

Approximating the Riemann Zeta-function by Polynomials with Restricted Zeros

P. M. Gauthier

Abstract. We approximate the Riemann Zeta-Function by polynomials and Dirichlet polynomials with restricted zeros.

The Riemann zeta-function ζ has zeros at the negative even integers (the so-called trivial zeros). The Riemann Hypothesis states that the remaining zeros (the non-trivial zeros all lie on the critical line $S = \{z : \Re z = 1/2\}$. A refinement of the Riemann Hypothesis claims that, moreover, the zeros are simple.

We wish to approximate ζ by sequences of polynomials whose zeros have these properties on larger and larger sets. Since Euler originally deûned the zeta-function by the Dirichlet series

$$
\zeta(x)=\sum_{n=1}^{\infty}\frac{1}{n^x}, \quad 1
$$

it seems natural to approximate ζ , not only by "ordinary" polynomials

$$
P(z)=\sum_{n=0}^m a_nz^n,
$$

but also by Dirichlet polynomials

$$
D(z)=\sum_{n=1}^m\frac{a_n}{n^z}.
$$

To clearly distinguish between Dirichlet polynomials and ordinary polynomials, we shall sometimes refer to the latter as *algebraic* polynomials.

While the theory of approximation by algebraic polynomials is a well developed classical subject, that of approximation by Dirichlet polynomials has received less attention. Recently [\[1,](#page-3-0) Lemma 4.1], the two theories were shown to be equivalent.

Theorem 1 There exists an increasing sequence K_n of compact subsets of $\mathbb C$ whose union is \mathbb{C} , a sequence P_n of algebraic polynomials, and a sequence D_n of Dirichlet polynomials, with the following properties:

$$
\max\left\{|P_n(z)-\zeta(z)|,|D_n(z)-\zeta(z)|\right\}\leq 1/n,\quad\text{for }z\in K_n\setminus\{1\}.
$$
\n
$$
P_n(1)=D_n(1)=n.
$$

Published online on Cambridge Core May 2, 2019.

Research supported by NSERC (Canada) grant RGPIN-2016-04107.

Received by the editors August 20, 2018; revised December 7, 2018.

AMS subject classification: 30E15, 11M26.

Keywords: Riemann zeta-function, Riemann Hypothesis.

On $K_n \cap (\mathbb{R} \cup S)$,

 P_n and D_n have only simple zeros and they are the ζ -zeros.

On $K_n \setminus (\mathbb{R} \cup S)$,

$$
P_n
$$
 and D_n have no zeros,
 $P_n(\mathbb{R}) \subset \mathbb{R}$, $D_n(\mathbb{R}) \subset \mathbb{R}$.

It follows that $P_n \to \zeta$ and $D_n \to \zeta$ pointwise on all of \mathbb{C} , and, for each fixed m, the convergence is uniform with respect to the Euclidean distance on $K_m \setminus \{1\}$ and uniform with respect to the spherical distance on K_m .

Let K be a compact subset of $\mathbb C$. As usual, $A(K)$ denotes the space of functions continuous on K and holomorphic on the interior K^0 , endowed with the sup-norm, and $P(K)$ denotes the uniform closure in $A(K)$ of the set of algebraic polynomials. Similarly, $D(K)$ will denote the closure in $A(K)$ of the set of Dirichlet polynomials.

Lemma 2 For a compact set $K \subset \mathbb{C}$ the following are equivalent:

(i) $\mathbb{C} \setminus K$ is connected;

(ii)
$$
P(K) = A(K);
$$

(iii) $D(K) = A(K)$.

The equivalence of (i) and (ii) is Mergelyan's Theorem, the most important theorem in polynomial approximation. The equivalence of (ii) and (iii) is a very recent result due to Aron et al. [\[1,](#page-3-0) Lemma 4.1].

For $A \subset \mathbb{C}$, we denote by A^* the set $\{\overline{z} : z \in A\}$, and we say that A is real-symmetric if $A = A^*$. We say that a function $f : A \to \mathbb{C}$ on a real-symmetric set A is realsymmetric if $f(z) = f(\overline{z})$. For a class X of functions on a real-symmetric set A, we denote by $X_{\mathbb{R}}$ the class of functions in X that are real-symmetric. If X is a complex vector space, we note that $X_{\mathbb{R}}$ is a real vector space (even though the functions may be complex valued). We have a real-symmetric version of the previous lemma.

Lemma 3 For a real-symmetric compact set $K \subset \mathbb{C}$, the following are equivalent:

(i) $\mathbb{C} \setminus K$ is connected: (ii) $P_{\mathbb{R}}(K) = A_{\mathbb{R}}(K);$

(iii) $D_{\mathbb{R}}(K) = A_{\mathbb{R}}(K)$.

Proof Suppose $\mathbb{C} \setminus K$ is not connected. Then K has a bounded complementary component U. Fix $a \in U$. The function $f(z) = (z-a)^{-1}(z-\overline{a})^{-1}$ is in $A_{\mathbb{R}}(K)$. Suppose, to obtain a contradiction, that there is a sequence p_n of real-symmetric polynomials such that

$$
|p_n(z) - (z - a)^{-1}(z - \overline{a})^{-1}| < 1/n
$$
, for all $z \in K$.

hen

$$
|p_n(z)(z-a)(z-\overline{a})-1|<|(z-a)(z-\overline{a})|/n, \text{ for all } z \in \partial (U \cup U^*) \subset K.
$$

By the maximum principle,

$$
|p_n(z)(z-a)(z-\overline{a})-1| < \max_{w \in \partial (U \cup U^*)} |(w-a)(w-\overline{a})|/n, \quad \text{for all } z \in U \cup U^*.
$$

476

Approximating the Riemann Zeta-function by Polynomials

In particular, at $z = a$, we have

 $1 < \max_{w \in \partial (U \cup U^*)} |(w - a)(w - \overline{a})|/n$, for all *n*,

which is a absurd. Therefore, (ii) implies (i). A similar argument shows that (iii) implies (i).

Now suppose that $\mathbb{C} \setminus K$ is connected and $f \in A_{\mathbb{R}}(K)$. By Lemma [2,](#page-1-0) there are algebraic polynomials P_n and Dirichlet polynomials D_n that converge uniformly to f on K. Since f is real-symmetric, it is easy to see that the real-symmetric algebraic polynomials $(P_n(z) + P_n(\overline{z}))/2$ and the real-symmetric Dirichlet polynomials $(D_n(z) + \overline{D_n(\overline{z})})/2$ also converge uniformly to f on K. Thus, (i) implies (ii) $and (iii).$ \blacksquare

he next lemma, due to Frank Deutsch [\[2\]](#page-3-1), generalizes a result of Walsh and states that if we can approximate, we can simultaneously interpolate.

Lemma 4 Let Y be a dense (real orcomplex) linear subspace of the (respectively real or complex) linear topological space X and let L_1, \ldots, L_n be continuous linear functionals on X. Then for each $x \in X$ and each neighbourhood U of x, there is a $y \in Y$ such that $y \in U$ and $L_i(y) = L_i(x), i = 1, ..., n$.

With the help of these lemmas, we now prove the theorem.

Proof of Theorem 1 Our construction of the sets K_n is inspired by a construction in [\[3\]](#page-3-2).

First, we prove the theorem for algebraic polynomials P_n . Set $t_0 = 0$ and let t_k , $k \in \mathbb{N}$, be the imaginary parts of the zeros of ζ in the upper half-plane, arranged in increasing order. For each t_k , $k > 0$, there are at most finitely many corresponding zeros of ζ . Choose $0 < \lambda_1 < \lambda_2 < \cdots < 1$, such that $\lambda_i \geq 1$. Let $s_0 = 1$ and for $k \in \mathbb{Z} \setminus \{0\}$, let $s_k = 2k$. For each $i \in \mathbb{N}$ and for each $-i \leq j \leq i$, and $k = 0, 1, \ldots, i$, set

$$
Q_{ijk} = \left\{ z : s_j \leq \Re z \leq s_j + \lambda_i (s_{j+1} - s_j), \ t_k \leq |\Im z| \leq t_k + \lambda_i (t_{k+1} - t_k) \right\},
$$

$$
Q_i = \bigcup Q_{ijk}, \quad -i \leq j \leq i, \quad k = 0, 1, \ldots, i.
$$

The compact set Q_i is real-symmetric and is the union of disjoint closed rectangles, so $\mathbb{C} \setminus \overline{Q}_i$ is connected.

Let Z_i^1 be the zeros of ζ in $Q_i \cap (\mathbb{R} \cup \mathcal{S})$ and let Z_i^2 be the zeros of ζ in $Q_i \smallsetminus (\mathbb{R} \cup \mathcal{S})$. Then $Z_i = Z_i^1 \cup Z_i^2$ is the set of zeros of ζ in Q_i . Denoting by $B(z, r)$ (resp. $\overline{B}(z, r)$) the open (resp. closed) disc of center z and radius r , set

$$
\mathcal{B}_{i} = \bigcup_{z \in Z_{i} \cup \{1\}} B\left(z, \frac{1}{i}\right),
$$

$$
K_{i} = \left(Q_{i} \setminus B_{i}\right) \cup Z_{i} \cup \{1\}.
$$

Then K_1, K_2, \ldots , is an increasing sequence of compact sets whose union is \mathbb{C} , and the complement of each K_n is connected. Moreove, since Z_i^1 and Z_i^2 are real-symmetric, so are the K_i . Now, for $n = 1, 2, \ldots$, set

$$
\mathcal{K}_n=K_n\cup\bigcup_{z\in Z_n\cup\{1\}}\overline{B}\Big(z,\frac{1}{2n}\Big)=\big(Q_n\smallsetminus\mathcal{B}_n\big)\cup\bigcup_{z\in Z_n\cup\{1\}}\overline{B}\Big(z,\frac{1}{2n}\Big).
$$

For each *n*, the complement of \mathcal{K}_n is connected and K_n is real-symmetric, and so, by Lemma [3,](#page-1-1) the real-symmetric algebraic polynomials are dense in the space of real-symmetric holomorphic functions on (neighbourhoods of) \mathcal{K}_n . By Lemma [4,](#page-2-0) for every real-symmetric function f holomorphic on \mathcal{K}_n , and finitely many points $a_1, \ldots, a_m \in \mathcal{K}_n$ and for each $\epsilon > 0$, there is a real-symmetric polynomial P, such that $|f - P| < \epsilon$ on \mathcal{K}_n , and $P(a_j) = f(a_j)$, j = 1, ..., m. Moreover, for each $k \in \mathbb{N}$, there is such a polynomial P such that, for each $a_j \in \mathcal{K}_n^0$, $P^{(\ell)}(a_j) = f^{(\ell)}(a_j)$, for $\ell = 0, 1, \ldots, k$.

We apply this approximation and interpolation procedure to the following function, holomorphic, and real-symmetric on \mathcal{K}_n :

$$
f_n(z) = \begin{cases} \zeta(z) & \text{for } z \in Q_n \setminus B_n, \\ n & \text{for } z \in \overline{B}(1, 1/(2n)), \\ z - a & \text{for } z \in \overline{B}(a, 1/(2n)), \quad a \in Z_n^1, \\ 1/n & \text{for } z \in \overline{B}(a, 1/(2n)), \quad a \in Z_n^2. \end{cases}
$$

Set $\delta_n = \min |f_n(z)|$ for $z \in Q_n \setminus B_n$. Since ζ has no zeros on this compact set, $\delta_n > 0$. Choose $\epsilon_n < \min\{\delta_n/2, 1/n\}$. Invoking the approximation-interpolation procedure, for each *n*, there is a real-symmetric polynomial P_n such that

$$
|P_n(z) - f_n(z)| < \epsilon_n, \quad \text{for all} \quad z \in \mathcal{K}_n; \\
P_n(1) = n; \\
P_n(a) = 0, \ P'_n(a) = 1, \quad \text{for all} \quad a \in \mathbb{Z}_n^1; \\
P_n(a) = 1/n, \quad \text{for all} \quad a \in \mathbb{Z}_n^2.
$$

Since P_n is real-symmetric, $P_n(\mathbb{R}) \subset \mathbb{R}$. This completes the proof for algebraic polynomials.

The proof for Dirichlet polynomials is identical (thanks to Lemmas [3](#page-1-1) and [4\)](#page-2-0).

References

- [1] R. M. Aron, F. Bayart, P. M. Gauthier, M. Maestre, and V. Nestoridis, Dirichlet approximation and universal Dirichlet series. Proc. Amer. Math. Soc. 145(2017), no. 10, 4449–4464. <https://doi.org/10.1090/proc/13607>.
- [2] F. Deutsch, Simultaneous interpolation and approximation in topological linear spaces. SIAM J. Appl. Math. 14(1966), 1180–1190. <https://doi.org/10.1137/0114095>.
- [3] P. M. Gauthier, Approximation of and by the Riemann zeta-function. Comput. Methods Funct. heory 10(2010), no. 2, 603–638. <https://doi.org/10.1007/BF03321783>.

Département de mathématiques et de statistique, Université de Montréal, CP-6128 Centreville, Montréal, H3C3J7, Canada

e-mail: gauthier@dms.umontreal.ca