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Approximating the Riemann Zeta-function
by Polynomials with Restricted Zeros

P. M. Gauthier

Abstract. We approximate the Riemann Zeta-Function by polynomials and Dirichlet polynomials
with restricted zeros.

he Riemann zeta-function ζ has zeros at the negative even integers (the so-called
trivial zeros). heRiemannHypothesis states that the remaining zeros (the non-trivial
zeros all lie on the critical line S = {z ∶ Rz = 1/2}. A reûnement of the Riemann
Hypothesis claims that,moreover, the zeros are simple.

We wish to approximate ζ by sequences of polynomials whose zeros have these
properties on larger and larger sets. Since Euler originally deûned the zeta-function
by the Dirichlet series

ζ(x) =
∞
∑
n=1

1
nx , 1 < x < +∞,

it seems natural to approximate ζ , not only by “ordinary” polynomials

P(z) =
m

∑
n=0
anz

n ,

but also by Dirichlet polynomials

D(z) =
m

∑
n=1

an

nz .

To clearly distinguish between Dirichlet polynomials and ordinary polynomials, we
shall sometimes refer to the latter as algebraic polynomials.

While the theory of approximation by algebraic polynomials is a well developed
classical subject, that of approximation by Dirichlet polynomials has received less
attention. Recently [1, Lemma 4.1], the two theories were shown to be equivalent.

heorem 1 here exists an increasing sequence Kn of compact subsets of C whose

union is C, a sequence Pn of algebraic polynomials, and a sequence Dn of Dirichlet

polynomials, with the following properties:

max{ ∣Pn(z) − ζ(z)∣, ∣Dn(z) − ζ(z)∣} ≤ 1/n, for z ∈ Kn ∖ {1}.
Pn(1) = Dn(1) = n.
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On Kn ∩ (R ∪ S),

Pn and Dn have only simple zeros and they are the ζ-zeros.

On Kn ∖ (R ∪ S),

Pn and Dn have no zeros,

Pn(R) ⊂ R, Dn(R) ⊂ R.

It follows that Pn → ζ and Dn → ζ pointwise on all of C, and, for each ûxed m,
the convergence is uniform with respect to the Euclidean distance on Km ∖ {1} and
uniform with respect to the spherical distance on Km .

Let K be a compact subset of C. As usual, A(K) denotes the space of functions
continuous on K and holomorphic on the interior K0 , endowed with the sup-norm,
and P(K) denotes the uniform closure in A(K) of the set of algebraic polynomials.
Similarly, D(K) will denote the closure in A(K) of the set of Dirichlet polynomials.

Lemma 2 For a compact set K ⊂ C the following are equivalent:

(i) C ∖ K is connected;

(ii) P(K) = A(K);
(iii) D(K) = A(K).

he equivalence of (i) and (ii) isMergelyan’sheorem, themost important theorem
in polynomial approximation. he equivalence of (ii) and (iii) is a very recent result
due to Aron et al. [1, Lemma 4.1].
For A ⊂ C, we denote by A∗ the set {z ∶ z ∈ A}, andwe say that A is real-symmetric

if A = A∗ . We say that a function f ∶ A → C on a real-symmetric set A is real-
symmetric if f (z) = f (z). For a class X of functions on a real-symmetric set A, we
denote by XR the class of functions in X that are real-symmetric. If X is a complex
vector space, we note that XR is a real vector space (even though the functions may
be complex valued). We have a real-symmetric version of the previous lemma.

Lemma 3 For a real-symmetric compact set K ⊂ C, the following are equivalent:

(i) C ∖ K is connected;

(ii) PR(K) = AR(K);
(iii) DR(K) = AR(K).

Proof Suppose C ∖ K is not connected. hen K has a bounded complementary
componentU . Fix a ∈ U .he function f (z) = (z−a)−1(z−a)−1 is inAR(K). Suppose,
to obtain a contradiction, that there is a sequence pn of real-symmetric polynomials
such that

∣pn(z) − (z − a)
−1
(z − a)

−1
∣ < 1/n, for all z ∈ K .

hen

∣pn(z)(z − a)(z − a) − 1∣ < ∣(z − a)(z − a)∣/n, for all z ∈ ∂(U ∪U
∗
) ⊂ K .

By themaximum principle,

∣pn(z)(z − a)(z − a) − 1∣ < max
w∈∂(U∪U∗)

∣(w − a)(w − a)∣/n, for all z ∈ U ∪U
∗ .
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In particular, at z = a, we have

1 < max
w∈∂(U∪U∗)

∣(w − a)(w − a)∣/n, for all n,

which is a absurd. herefore, (ii) implies (i). A similar argument shows that (iii)
implies (i).

Now suppose that C ∖ K is connected and f ∈ AR(K). By Lemma 2, there are
algebraic polynomials Pn and Dirichlet polynomials Dn that converge uniformly to
f on K . Since f is real-symmetric, it is easy to see that the real-symmetric alge-
braic polynomials (Pn(z) + Pn(z))/2 and the real-symmetric Dirichlet polynomi-
als (Dn(z) + Dn(z))/2 also converge uniformly to f on K . hus, (i) implies (ii)
and (iii). ∎

he next lemma, due to FrankDeutsch [2], generalizes a result ofWalsh and states
that if we can approximate, we can simultaneously interpolate.

Lemma 4 LetY be a dense (real or complex) linear subspace of the (respectively real or

complex) linear topological space X and let L1 , . . . , Ln be continuous linear functionals

on X . hen for each x ∈ X and each neighbourhood U of x, there is a y ∈ Y such that

y ∈ U and L i(y) = L i(x), i = 1, . . . , n.

With the help of these lemmas, we now prove the theorem.

Proof of Theorem 1 Our construction of the sets Kn is inspired by a construction
in [3].
First, we prove the theorem for algebraic polynomials Pn . Set t0 = 0 and let tk ,

k ∈ N, be the imaginary parts of the zeros of ζ in the upper half-plane, arranged in
increasing order. For each tk , k > 0, there are at most ûnitely many corresponding
zeros of ζ . Choose 0 < λ1 < λ2 < ⋅ ⋅ ⋅ < 1, such that λ i ↗ 1. Let s0 = 1 and for
k ∈ Z ∖ {0}, let sk = 2k. For each i ∈ N and for each −i ≤ j ≤ i , and k = 0, 1, . . . , i , set

Q i jk = {z ∶ s j ≤Rz ≤ s j + λ i(s j+1 − s j), tk ≤ ∣Iz∣ ≤ tk + λ i(tk+1 − tk)} ,

Q i =⋃Q i jk , −i ≤ j ≤ i , k = 0, 1, . . . , i .

he compact set Q i is real-symmetric and is the union of disjoint closed rectangles,
so C ∖ Q i is connected.

Let Z 1
i be the zeros of ζ in Q i ∩(R∪ S) and let Z2

i be the zeros of ζ in Q i ∖(R∪ S).
hen Z i = Z 1

i ∪ Z2
i is the set of zeros of ζ in Q i . Denoting by B(z, r) (resp. B(z, r))

the open (resp. closed) disc of center z and radius r, set

Bi = ⋃
z∈Z i∪{1}

B( z,
1
i
) ,

K i = (Q i ∖Bi) ∪ Z i ∪ {1}.

hen K1 ,K2 , . . . , is an increasing sequence of compact setswhose union isC, and the
complement of each Kn is connected. Moreove, since Z 1

i and Z2
i are real-symmetric,

so are the K i . Now, for n = 1, 2, . . . , set

Kn = Kn ∪ ⋃
z∈Zn∪{1}

B( z,
1
2n
) = (Qn ∖Bn) ∪ ⋃

z∈Zn∪{1}
B( z,

1
2n
) .
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For each n, the complement of Kn is connected and Kn is real-symmetric, and
so, by Lemma 3, the real-symmetric algebraic polynomials are dense in the space of
real-symmetric holomorphic functions on (neighbourhoods of) Kn . By Lemma 4,
for every real-symmetric function f holomorphic on Kn , and ûnitely many points
a1 , . . . , am ∈ Kn and for each є > 0, there is a real-symmetric polynomial P, such
that ∣ f − P∣ < є on Kn , and P(a j) = f (a j), j = 1, . . . ,m. Moreover, for each k ∈ N,
there is such a polynomial P such that, for each a j ∈ K0

n , P
(ℓ)(a j) = f (ℓ)(a j), for

ℓ = 0, 1, . . . , k.
We apply this approximation and interpolation procedure to the following func-

tion, holomorphic, and real-symmetric on Kn ∶

fn(z) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ζ(z) for z ∈ Qn ∖Bn ,
n for z ∈ B(1, 1/(2n)) ,
z − a for z ∈ B(a, 1/(2n)) , a ∈ Z 1

n ,
1/n for z ∈ B(a, 1/(2n)) , a ∈ Z2

n .

Set δn = min ∣ fn(z)∣ for z ∈ Qn ∖Bn . Since ζ has no zeros on this compact set, δn > 0.
Choose єn < min{δn/2, 1/n}. Invoking the approximation-interpolation procedure,
for each n, there is a real-symmetric polynomial Pn such that

∣Pn(z) − fn(z)∣ < єn , for all z ∈Kn ;
Pn(1) = n;

Pn(a) = 0, P′n(a) = 1, for all a ∈ Z
1
n ;

Pn(a) = 1/n, for all a ∈ Z
2
n .

Since Pn is real-symmetric, Pn(R) ⊂ R. his completes the proof for algebraic
polynomials.

he proof for Dirichlet polynomials is identical (thanks to Lemmas 3 and 4). ∎
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