimensional subspace of F is normable. 

It is clear that if F is a Fréchet Montel space then, no infinite dimensional subspace 
of F is normable. We are concerned then with the reciprocal question: (*) Let F be 
a Fréchet space such that no infinite dimensional subspace of F is normable. Then, is 
F a Montel space? 

The answer to (*) is not always positive since in [4] the author gives an example 
of a Fréchet space, not Montel, without infinite dimensional normable subspaces. 
However, it is known that the answer is positive if F is an echelon sequence space 
([5]), an X-Kothe sequence space ([2]), or an echelon space of order 0 ([4]). 

In this paper, we study (*) on the closed subspaces of the countable projective 
limits of Lp(/x)-spaces, obtaining a positive answer if p ^ 2, and some partial results 
if 1 ^ p < 2. 

The vector spaces we use are defined on the field R of reals. Given a topological 
vector space F, we denote E' and E" the dual and bidual of E. If (E,F) is a dual pair, 
it will be denoted by a(E,F) the weak topology on F, and by (*,y) the canonical 
bilinear form on E x F. If S C F, (S) denotes the (closed linear) subspace spanned 
by the elements of S. 

Notations and preliminary results. Let F be a Fréchet space and let us fix a fun
damental system of seminorms (|| • ||*)*. Then, Fk denotes the local Banach space 
generated by the seminorm || • ||*, i.e. F* is the completion of (F/ | | • ||^1(0), || • ||*). h 
will denote the canonical mapping from F to Fk, for each k eN. 

A sequence (xn)n in a Fréchet space E has been called a basis if for every x G E 
there exists a unique sequence of scalars (an)n C R, such that YlT=i anxn- A sequence 
(xn)n in F is said to be a basic sequence if it is a basis of the closed subspace 
{{xn;n G N}) of F. Checking the following fact is left to the reader ([14], and [2]). 
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LEMMA 1. Let (xn)n be a sequence in a Fréchet space E. If (I\(xn))n is a basic 
sequence in E\, and if for each k, there is an nk so that (h(Xn))n^nk is also a basic 
sequence in Ek, then (xn)n is a basic sequence in E. 

Two bases, (xn)n in E, and (yn)n in F, are called equivalent provided that a series 
I<nanxn converges if and only if (iff) Znanyn converges. It follows (F and F being 
Fréchet spaces) that (xn)n is equivalent to (yn)n iff there is a (linear) isomorphism T 
from F onto F for which Txn = yn, for all n G N. 

It is known that if (xn)n is a sequence of vectors in a Banach space X, weakly 
convergent to 0 and such that lim„ inf ||JCW|| > 0, then (xn)n has a subsequence which 
is a basic sequence ([8], pg. 5). Thus, the next result (which is essentially known) is 
straightforward. 

LEMMA 2. Let (xn)n be a sequence in L2(/x) satisfying the following conditions: 
(1) (xn)n weakly converges to 0, 
(2) inf{ | | j t n | | ;*eW}>0. 

Then, there exists a subsequence (xa(n))n which is a basic sequence equivalent to the 
unit vector basis in I2. 

Note. It is a well known fact that if G is a separable subset of the Lebesgue space 
Lp(/z)(l ^ p < oo), then, there exists a complemented sublattice, isomorphic to F 
or to Lp([0, Y\)(LP), containing G. From this remark and some results of Kadec and 
Pelczynski ([6], Corollaries 1 and 2) Lemma A and Lemma B follow. 

LEMMA A. Let p > 2 and let (xn)n be a sequence in Lp(fi) so that 
(1) (xn)n weakly converges to 0. 
(2) l imsup( | |xj)„>0. 
Then, there exists a subsequence of (xn)n whcih is a basic sequence equivalent 

either to the unit vector basis in lp or to the unit vector basis in I2. 

LEMMA B. Let p > 2 and let S be an infinite-dimensional separable and closed 
subspace of LP(JJL). It follows that 

a) If S is isomorphic to I2, then it is complemented in Lp(fi). 
b) If S is isomorphic to lp, it contains a subspace isomorphic to lp and comple

mented in Lp{\i). 

Likewise, if p = 2, we know, from the Hilbert spaces theory, that an infinite dimen
sional, separable, and closed subspace of L2(/x) is isomorphic to I2 and complemented 
in L20x). 

Main results. 

Case p ^ 2. Our main theorem, in this case, follows from the following, more 
general, result. 

PROPOSITION 1. Let p = 2 and let F be a Fréchet space admitting a fundamental 
system of seminorms (|| • ||*)* such that, for each k E N, F^ is isomorphic to a subspace 

https://doi.org/10.4153/CMB-1989-025-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1989-025-4


1989] MONTEL SUBSPACES 171 

of some Lp(nk). Then, the following are equivalent: 
(a) F is not a M ont el space. 
(b) There exists a subspace of F which is isomorphic either to F or to I2. 
(c) F contains a complemented subspace isomorphic either to F or to I2. 

PROOF, a —• b) Let us denote by T the topology of F. F is reflexive from the 
hypotheses; thus since it is not Montel we can find a sequence (yn)n C F, weakly 
convergent to 0, and such that no subsequence of (yn)n T-converges to 0. So, there 
exists rk G R, for all k G N, so that 

(1) hn\\k£rk, Vn,ken 

and there are ko G N, £ G R+, no G N such that, for n ^ no 

(2) IWk ^ Ç. 

We can assume, without loss of generality, that ko = no = 1. Consider now the se
quence (h(yn))n CF i C LP(p,\). I\ is a continuous mapping, hence weakly continuous. 
Thus, (I\(yn))n is weakly convergent to 0; besides, we have 

limsup||/iCy#i)||i = l imsup | |y j i ^ £ > 0. 

Then, from Lemma A if p > 2, and from Lemma 2 if/? = 2, there exists a subsequence 
of (yn)n, say (y^)w, such that (/i(y,J)„ is a basic sequence equivalent to the usual basis 
of /a(1) (a(l) is either p or 2). We proceed inductively in the same way, choosing 
sequences (y*)n for all h G N, so that (yk

n
+l)n is a subsequence of (y*)n and (/*(y£))n 

is a basic sequence equivalent to the usual basis of la^ (a(k) — p or 2). 
To end the proof we take the diagonal sequence (y")„ which is a basic sequence 

in F from Lemma 1. Since a(k) can change only from p to 2, it is easy to check that 
({y%}) is isomorphic to the echelon sequence space Xa(ak

n) (where a = p or 2, and 
a\ = ||;y"||jt, w, £ GiV) which is normable from (1) and (2), hence isomorphic to F or 2. 

b —> c) It is easy to check that, if S is a normable subspace of F, there is an index 
k G N such that 5 is isomorphic to a subspace of F*. The result follows now from 
the hypotheses and Lemma B. 

c —• a) Trivial. • 

THEOREM 1. Let p ^ 2 awd /er F be a closed subspace of a projective limit 

\im(Lp(fin),Inm). Then, F is Montel iff it contains no complemented subspace iso

morphic to F or 2. 

COROLLARY 1. Let p ^ 2 and let F be a closed subspace of a projective limit 

lim(Lp(p,n),Inm). Then, F is Montel iff no infinite dimensional subspace of F is 

normable. 

REMARK. Theorem 1 and Proposition 1 can fail if the assumption on p is removed. 
Indeed, it is known that for 1 ^ p < r ^ 2, U can be isomorphically embedded into 
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LP\ hence, V is a closed, not Montel, subspace of LP, containing no copy of F or 2. 
Even more, let us take p ^ 1, and put 

K = n 'q 

q>p 

Xp is a Fréchet space, not Montel, without infinite dimensional normable subspaces 
([4]; furthermore, let us also note that Â  has no infinite dimensional Banach quotient 
since lq and V are totally coincomparable spaces if q ^ r); however, if p < 2, then 
Xp fulfils the hypotheses in Proposition 1. We don't know whether the same can be 
said on Corollary 1. However, we have some partial results if 1 ^ p < 2. 

Case p = 1. The next lemma is a generalization of a result of Rosenthal in the 
Banach space theory ([12]). 

LEMMA 3. Let (xn)n be a bounded sequence in a Fréchet space F. Then (xn)n has a 
subsequence (xa(n))n satisfying one of the following two mutually exclusive alternatives. 

(1) (xa(n))n is a weak-Cauchy sequence. 
(2) (xa(n))n is equivalent to the usual ll-basis. 

PROOF. Let us fix a sequence of seminorms (|| • ||*)jt defining the topology of F. 
Then, (I\(xn))n is a bounded sequence in the local Banach space F\. So, from the 
results in [12] there exists a subsequence (x\)n satisfying either 1) (/I(JC^))„ is a 
crCF^F'^-Cauchy sequence, or 2) (I\{xx

n)n is equivalent to the usual Z1-basis. 
We consider now the sequence (hi^n and the procedure continues inductively. 

If there is r € Af so that (Ir(x
r
n))n is equivalent to the usual Z1-basis, then it is easy 

to check that (xr
n)n is equivalent to the usual Z1-basis. In the other case, the diagonal 

sequence (x")n will provide a cr(F, F^-Cauchy subsequence of (xn)n. • 

The next corollary follows as for Banach spaces. 

COROLLARY 2. Let F be a Fréchet space a(F\Ff)-sequentially complete. Then, F is 
reflexive iff none of its subspaces is isomorphic to Z1. 

We shall need the following result; its proof is left to the reader. 

LEMMA 4. Let F be the projective limit of a projective sequence (Fn,Inm) such that 
Fn is a a(FniF'n) sequentially complete locally convex space for each n £ N. Then, F 
is <7(F,F;) sequentially complete. 

COROLLARY 3. Let F be the projective limit of a projective sequence (Ll(^n)^Inm), 
and let S be a closed subspace of F. Then S is reflexive iff it contains no copy of ll. 

PROOF. In fact, the spaces Ll(^n) are weakly sequentially complete and <J(F,F ' ) 

induces a(S,S') on S, so the result follows from Lemma 4 and Corollary 2. • 

Our main result in this section will be stated in the framework of the echelon Kothe 
spaces of order 1. So we shall need a definition. 
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DEFINITION ([9]). Given a measure space (X, /3, p) and a sequence of (3-measurable 
functions gk : X —> R, so that 0 ^ gk(x) ^ g*+i(*) p>-a.e., ««6? /X({JC G X;^(x) = 
0, VA: G N}) = 0, we define the echelon Kôthe space of order 1, A (X, /3, ̂ , g*), as the 
space of all (equivalence classes of) functions f : X —> R such that 

ll/ll* = f\f\gkdt* <oo , VkeN. 
Jx 

We shall also denote it by A and we consider on A the Fréchet space topology, say 
T, generated by the seminorms (|| • ||*)*- Obviously A is isomorphic to the projective 
limit of the projective sequence {Lx{gndp),Inm), where Inm is the restriction mapping, 
n ^ m. (Note.- The author has recently proved that a reduced projective limit of a 
projective sequence (LI,A„,//I/H), admitting a Fréchet lattice structure is isomorphic to 
some echelon Kôthe space of order 1.) 

In the sequel, we shall need the following unpublished result of Lopez-Molina and 
Lopez-Pellicer ([10]). 

LEMMA C. Let A(X,/3,p,gk) be an echelon Kôthe space. Let (fn)n be a <r(A, A') 
null sequence in A and let (hn)n be a cr(A', A") null sequence in A'. Then 

(**) lim (/„,*„) = 0. 
n—-KX) 

We shall also use the following remarkable Orihuela's result ([11]). 

LEMMA D. IfE is a DF-space then (E, a(E, E')) is an angelic space (i.e. every weaky 
relatively countably compact subset in E is weakly relatively sequentially compact). 

We can now state and prove the next theorem. 

THEOREM 2. Let F be a reflexive and complemented subspace of an echelon Kôthe 
space A. Then F is Montel. 

PROOF. It is enough to show that all a(F, F')-nxi\\ sequences (xn)m are convergent 
to 0. Indeed, let us assume, on the contrary, that there exists a sequence (xn)n, weakly 
convergent but not 7-convergent to 0. We can then find £ > 0, k G N, and a subse
quence of (xn)n (denoted by (xn)n again) such that 

(1) I W I * ^ & VneN. 

Let Uk = {x G F; ||;t||* ^ 1}-. Choose/- G F'H U%, such that J$-(jcy) = ||JCJ*, j G N. 
From Lemma D, and since F is reflexive, we get that Uj* is a(F',F") sequentially 
compact. Hence, there exists a subsequence of (/*)* (let us denote it by (fn)n again) 
which aiF'^F") converges to certain/ G U®. 

Let us now denote by P the continuous projection from A onto F. The adjoint 
map is continuous from (F',a(F',F")) into ( A > ( A ' , A;/)), ([7]), so (P'(fn - / ) ) is 
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a(A', A")-convergent to 0. Then, from Lemma C, and because (xn)n C F — P(F), we 
get 

(fn " / , * „ > = (fn -f,P(Xn)) - (P'(fn ~ / W — 

Likewise, ((P'(f),xn))n is a null sequence, and so 

I k |k = (fn,Xn) = (fn,P(xn)) = (P'(fn),Xn) = 

= {P'(fn-f),Xn) + (P'(f),Xn)
n^?0 

contradicting (1). This proves that (xn)n converges to 0. 

Our main result follows. 

0. 

• 

COROLLARY 4. Let A be an echelon Kbthe space and let F be a complemented 
subspace of A. The F is Montel iff no infinite dimensional subspace of F is normable. 

PROOF. The condition is clearly necessary. Conversely, F is closed since it is com
plemented; by the assumptions, F contains no copy of Z1, hence it is reflexive from 
Corollary 3. The result follows from Theorem 2. • 

Let us note that Theorem 2 (and so, Corollary 4) remains true replacing A by a 
projective limit lim(L{(p/n)1 Inm) verifying the condition (**) in Lemma C (in particular, 

a reduced projective limit F — \\m{Lx{nn),Inm) such that F" ~ lin^L1^)",/"™))-

Case 1 < p < 2. From [6] Corollary 2, and the note before Lemma A, we have 

LEMMA 5. Let p > 2 and let E be an infinite dimensional subspace of LP (IL). Then, 
E contains a subspace isomorphic to lp o r 2 and complemented in LP(^). 

We shall need the "dual version" of Lemma 5: 

LEMMA 6. Let 1 < p < 2 and let E be an infinite dimensional quotient space of 
LP(JJL) (quotient map Q\). Then E has a quotient space isomorphic to lp o r 2 (quotient 
maP Qi) sucn that we have (with suitable T) the following commutative diagram: 

Qx 
Lp(Li) 

T Qi 

id. 
la —+ la a = por2 

PROOF. Applying Lemma 5 to E' we obtain 

L%p) ^ E' \/p + \/q=\ 

\a ¥- la a = q or 2 

Then dualize this commutative diagram. D 
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We can now state and prove our last result: 

THEOREM 3. Let 1 < p < 2 and let F be a quotient of a countable product of 
Lp([in)-spaces. Then, F is Montel if it contains no complemented subspace isomorphic 
to lporl. 

PROOF. Denote by q the quotient map from YlneNLp(p,n) onto F. F is a quojection 
since it is a quotient of a quojection; then, if F is not Montel, it must have an infinite 
dimensional normable quotient, say #, ([3]), denote by Q0, the quotient map. It is easy 
to see that there exists k G N so that B is a quotient of YVk

n=lLP(yLn). So, from Lemma 
6, we get the following commutative diagram 

E n<EN Wfan) 

Jk 

n t i 0̂*1.) 

Go IkoJk = id 

Qi 

la - % ia 

We put A — qoJkoT,B — Q2° Go- Then we obtain 

a — p or 2 

BoA = Q2 oQ-OoqJjc oT = Q2 o Q{ o Ik oJkoT = Q2 o Q{ oT = id 

Hence A imbeds la as a complemented subspace into F. • 
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