MONTEL SUBSPACES IN THE COUNTABLE PROJECTIVE LIMITS OF $L^{p}(\mu)$ -SPACES

BY

J. C. DÍAZ

ABSTRACT. Let us suppose one of the following conditions: (a) $p \ge 2$ and F is a closed subspace of a projective limit $\lim_{\leftarrow} (L^p(\mu_n), I_{nm})$; (b) p = 1 and F is a complemented subspace of an echelon Köthe space of order 1, $\Lambda(X, \beta, \mu, g_k)$; and (c) 1 and F is a quotient of a $countable product of <math>L^p(\mu_n)$ spaces. Then, F is Montel if and only if no infinite dimensional subspace of F is normable.

It is clear that if F is a Fréchet Montel space then, no infinite dimensional subspace of F is normable. We are concerned then with the reciprocal question: (*) Let F be a Fréchet space such that no infinite dimensional subspace of F is normable. Then, is F a Montel space?

The answer to (*) is not always positive since in [4] the author gives an example of a Fréchet space, not Montel, without infinite dimensional normable subspaces. However, it is known that the answer is positive if F is an echelon sequence space ([5]), an X-Köthe sequence space ([2]), or an echelon space of order 0 ([4]).

In this paper, we study (*) on the closed subspaces of the countable projective limits of $L^p(\mu)$ -spaces, obtaining a positive answer if $p \ge 2$, and some partial results if $1 \le p < 2$.

The vector spaces we use are defined on the field *R* of reals. Given a topological vector space *E*, we denote *E'* and *E''* the dual and bidual of *E*. If $\langle E, F \rangle$ is a dual pair, it will be denoted by $\sigma(E, F)$ the weak topology on *E*, and by $\langle x, y \rangle$ the canonical bilinear form on $E \times F$. If $S \subset E, \overline{\langle S \rangle}$ denotes the (closed linear) subspace spanned by the elements of *S*.

Notations and preliminary results. Let F be a Fréchet space and let us fix a fundamental system of seminorms $(\|\cdot\|_k)_k$. Then, F_k denotes the local Banach space generated by the seminorm $\|\cdot\|_k$, i.e. F_k is the completion of $(F/\|\cdot\|_k^{-1}(0), \|\cdot\|_k)$. I_k will denote the canonical mapping from F to F_k , for each $k \in N$.

A sequence $(x_n)_n$ in a Fréchet space *E* has been called a basis if for every $x \in E$ there exists a unique sequence of scalars $(a_n)_n \subset R$, such that $\sum_{n=1}^{\infty} a_n x_n$. A sequence $(x_n)_n$ in *E* is said to be a basic sequence if it is a basis of the closed subspace $\langle \{x_n; n \in N\} \rangle$ of *E*. Checking the following fact is left to the reader ([14], and [2]).

Received by the editors June 10, 1987.

AMS Subject Classification (1980): 46A14.

[©] Canadian Mathematical Society 1987.

LEMMA 1. Let $(x_n)_n$ be a sequence in a Fréchet space E. If $(I_1(x_n))_n$ is a basic sequence in E_1 , and if for each k, there is an n_k so that $(I_k(x_n))_{n \ge n_k}$ is also a basic sequence in E_k , then $(x_n)_n$ is a basic sequence in E.

Two bases, $(x_n)_n$ in *E*, and $(y_n)_n$ in *F*, are called equivalent provided that a series $\sum_n a_n x_n$ converges if and only if (iff) $\sum_n a_n y_n$ converges. It follows (*E* and *F* being Fréchet spaces) that $(x_n)_n$ is equivalent to $(y_n)_n$ iff there is a (linear) isomorphism *T* from *E* onto *F* for which $Tx_n = y_n$, for all $n \in N$.

It is known that if $(x_n)_n$ is a sequence of vectors in a Banach space X, weakly convergent to 0 and such that $\lim_n \inf ||x_n|| > 0$, then $(x_n)_n$ has a subsequence which is a basic sequence ([8], pg. 5). Thus, the next result (which is essentially known) is straightforward.

LEMMA 2. Let $(x_n)_n$ be a sequence in $L^2(\mu)$ satisfying the following conditions:

(1) $(x_n)_n$ weakly converges to 0,

(2) $\inf\{||x_n||; n \in N\} > 0.$

Then, there exists a subsequence $(x_{\sigma(n)})_n$ which is a basic sequence equivalent to the unit vector basis in l^2 .

Note. It is a well known fact that if G is a separable subset of the Lebesgue space $L^{p}(\mu)$ $(1 \leq p < \infty)$, then, there exists a complemented sublattice, isomorphic to l^{p} or to $L^{p}([0, 1])(L^{p})$, containing G. From this remark and some results of Kadec and Pelczynski ([6], Corollaries 1 and 2) Lemma A and Lemma B follow.

LEMMA A. Let p > 2 and let $(x_n)_n$ be a sequence in $L^p(\mu)$ so that

(1) $(x_n)_n$ weakly converges to 0.

(2) $\limsup(||x_n||)_n > 0.$

Then, there exists a subsequence of $(x_n)_n$ which is a basic sequence equivalent either to the unit vector basis in l^p or to the unit vector basis in l^2 .

LEMMA B. Let p > 2 and let S be an infinite-dimensional separable and closed subspace of $L^{p}(\mu)$. It follows that

a) If S is isomorphic to l^2 , then it is complemented in $L^p(\mu)$.

b) If S is isomorphic to l^p , it contains a subspace isomorphic to l^p and complemented in $L^p(\mu)$.

Likewise, if p = 2, we know, from the Hilbert spaces theory, that an infinite dimensional, separable, and closed subspace of $L^2(\mu)$ is isomorphic to l^2 and complemented in $L^2(\mu)$.

Main results.

Case $p \ge 2$. Our main theorem, in this case, follows from the following, more general, result.

PROPOSITION 1. Let $p \ge 2$ and let F be a Fréchet space admitting a fundamental system of seminorms $(\|\cdot\|_k)_k$ such that, for each $k \in N$, F_k is isomorphic to a subspace

of some $L^{p}(\mu_{k})$. Then, the following are equivalent:

(a) F is not a Montel space.

1989]

- (b) There exists a subspace of F which is isomorphic either to l^p or to l^2 .
- (c) F contains a complemented subspace isomorphic either to l^p or to l^2 .

PROOF. $a \rightarrow b$) Let us denote by T the topology of F. F is reflexive from the hypotheses; thus since it is not Montel we can find a sequence $(y_n)_n \subset F$, weakly convergent to 0, and such that no subsequence of $(y_n)_n$ T-converges to 0. So, there exists $r_k \in R$, for all $k \in N$, so that

(1)
$$||y_n||_k \leq r_k, \quad \forall n, k \in n$$

and there are $k_0 \in N, \xi \in \mathbb{R}^+$, $n_0 \in \mathbb{N}$ such that, for $n \ge n_0$

$$||y_n||_{k_0} \ge \xi$$

We can assume, without loss of generality, that $k_0 = n_0 = 1$. Consider now the sequence $(I_1(y_n))_n \subset F_1 \subset L^p(\mu_1)$. I_1 is a continuous mapping, hence weakly continuous. Thus, $(I_1(y_n))_n$ is weakly convergent to 0; besides, we have

$$\limsup \|I_1(y_n)\|_1 = \limsup \|y_n\|_1 \ge \xi > 0.$$

Then, from Lemma A if p > 2, and from Lemma 2 if p = 2, there exists a subsequence of $(y_n)_n$, say $(y_n^1)_n$, such that $(I_1(y_n^1)_n)$ is a basic sequence equivalent to the usual basis of $l^{\alpha(1)}$ ($\alpha(1)$ is either p or 2). We proceed inductively in the same way, choosing sequences $(y_n^k)_n$ for all $k \in N$, so that $(y_n^{k+1})_n$ is a subsequence of $(y_n^k)_n$ and $(I_k(y_n^k))_n$ is a basic sequence equivalent to the usual basis of $l^{\alpha(k)}$ ($\alpha(k) = p$ or 2).

To end the proof we take the diagonal sequence $(y_n^n)_n$ which is a basic sequence in *F* from Lemma 1. Since $\alpha(k)$ can change only from *p* to 2, it is easy to check that $\overline{\langle \{y_n^n\} \rangle}$ is isomorphic to the echelon sequence space $\lambda^{\alpha}(a_n^k)$ (where $\alpha = p$ or 2, and $a_n^k = \|y_n^n\|_k, n, k \in \mathbb{N}$) which is normable from (1) and (2), hence isomorphic to l^p or 2.

 $b \rightarrow c$) It is easy to check that, if S is a normable subspace of F, there is an index $k \in N$ such that S is isomorphic to a subspace of F_k . The result follows now from the hypotheses and Lemma B.

$$c \rightarrow a$$
) Trivial.

THEOREM 1. Let $p \ge 2$ and let F be a closed subspace of a projective limit $\lim_{\leftarrow} (L^p(\mu_n), I_{nm})$. Then, F is Montel iff it contains no complemented subspace isomorphic to l^p or 2.

COROLLARY 1. Let $p \ge 2$ and let F be a closed subspace of a projective limit $\lim_{\leftarrow} (L^p(\mu_n), I_{nm})$. Then, F is Montel iff no infinite dimensional subspace of F is normable.

REMARK. Theorem 1 and Proposition 1 can fail if the assumption on p is removed. Indeed, it is known that for $1 \le p < r \le 2$, L^r can be isomorphically embedded into

 L^p , hence, l^r is a closed, not Montel, subspace of L^p , containing no copy of l^p or ². Even more, let us take $p \ge 1$, and put

$$\lambda_p = \bigcap_{q > p} l^q$$

 λ_p is a Fréchet space, not Montel, without infinite dimensional normable subspaces ([4]; furthermore, let us also note that λ_p has no infinite dimensional Banach quotient since l^q and l^r are totally coincomparable spaces if $q \neq r$); however, if p < 2, then λ_p fulfils the hypotheses in Proposition 1. We don't know whether the same can be said on Corollary 1. However, we have some partial results if $1 \leq p < 2$.

Case p = 1. The next lemma is a generalization of a result of Rosenthal in the Banach space theory ([12]).

LEMMA 3. Let $(x_n)_n$ be a bounded sequence in a Fréchet space F. Then $(x_n)_n$ has a subsequence $(x_{\sigma(n)})_n$ satisfying one of the following two mutually exclusive alternatives.

- (1) $(x_{\sigma(n)})_n$ is a weak-Cauchy sequence.
- (2) $(x_{\sigma(n)})_n$ is equivalent to the usual l^1 -basis.

PROOF. Let us fix a sequence of seminorms $(\|\cdot\|_k)_k$ defining the topology of F. Then, $(I_1(x_n))_n$ is a bounded sequence in the local Banach space F_1 . So, from the results in [12] there exists a subsequence $(x_n^1)_n$ satisfying either 1) $(I_1(x_n^1))_n$ is a $\sigma(F_1, F'_1)$ -Cauchy sequence, or 2) $(I_1(x_n^1)_n)$ is equivalent to the usual l^1 -basis.

We consider now the sequence $(I_2(x_n^1)_n)$ and the procedure continues inductively. If there is $r \in N$ so that $(I_r(x_n^r))_n$ is equivalent to the usual l^1 -basis, then it is easy to check that $(x_n^r)_n$ is equivalent to the usual l^1 -basis. In the other case, the diagonal sequence $(x_n^n)_n$ will provide a $\sigma(F, F')$ -Cauchy subsequence of $(x_n)_n$.

The next corollary follows as for Banach spaces.

COROLLARY 2. Let F be a Fréchet space $\sigma(F, F')$ -sequentially complete. Then, F is reflexive iff none of its subspaces is isomorphic to l^1 .

We shall need the following result; its proof is left to the reader.

LEMMA 4. Let F be the projective limit of a projective sequence (F_n, I_{nm}) such that F_n is a $\sigma(F_n, F'_n)$ sequentially complete locally convex space for each $n \in N$. Then, F is $\sigma(F, F')$ sequentially complete.

COROLLARY 3. Let F be the projective limit of a projective sequence $(L^1(\mu_n), I_{nm})$, and let S be a closed subspace of F. Then S is reflexive iff it contains no copy of l^1 .

PROOF. In fact, the spaces $L^1(\mu_n)$ are weakly sequentially complete and $\sigma(F, F')$ induces $\sigma(S, S')$ on S, so the result follows from Lemma 4 and Corollary 2.

Our main result in this section will be stated in the framework of the echelon Köthe spaces of order 1. So we shall need a definition.

MONTEL SUBSPACES

DEFINITION ([9]). Given a measure space (X, β, μ) and a sequence of β -measurable functions $g_k : X \to R$, so that $0 \leq g_k(x) \leq g_{k+1}(x) \mu$ -a.e., and $\mu(\{x \in X; g_k(x) = 0, \forall k \in N\}) = 0$, we define the echelon Köthe space of order 1, $\Lambda(X, \beta, \mu, g_k)$, as the space of all (equivalence classes of) functions $f : X \to R$ such that

$$||f||_k = \int_X |f|g_k d\mu < \infty, \quad \forall k \in N.$$

We shall also denote it by Λ and we consider on Λ the Fréchet space topology, say T, generated by the seminorms $(\|\cdot\|_k)_k$. Obviously Λ is isomorphic to the projective limit of the projective sequence $(L^1(g_n d\mu), I_{nm})$, where I_{nm} is the restriction mapping, $n \leq m$. (Note.– The author has recently proved that a reduced projective limit of a projective sequence $(L_{1,\lambda_n}, I_{nm})$, admitting a Fréchet lattice structure is isomorphic to some echelon Köthe space of order 1.)

In the sequel, we shall need the following unpublished result of López-Molina and López-Pellicer ([10]).

LEMMA C. Let $\Lambda(X, \beta, \mu, g_k)$ be an echelon Köthe space. Let $(f_n)_n$ be a $\sigma(\Lambda, \Lambda')$ null sequence in Λ and let $(h_n)_n$ be a $\sigma(\Lambda', \Lambda'')$ null sequence in Λ' . Then

(**)
$$\lim_{n \to \infty} \langle f_n, h_n \rangle = 0$$

We shall also use the following remarkable Orihuela's result ([11]).

LEMMA D. If E is a DF-space then $(E, \sigma(E, E'))$ is an angelic space (i.e. every weaky relatively countably compact subset in E is weakly relatively sequentially compact).

We can now state and prove the next theorem.

THEOREM 2. Let F be a reflexive and complemented subspace of an echelon Köthe space Λ . Then F is Montel.

PROOF. It is enough to show that all $\sigma(F, F')$ -null sequences $(x_n)_n$, are convergent to 0. Indeed, let us assume, on the contrary, that there exists a sequence $(x_n)_n$, weakly convergent but not *T*-convergent to 0. We can then find $\xi > 0, k \in N$, and a subsequence of $(x_n)_n$ (denoted by $(x_n)_n$ again) such that

(1)
$$||x_n||_k \ge \xi, \quad \forall n \in N.$$

Let $U_k = \{x \in F; ||x||_k \leq 1\}$. Choose $f_j \in F' \cap U_k^0$, such that $f_j(x_j) = ||x_j||_k$, $j \in N$. From Lemma D, and since F is reflexive, we get that U_k^0 is $\sigma(F', F'')$ sequentially compact. Hence, there exists a subsequence of $(f_k)_k$ (let us denote it by $(f_n)_n$ again) which $\sigma(F', F'')$ converges to certain $f \in U_k^0$.

Let us now denote by P the continuous projection from Λ onto F. The adjoint map is continuous from $(F', \sigma(F', F''))$ into $(\Lambda', \sigma(\Lambda', \Lambda''))$, ([7]), so $(P'(f_n - f))$ is

1989]

 $\sigma(\Lambda', \Lambda'')$ -convergent to 0. Then, from Lemma C, and because $(x_n)_n \subset F = P(F)$, we get

$$\langle f_n - f, x_n \rangle = \langle f_n - f, P(x_n) \rangle = \langle P'(f_n - f), x_n \rangle \xrightarrow{n \to \infty} 0.$$

Likewise, $(\langle P'(f), x_n \rangle)_n$ is a null sequence, and so

$$\begin{aligned} \|x_n\|_k &= \langle f_n, x_n \rangle = \langle f_n, P(x_n) \rangle = \langle P'(f_n), x_n \rangle = \\ &= \langle P'(f_n - f), x_n \rangle + \langle P'(f), x_n \rangle \xrightarrow{n \to \infty} 0 \end{aligned}$$

contradicting (1). This proves that $(x_n)_n$ converges to 0.

Our main result follows.

COROLLARY 4. Let Λ be an echelon Köthe space and let F be a complemented subspace of Λ . The F is Montel iff no infinite dimensional subspace of F is normable.

PROOF. The condition is clearly necessary. Conversely, F is closed since it is complemented; by the assumptions, F contains no copy of l^1 , hence it is reflexive from Corollary 3. The result follows from Theorem 2.

Let us note that Theorem 2 (and so, Corollary 4) remains true replacing Λ by a projective limit $\lim_{\leftarrow} (L^1(\mu_n), I_{nm})$ verifying the condition (**) in Lemma C (in particular, a reduced projective limit $F = \lim_{\leftarrow} (L^1(\mu_n), I_{nm})$ such that $F'' \simeq \lim_{\leftarrow} (L^1(\mu_n)'', I''_{nm})$).

Case 1 . From [6] Corollary 2, and the note before Lemma A, we have

LEMMA 5. Let p > 2 and let E be an infinite dimensional subspace of $L^p(\mu)$. Then, E contains a subspace isomorphic to l^p or 2 and complemented in $L^p(\mu)$.

We shall need the "dual version" of Lemma 5:

LEMMA 6. Let $1 and let E be an infinite dimensional quotient space of <math>L^{p}(\mu)$ (quotient map Q_{1}). Then E has a quotient space isomorphic to $l^{p \text{ or } 2}$ (quotient map Q_{2}) such that we have (with suitable T) the following commutative diagram:

PROOF. Applying Lemma 5 to E' we obtain

$$L^{q}(\mu) \leftrightarrow E' \qquad 1/p + 1/q = 1$$

$$\downarrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$1^{\alpha} \leftarrow \frac{id}{\leftarrow} 1^{\alpha} \qquad \alpha = q \text{ or } 2$$

Then dualize this commutative diagram.

We can now state and prove our last result:

THEOREM 3. Let $1 and let F be a quotient of a countable product of <math>L^{p}(\mu_{n})$ -spaces. Then, F is Montel if it contains no complemented subspace isomorphic to $l^{p \text{ or } 2}$.

PROOF. Denote by q the quotient map from $\prod_{n \in N} L^p(\mu_n)$ onto F. F is a quojection since it is a quotient of a quojection; then, if F is not Montel, it must have an infinite dimensional normable quotient, say B, ([3]), denote by Q_0 , the quotient map. It is easy to see that there exists $k \in N$ so that B is a quotient of $\prod_{n=1}^k L^p(\mu_n)$. So, from Lemma 6, we get the following commutative diagram

$$\Pi_{n \in \mathbb{N}} \begin{array}{ccc} L^{p}(\mu_{n}) & \stackrel{q}{\longrightarrow} & F \\ & J_{k} & & \downarrow & Q_{0} \\ \Pi_{n=1}^{k} & L^{p}(\mu_{n}) & \stackrel{Q_{1}}{\longrightarrow} & B \\ & T & & & \downarrow & Q_{2} \\ & & I^{\alpha} & \stackrel{id}{\longrightarrow} & I^{\alpha} & \alpha = p \text{ or } 2 \end{array}$$

We put $A = q \circ J_k \circ T$, $B = Q_2 \circ Q_0$. Then we obtain

$$B \circ A = Q_2 \circ \underline{Q - 0 \circ q} J_k \circ T = Q_2 \circ Q_1 \circ \underline{I_k \circ J_k} \circ T = Q_2 \circ Q_1 \circ T = id$$

Hence A imbeds l^{α} as a complemented subspace into F.

REFERENCES

1. B. Beauzamy, Introduction to Banach spaces and their geometry, Mathematics Studies, North-Holland, 1968.

2. S. F. Bellenot, Basic sequences in non-Schwartz Fréchet spaces, Trans. Amer. Math. Soc. 258 (1980), No. 1, 199–216.

3. — and E. Dubinsky, *Fréchet spaces with nuclear Köthe quotients*, Trans. Amer. Math. Soc. **273**, 579–594 (1982).

4. J. C. Díaz, An example of Fréchet space, not Montel, without infinite dimensional normable subspaces, Proc. Amer. Math. Soc. **96**, **4**, **721** (1986).

5. J. Dieudonne and A. P. Gomes, *Sur certain espaces vectoriels topologiques*, C.R. Acad. Sci., Paris 230, 1129–1130 (1957).

6. M. I. Kadec and A. Pelczynski, *Bases, lacunary sequences and complemented subspaces in the spaces* L^p , Studia Math. **21** (1962), 161–176.

7. G. Köthe, Topological Vector Spaces I, II, Springer Verlag, Berlin 1969.

8. J. Lindenstrauss and L. Tzafiri, Classical Banach Spaces I., Surveys in Math. Springer Verlag, 1979.

9. J. A. Lopez-Molina, The dual and bidual of an echelon Köthe space, Collec. Math. 31, 2 (1980), 159–191.

10. — and Lopez-Pellicer, Consequences of the Dunford-Pettis property in the echelon Köthe spaces, Preprint.

11. J. Orihuela, *Pointwise compactness in spaces of continuous functions*, To appear in Journal London Math. Soc.

J. C. DÍAZ

12. H. P. Rosenthal, A characterization of Banach spaces containing l^1 , Proc. Nat. Acad. Sci. USA, **71**, No. 6, 2411–2413, June 1974.

13. H. H. Schaefer, Topological vector spaces, Springer Verlag, 1970.

14. M. Valdivia, Topics in locally convex spaces, North-Holland, 1982.

Cátedra de Matemáticas. E.T.S.I.A. 14004 Cordoba, Spain