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Abstract

We extend an uncertainty principle due to Cowling and Price to Euclidean spaces, Heisenberg groups
and the Euclidean motion group of the plane. This uncertainty principle is a generalisation of a classical
result due to Hardy. We also show that on the real line this uncertainty principle is almost equivalent to
Hardy's theorem.
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0. Introduction

In the vast literature on uncertainty principles in harmonic analysis (see [3,5]), the
central theme is the impossibility of simultaneous smallness of a nonzero function /
and its Fourier transform / . where / is defined by

/(.v) = / f(x)e'2yil"dx.

A large number of results, beginning with a classical theorem of Hardy (Theorem 1
below), show such impossibility when smallness is interpreted as sharp decay.

In this paper we concern ourselves with results of this kind on certain Lie groups.
We begin by stating the main results of this genre for the real line.

THEOREM 1 (Hardy). Le t f : K -* C be measurable and for all x, v
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290 S. C. Bagchi and Swagato K. Ray [2]

(i) l/tol < Ce-""*\
(ii) \f(y)\ < Ce-^,

where C,a, b > 0. If ab > 1 then / = 0 almost everywhere. If ab = 1 /Vierc
f(x) = Ce~U7TX". If ab < 1 r/zen ?/iere exist infinitely many linearly independent
functions satisfying (i) and (ii).

THEOREM 2 (Cowling and Price). Let f : R -> C be measurable and

(i) lk,/llz./'(R> < oo,
(ii) lkfc/llz."(R) < oo.

w/zere a, b > 0, ek(x) = ek7IX~ and min(p, q) < oo. If ab > 1 then f = 0 almost
everywhere. If ab < 1 r7zen f/jere ex;\sf infinitely many linearly independent functions
satisfying (i) a«J (ii).

THEOREM 3 (Morgan). Let f : R -+ C be measurable ami for all x, y

(i) I /Ml < Ce-a"W.
(ii) l/(v)l < Ce-iMa)+e)"M\

where p > 2, p~x + <?"' = 1, a,€ > 0 and A(a) — 2 ' ' / [ s ina(^(pa) ' '~ 1 ) ] with

a = n(q — l)/2. T/jen / = 0 almost everywhere.

THEOREM 4 (Beurling). Fo r / € L'(R),

implies f — 0 almost everywhere.

For the proofs of the above theorems see [ 1,5,6].
Barring the case afe = 1 it is clear that the theorem of Cowling and Price implies

the theorem of Hardy. Also the theorem of Beurling implies that of Cowling and Price
for ab > 1. From Beurling's theorem we get yet another result which is somewhat
stronger than Morgan's theorem (see [6]).

THEOREM 5. Let f : R - • C be measurable and for all x, v

(i) I / to I < Ce-a«W,
(ii) \f{y)\ < Ce~h^\

where p'1 + q~x = 1. If(ap)i/p(bq)[/c< > 2, then f = 0 almost everywhere.

NOTE. Clearly (ap)l//'{(A(a) + <?)<?}IA/ > 2. Hence Morgan's theorem follows
from Theorem 5.
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One of our results in this paper shows that Hardy's theorem implies the case ab > 1
of the theorem of Cowling and Price, although in both the theorems the case a = 1 = b
is a key point.

Recently Hardy's theorem has been extended to Euclidean spaces and to some
non-commutative groups (see [10, 11, 13]). Our purpose in this paper is to extend the
theorem of Cowling and Price to the following groups: W, Hn and M{2) . Apart from
this we will point out an analogue of Beurling's theorem on W.

The paper is organized as follows: In Section 1 we consider the extensions of the
above theorems to K". In Section 2 we take up the theorem of Cowling and Price and
also Theorem 5 for the Heisenberg groups Hn. We end this section with our proof
that Theorem 1 implies Theorem 2 when ab > 1, for the real line. We do so since our
approach to the theorem of Cowling and Price on Hn relies on the idea of this proof.
In Section 3 we take up M(2), the Euclidean motion group of the plane and we make
some comment about the analogue of Theorem 2 on the oscillator group.

Our results in Sections 1 and 3 exploit the easily available complexification of lines
in the unitary dual of the group. The Heisenberg groups treated in Section 2 do not
admit such complexification and hence need a different treatment.

1. Euclidean spaces

The proof of Theorem 2 depends on the following result for entire functions.

LEMMA 1.1. If g : C —• C is entire and for 1 < p < oo

(i) \g(x + iy)\ < /U-TV\
(ii) (hlgWdx)1"' < c o ,

then g = 0.

Lemma 1.1 which was proved in [1], uses an L''-analogue of Phragmen-Lindeloff
Theorem. We use it to prove an extension of Theorem 2 on R".

NOTATION. In what follows, (xt,... ,xk,... , x,,) stands for the vector (x\, ... ,
* t _ i , x t + i , . . . , * „ ) € K"- 1 .

THEOREM 1.1. Let f : K" - > C be measurable. Suppose for some k, 1 < k < n,

(i) / e " " " f | # ( j c , , . . . ,xk,... ,xn)\
p\f{xu... ,x,,)\pdx]---dxn < oo,

(ii) f e"h^\h(yu ... ,yk yn)\"\f(yu . . . , yn)\
qdy, • --dyn < oo,
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where a, b > 0, g, h : W~] —> C are measurable with g > a > 0, h > fi > 0,
where a, ft are constants, \/g e Z / ( R " - ' ) , p~] + p'~{ = 1. \/h e L « ( l " - ' ) ,
g"1 + <?'"' = 1. If ab > 1 then f = 0 almost everywhere.

PROOF. By (i) and (ii) it follows that / , / e L'(R"). As in the real line case it
is enough to prove the case a = 1 = b, otherwise we use dilation. Now if we fix
(vi \'k vn) e 0&"""1, then for all a> = u + iv e €

< f |/(JC, x,,)\e2nvHdx, •••dxn

< Ae7'1',

where A is a constant and the last inequality follows from Holder's inequality and (i).
Then by a standard argument using Lebesgue's dominated convergence theorem, Fu-
bini's theorem and Morera's theorem it follows that for fixed (V| y * i . y<+i
y,,), f is an entire function in co. We define

g((o) = e7""' f(y\ yt._i, co, yk+i y,,).

So for almost every (yi >'AI, VA+I- • • • , y,,), g satisfies conditions of Lemma
1.1. Hence / = 0 almost everywhere. By the inversion formula / = 0 almost
everywhere. •

Now we take up the theorem of Beurling.

THEOREM 1.2. Let f e L'(R") and for some k, 1 < k < n,

J f n ) | | / ( v , >-B) |e"T k ' -v ' l r f jr l • • • c l x n d y i • - d y , , < o o .

Then / = 0 almost everywhere.

PROOF. We fix y = ( > , , . . . , » _ , , y t + i y,,). We define

g y ( x ) = # A / ( V ' I , . . . , yA._i, x, yk+l y,,). x e R,

where

= I f(X\, . . . ,Xk-\,X,Xk + \ X,,)
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Then gy(y) = / (y , yt_,, y, yk+[,... , y,,). Now

f f \gy(x)\\gy(y)\e^ ^dxdy

f f
< I / O r , , . . . .**_!, * , * * + ! , . . . , * , , ) | | / ( y i y A _ , , v , vA +i y,,)\

x e~T|vv|dX| • • • d.\k_idxk+\ • • • dxndxdy

< o c

for a l m o s t e v e r y (v' i , . . . . y k - \ , y k + \ , • • • , y , , ) . S o b y B e u r l i n g ' s t h e o r e m o n K fo r

a l m o s t e v e r y ( y , , . . . , y k _ u y k + u . . . , y n ) ,

&kf(y\, • • • , y*-i, *, y t + i , . . . . y,,) = 0

for almost every x. Hence by Fubini's theorem and the inversion formula / = 0
almost everywhere. •

COROLLARY 1. Let f e V{W).

(a) / / / R i l | /(x)| | /(y)k2T | | l | l l | v | l<ixdy < oo then / = 0 a/mo^f everywhere.

(b) ///R2,, I / U , , . . . , j c n ) | | / ( y , , . . . , yn)\e
2*T>^dXl • ••dxndyx • --dy,, < oo then

/ = 0 almost everywhere.

(c) Suppose for some k, \ < k < n, f and f satisfy

( i) | / ( J C i , v , , ) | < C g ( j r , , ... ,xk,..., xn)e-«*M'\

(ii) !/(>•,, . . . . v j | < Ch{yx,... , yk,... , y , , )*-- '^ ' 1" ' ,

where p'1 + p'~l = 1, g, A(> 0) € L'(R"-'). If{apyip(bqy'q > 2 then f = 0
almost everywhere.

REMARK 1.1. For IR", decay in the k-th coordinate of / and / is enough to conclude
that the function is zero. What matters is the fact that IR" is a direct product of copies
of IR. We may also remark that the Fubini argument in Theorem 1.1 appears to be
more effective than using an n dimensional version of Lemma 1.1 which would not
yield Theorem 1.1 in the case ab — 1.

2. Heisenberg groups

The main result of this section, Theorem 2.3, proves an analogue of the theorem of
Cowling and Price for the Heisenberg groups.

We recall some facts about the Heisenberg groups. The n dimensional Heisenberg
group, denoted by //„, as a set is IR2"+I with the group multiplication

= L r, + ̂
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where x, f, x\,%\ e W, t, t\ e IR, and {.,.) denotes the usual Euclidean inner product
on W. With this multiplication Hn is a unimodular, connected and simply connected,
step two nilpotent Lie group whose Haar measure is dxd^dt. The reduced dual of Hn

is parametrized by A e IR \ {0} and is given by

n, : H,, -

Given / e L '(//„) n L2(//„), the group Fourier transform on reduced dual is given by

f(Uk)= f f(x,^t)nk((x,i=,t)-])dxdt;dt,
JH,,

the integral being interpreted in the weak sense.
If we think of / as an operator-valued function on K \ (0} then it can be shown

that /(A.) (by which we mean f(Uk)) is an integral operator on L2(R") with a kernel
given by

K[(y, x) = J ^ C * - y, — A(JC + y)/2, A), x, y € V,

where &2 and ̂  mean the Euclidean Fourier transforms of / with respect to its
second and third argument. It follows that

(2.1) 2Hs = \M~" f \&3f(x,y,k)\2dxdy

where || • ||HS denotes the Hilbert-Schmidt norm. Then by the (Euclidean) Parseval
formula

So \X\"dk is the Plancherel measure for Hn (see [2]).
Now we prove an analogue of Theorem 2 on Hn.

THEOREM 2 . 1 . Let f e L\Hn) n L2(Hn). Suppose that for a,b > 0 and

min(/?, q) < oo

(i) fH epa"Usl;')f~\f(x,i;,t)\pdxd$dt < oo,

(ii) /R>-:||/(A)irw5|A|VA<cx).

(a) Ifq > 2, then f = 0 ifab > 1.
(b) Ifl<q<2, then for p = oo, f = 0 ifab > 2 and for p < oo, / = 0

ifab > 2.

PROOF. We consider two cases separately.
CASE !.(/? = oo) In this case the hypothesis (i) reduces to,
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[7] Uncertainty principles like Hardy's theorem on some Lie groups 295

(iii) \f(x, £, 01 < Ce-ra| l (-a-"|; for all (x, §, 0 e //„,

Let us define /,,.*, (0 = f(x, £, r), /,*r.4)(0 = / ( * , § . - r ) and

Then it follows that

(2.2) A (A.) = |A.ni/(A.)||2WJ (because of (2 .1)) ,

(2.3) \ h ( t ) \ <Ce~^'2 ( b y ( i i i ) ) .

First let us assume q > 2. Let e > 0 be such that a(b — e) > 1. Then, with b' = b —

= f eh'""k:\X\^\\f(X)fHSdk ( b y 2 . 2 )

< AT f "̂̂(2.4) < AT f ^"^1/(1)11^,1X1"^ < oo (by (ii)),
J

where A" is a constant. It follows from (2.3) and (2.4) that h satisfies conditions of
Theorem 2 for p = oo and q/2 and hence/; = 0 almost every where. So ||/(A.)||W5 = 0
for almost every X which implies / = 0 almost everywhere by the Plancherel theorem.
Now we assume that q < 2. By (ii) we have

/ \f(k)\\q
HS\k\"dk

= feqb"'}h(k)tll2\k\-"qi2\k\lldk
JR

> f eqb!":'h(k)q/2dk.

As the integrand is a continuous function of A. we have

f eqb"'AZh{kyl2dk < oo.

So

f e'^hWdk = [ e«b!Tl2h(k)q/2h(k)q/2dk
JR JR

JK
< oo.
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By (2.3), the above inequality and Theorem 2 we get h = 0 if ab > 2. Hence / = 0.

CASE 2. (p < oo) If || • || denotes the Euclidean norm on R2"+1, then for

(jr,£,O. (Jc , , | , , r i ) - ' (= ( -* , , - £ , , -?,)) e //„

(2.5) > | |(JC. ^ , r ) | |

L e t g e C t . ( « n ) w i t h s u p p g C { ( * , , § , , / , ) : | | ( J C , , | , , r , ) | | 5 ( 1 / w ) } . N o w l e t

e / /„ be such that ||<JC, £, r ) | | > 1. T h e n by (2.5) w e get

for (*, ,§, , r,) in suppg. If euU, §, f) = £.a7rl|lv« "i|: we further get

* \ g \ ) { x , £ , t ) > e f l ( l _ ^ , : U , ? , t){\f\ * \ g \ ) ( x , | , f ) .

By (0e«l/l is an Lp function and g is an L1' function (p~l + /?""' = 1). So(e,,|/|)*|g|
is an L30 function and let C be the Lx norm. Then

| ( / * g)(x, | , 01 < (I/I * IgDU. ^ 0 < Ce-""-i':!r||l^"l!:

for all (x ,§ , r ) with ||(jc,^,r)|| > 1. Using continuity of f * g (f e L W ' + 1 ) ,
g € L"([R2"+I)) we get (changing the constant if needed)

(2.6) | ( / * g)(x, | , 01 < Ce-fl"-^|2T|l(j:-*-"l|: for all (.v. §. r) e //„.

Since ( / * g)(A) = /(A.) o |(A.) and g(k) is a bounded linear operator on L2(W) we
have

So

(2.7) < ||g|ll,(//iil / ^6jri"||/(A.)||«,s|A.r£/A. < oc (by( i i ) ) .

We can choose m so large that a^(l — (3/2m))2 > 1 (respectively > 2), given ab > 1
(respectively > 2). So by (2.6) and (2.7) we are reduced to Case 1 and hence f*g = 0.
By running g over an approximate identity we get / = 0 almost everywhere. This
completes the proof. •
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Next we prove an analogue of Theorem 5 on Heisenberg groups.

THEOREM 2.2. Let f : Hn ->• C be measurable and

(i) | / ( J C , $ , O I <Cg(x^)e-"^"forall(x^,t)eHn,

(ii) \\f(k)\\HS < Ce-'^"forallk e l \ ( 0 ( ,

where a, b,C > 0, g e L'(R2") n L2(R2"), p > 2, p"1 + <?-' = 1. If(ap)l/P(bq)[/"
> 2, fnen / = 0.

PROOF. We define h as in the previous theorem. Now

\h(t)\= f \f(x,$,t -s)\\f(x,$,-s)\dxdt;ds

<C f e-anW-'fMsnds

<C

By (2.2) and (ii) we have

\h(X)\ <

We choose b' < b such that (apy/p(b'q)l/tl > 2 when (ap)i/l'(bqy/il > 2. Hence

\h(k)\ < Be-2b'nW".

Since (a2]-pp)]'"(2b'cl)
1 q = (ap)]/l'(b'qy"l2i[-''>/p+l/'1 > 2, by Theorem 5, h(k) =

0 for almost every X and hence ||/(A.)||Ws = 0 f°r almost every k and then by the
Plancherel theorem / = 0 almost everywhere. This completes the proof. •

Going back to Theorem 2.3 we notice that case 2 reduces the integral decay
condition (i) to the pointwise decay condition (iii). Exploiting this idea on the real
line we are led to a somewhat surprising result. We introduce some notation. Let
ek(x) = ek7r": where x e R and k > 0 and

£p.,(fl, b) = {/ : R - • C/ / is measurable and | |e a / | | p < oo, \\ej\\, < oo}.

THEOREM 2.3. The following are equivalent.

(i) //a/? > 1 f/z<?n E^.x(a, b) = 0.
(ii) If ab > 1 and min(p, q) < oo then Epjj(a, b) = 0.
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PROOF. It is easy to see that (i) follows from (ii) by Holder's inequality. Now
we show that (i) implies (ii). Without loss of generality we assume p < oo. Let
g € C(.(R) be such that suppg c {y : \y\ < 8}. We choose an e > 0, which is to be
specified later. We choose x such that |JC j > <5/e. Then for all v e supp g we have

l * - > ' | > k | - | . V | > \X\-S > |*|(1 -€),

then by (ii) and the fact that g e LP(K) for all p, we get, by Holder's inequality, for a
constant C,

c >

So, | / * g(x)\ < ( | / | * \g\)(x) < Ce-fljr|-v|2(I-f)\ for all x such that |x| > S/e. Since
/ * g is a continuous function we have

(2.8) K/*g)(*) | <Ce-fl( |-f|2"nv|: forall.v,

(2.9) 11^(7*7)11, < \\g\U\ebf\\q < oo ( b y ( i i ) ) .

Starting from (2.8) and (2.9) if we can show that / * g = 0 (with a condition on
e), then by running g over an approximate identity we get / = 0. So we prove the
following:

Let / : K —> C be measurable and

\f(x)\ < eg"""-"2*1"2 for all * € 1 , | | e A / | | , < oo,

then / = 0. Let h e C,(K) be such that supp/i c {x : \x\ < 5,}. We choose an
€\ > 0, to be specified later and do the same thing as above to get

(2.10) \f*h(y)\ < Cg-*"-"'2"1-1'12 for ally.

If ^ ~ ' / denotes the inverse Fourier transform of / then

(2.11) \&-\f*h)(x)\ <Cie-f l (1-°=T | j c | : .

by the condition on / and the fact that &~]h e LDC(K). We choose our e and e, such
thatab(l - e ) 2 ( l - e , ) 2 > 1 whenever a6 > 1. Then by (2.10) and (2.11) we get that
f * h e Exx(b(l - e,)2, a{\ - e)2) and hence by (i), / * /? = 0. By running h over
an approximate identity we get / = 0. Thus / = 0. This completes the proof. •
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3. The Euclidean motion group of the plane

The Euclidean motion group of the plane, denoted by M (2), is the semidirect
product of R2 and SO(2) with respect to the obvious action of SO(2) on R2. This
is a connected, unimodular, solvable Lie group. If we denote elements of M(2) by
(z, P), where z e C (identified with R2) and p e 1 (identified with SO(2)) then dzdp
is a Haar measure. The irreducible, unitary, infinite dimensional representations of
M(2) are realized on L2(J) and the equivalence classes of them are parametrized by
{r e R : r € R+} and are given by

n r : M(2) -+ ^ ( L 2 ( T ) )

(T\r(z, P)f){a) = e2"iReir5:)f(Pa), f e L2(T), a e T.

n_r can be defined similarly, but FIr and I~Lr are unitarily equivalent. The family
(n r : /• £ l + ) constitutes the support for the Plancherel measure and the measure is
given by crdr, where c is a constant (see [12]).

We shall prove an analogue of Theorem 2 on M (2). F o r / e L'(M(2))nL2(M(2)),
the group Fourier transform is given by

f(r) = / (n r ) = / /(z, P)Ur((z, P)~[)dzdp
JM(2)

where the integral is interpreted in the weak sense, and then f(r) is a Hilbert-Schmidt
operator on L2(J).

First, for our use here we state an equivalent version of Lemma 1.1.

LEMMA 3.1. If g : C —>• C is entire and for 1 < p < oo

(i) \g(x + iv)| < / l^ ' 7" ' , w/^re a > 0,
(ii) (/R |g(x)|pJx) "' < oo,

8 = 0.

Using this we prove

THEOREM 3.1. Let f e L'(M(2)) n L2(M(2))

(ii) / R ^ " t e

where a, b > 0, 1 < ^ < oo, 1 < p < oo. /f afr > 1 ?/ie« / = 0 almost everywhere.

PROOF. Let {en : n e 1} be the canonical orthonormal basis for L2(T). We define

*mJZ' P) = (Ur(Z> P)e>n> «»>/.^T, ((Z, /?) £ M{2), T > 0)

= j e2nimr^em{pcc)e~Aa)da.
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Now for / € L2(T),

= e^^^fipa) a> = u + iv e C

continues to be a nonunitary representation of M(2) and we get the complex extension
of the function r —>• <$>'m n(z, fi), for fixed (z, ^ ) , m, «. Further

(3.1) = \{UM, P)em, e,,)\ < f e^^
Jj

for fixed m, n, (z, P)- From (3.1), to —> O"? n(z, y3) is an entire function by a standard
argument. Also we have the estimate

< 1/(2, P)\ I e27rvRei~^:)da, where co = u + iv e C

Hence

/ (\f(z, j8)kair|c |2) (e-°"<M-'V°

< Cle*v'/"(A + B\v\ + K\v\2)

( by (i) and Holder's inequality, A, B, K > 0 )

(3.2) kM\

for some k, such that b > k > I/a. A routine argument now shows that the complex
extension of the function r —*• {f(r)em, en), r € K+, which we write as

{f(o>)em, en) = f f(z, /3)<D̂  ,,(-pz, P)dzdp,
JCxJ

is an entire function of the complex variable co, for fixed m. n. We note further that
(f(r)em,en) = (f(-r)em,en) for r € R + . S i n c e \(f(r)em,e,,)\ < | | / ( r ) | | H 5 , w e

have from (ii)

f b7Tr-\(f (r)em, e,,)\irdr < o o .
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Since \{f(r)em, e,,)\ is a continuous function of r,

(3.3) [ e«h7"-:\(f(r)em,en)\«dr < w.

From (3.2) we have

(3.4) \{f(oj)em, e,,}\ < CV'T1>: where co = u + iv.

We define

Then g is an entire function. From (3.4) and (3.3) it follows that

(3.5) \g(u +iv)\< Cie
k"u':-v2'ek7Zl" = Cek7T"\

(3.6) / \g(r)\"dr = I e"k:Tr2\{f(r)em, ea)\"dr < oo as k < b.

By (3.5) and (3.6) it follows that g satisfies conditions of Lemma 3.3 and hence g = 0.
So (f(a))em, en) = 0. But m, n are arbitrary and hence | | / (r) | |Ws = 0, which implies
/ = 0 by the Plancherel theorem. This completes the proof. •

We point out that a similar kind of technique works for another semidirect product
namely the oscillator group.

The oscillator group is the semidirect product of Ht (the one dimensional Heisen-
berg group) and IR with respect to the homomorphism y : 1 —> Aut(//|) given
by

y(r)(x, £. t) = (x cosr + £ sinr, — x sinr + £ cosr, t).

Since y has cocompact kernel, G = H\ x Y R is a type 1, unimodular group with H\ as
a regularly embedded, closed normal subgroup (see [7, Theorem 3.1]). If we denote
the elements of G by (.v. £, /, r) where (x, £, t) e Ht and r e l then dxd^dtdr is a
Haar measure.

To find G, we proceed by Mackey theory. For X e R \ {0}, we consider n;. e H{.
Then it is clear that n x |Z ( / / , ) = (UA o y(r))\Z{H{) for all r e R where Z(// ,) is the
center of // | . Let W(r) be the intertwining operator (which is unique up to a scalar).
So W(r) e ^ ( L : ( H ) ) satisfies

Tlk(y(r)(x.$,t)) = W(r) o nA(x,$,t) o W{r)~\

for all (JC, £, 0 € //,. Since R has no nontrivial multiplier (see [9]), r —>• W(r) can
be chosen to be a true unitary representation of R. So by the little group method we
get a family of irreducible unitary representations of G given by

n, . , : G - • ^ ( L 2 W ) , n x . 5 U, §, t, r) = x*(r)Tlk(x, f, 0 o
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where xAr) = e27nsr. It follows from [7, Theorem 3.11 that the representations
{FU.j : A € R \ {0}, s € R) constitute the support for the Plancherel measure, and
the Plancherel measure is given by \X\dkds. Now by fixing A and complexifying 5 if
we concentrate on the matrix coefficients of the group Fourier transform f{n-,.,s) and
apply Lemma 3.3 we easily get the following theorem.

THEOREM 3.2. Let f e L ' ( G ) n L2(G) and

(i) fGep":rlHAj;jrn:\f(x,^t,r)\>'dxd%dtdr < oo,

(ii) fRe«"^2\\f(k,s)\\HSds <Ak,

where AA is a constant depending on X only, and a, b > 0, 1 < q < oo, I < p < oo.
If ab > 1 then / = 0 almost everywhere.
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