
EQUIVALENT FORMULATIONS OF THE 
BORSUK-ULAM THEOREM 

PHILIP BACON 

1. Introduction. Let R° denote a space consisting of just one point and for 
each positive integer n let Rn denote euclidean w-space. For each non-negative 
integer n let Sn denote the ^-sphere 

( n+l 

i (x i , . . . ,x n + 1 ) G i ? n + 1 : E ^ / = 1 

In 1933 K. Borsuk published proofs of the following two theorems (2, p. 178). 

THEOREM (Borsuk-Ulam). / / n is a non-negative integer and f is a continuous 
function from Sn into Rn, there is a point p in Sn such that fp = f( — p). 

THEOREM (Lusternik-Schnirelmann). If n is a non-negative integer, Sn cannot 
be covered by n + 1 closed sets, none containing a pair (p, —p) of diametrically 
opposite points. 

Since both theorems are true, they are, of course, logically equivalent. But 
if their hypotheses are suitably weakened, the resulting statements can be 
shown to be equivalent in a more interesting sense. 

Definition. A T-space is a topological space X such that T is a continuous 
involution on X, i.e., T is a homeomorphism from X onto X such that TTp = p 
for each point p in X. If x is a point of the T-space, X, (x, Tx) is called an 
antipodal pair. 

Example. If n is a non-negative integer and T : Sn —> Sn is the map such that 
Tp = —p,p(z Sn> then Sn is a T-space. 

For each non-negative integer n and each 7"-space X we let each of Bn(X) 
and Ln(X) denote a sentence: 

Bn (X). If f is a continuous function from X into Rn, there is a point p in X 
such that fp = fTp. 

Ln{X). If each of Ci, . . . , Cn+i is a closed subset of X and contains no antipodal 
pair, then 

n+l 

X 5*U Ci. 

It is known that, if X is a normal T-space and n is a non-negative integer, 
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then Bn(X) if and only if Ln(X). A proof of this and similar theorems is con­
tained herein. A number of previously published theorems concerning spheres 
are reformulated as properties that are equivalent to each other in normal 
jT-spaces. A more exact description of the relation of this paper to previous 
work is contained in §3 below. 

Definitions. Suppose X is a T-space. If A C X and A = TA, A is called 
an antipodal subset of X. A subset S of X is said to be severed if there is a 
subset H of 5, closed in S, such that S = H U TH and H Pi TH = 0. A 
collection of severed sets will be said to be severed. 

Remarks. A severed set is antipodal. 
If X is a 2"-space and A is an antipodal subset of X, the restriction of T to A 

makes the subspace A a T-space. 

For reference purposes we list two theorems on normal spaces. 

(1.1) If H and K are disjoint closed subsets of a normal space X, there is a 
continuous function from X into the number interval [0, 1] that assumes the value 
0 on each point of H and the value 1 on each point of K (1, p 74). 

(1.2) If {Di, . . . , Dr] is a finite open cover of a normal space X, there is a 
collection {G, . . . , Cr) of closed sets such that Ct C Dit i Ç {1, . . . , r}, and 

\JCt = X ( l ,p .73) . 

2. Principal definitions and theorems. For each non-negative integer 
n and each T-space X we define sentences Cn(X) and On(X). 

Cn (X). X cannot be covered by fewer than n + 1 closed severed sets. 

On (X). X cannot be covered by fewer than n + 1 open severed sets. 

(2.1) Cn(X) implies On(X), if X is a normal T-space and n is a non-negative 
integer. 

Proof. Suppose r < n + 1 and there is an open severed cover {D1} . . . , Dr] 
of X. (1.2) implies the existence of a closed severed cover {Ci, . . . , Cr] of Xy 

which contradicts Cn(X). 

For each T-space X we define a sentence Yn(X) recursively. 
Y0(X).X ^0. 
Yn (X), n > 0. If F is a closed subset of X such that F U TF = X, then 

Yn^(FC\TF). 
Yn(X), n > 0, can be reformulated thus: 
Yn(X), n > 0. If D is an open severed subset of X} then Yn-\{X — D). 
Since 0 is an open severed set, we have 

(2.2) Yn(X) implies Yn^i(X) if X is a T-space and n is a positive integer. 
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(2.3) On(X) implies Yn(X) if X is a normal T-space and n is a non-negative 
integer. 

Proof. Induction on n. The case n = 0 is trivial. Suppose (a) n > 0, (b) X is 
a normal T-space, (c) On(x), (d) On-.i(Z) implies Fw_i(Z) for all normal T-
spaces Z, (e) Dn is an open severed subset of X, (/) each of Ei, . . . , £w_i is a 
closed severed set and 

71-1 

(g) X - £w = U £ i . 
2 = 1 

Since (6), there is a severed set Du open in X, such that Et Ç £)z, 

i G { 1 , . . . , » - 1}. 

{£>i, . . . , Dn) is a covering of X by fewer than n + 1 open severed sets, which 
contradicts (c). Hence (J) is false, i.e., Cre_i(X — Z)w). By (2.1) Ow_i(X — Z)n) 
and by (d) Fw_i(X — Z>w), which proves FW(X). 

If n is a non-negative integer and X is a T-space, we define 

An{X). If each of C\, . . . , Cn+2 is a closed subset of X, 

n+2 n+2 

u ct = x, u (c, n rco = 0, 
and j G { l , . . . , w + l } , 2/zew there is a point p in X such that 

3 n+2 

p G n Ct and rp G n c,. 
i= l t = ; + l 

(2.4) Fn(X) implies An(X) if X is a T-space and n is a non-negative integer. 

Proof. Induction on n. The case n = 0 is trivial. Suppose that n > 0, X is 
a T-space with a closed cover {Ci, . . . , Cw+2}, no C* contains an antipodal 
pair, F^X) , j G {1, . . . , w}, and Fw_i(Z) implies An_i(Z) for any T-space Z. 

Let 

F = ( u c,j n ( y r c j j u cn+2. 

Then 

where 

and 

n + l 

F\JTF = X and FHTF= \JDt, 
i=i 

Dt= Ctr\Fr\ TF, i G {1, . . . ,»} , 

AH_! = cw+i r\ cn+2 r\pr\TF. 

Since Dt Q Ciy Dt contains no antipodal pair, i G { l , . . . , w + l } . Since 
F„(X), Fn_i(F/°i TF). Accordingly An^{F C\ TF). There is a point £ such 
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that 

P e nDfQDCuTp € n 5*ç n c,. 

The case 7 = » + 1 is a permutation of the case j = 1. 

(2.5) ^4n(X) implies Ln(X) if X is a T-space and n is a non-negative integer. 
This statement is obvious. 

(2.6) Ln(X) implies Cn(X) if X is a normal T-space and n is a non-negative 
integer. 

Proof. The case n = 0 is trivial. Suppose (a) n > 0, (b) X is a normal 
7"-space such that Ln(X), (c) each of Ai, • • • , An.is a closed subset of X con­
taining no antipodal pair, and (d) contrary to the desired conclusion, 

U (AtUTAt) =X. 

Since X is normal, for each i in {1, . . . , n\, there is an open set Dt containing 
A t such that CI Dir\C\TDi = 0. Let 

<>-(kTA)-(kD)-
Q is closed. Suppose p is a point of X not in any of CI D\, . . . , Cl Dn. p is not 
in any of the AJs. By (d), 

n 

peU TAU p £Q. 

Thus 

I = ( 3 U U C 1 D , 

Suppose x £ Q. Then Tx G Aj ÇZ Dj for some j . Tx is not in Q. None of 
CI Di, . . . , Cl Ai, (? contains an antipodal pair, (b) is contradicted and (d) is 
false. 

If n is a non-negative integer and X is a T-space, we define 

Fn{X). Suppose m is a positive integer, {C\, . . . , Cm\ is a closed cover of X, 
and 

m 

u (c, n rct) = 0. 
Then m > w + 2 awd Jftere are n + 2 integers, ko, ... , kn+i such that 

1 < k0 < . . . < kn+i < m 
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and 

n+l 

n Tlcti * 0. 

(2.7) Yn(X) implies Fn(X) if X is a T-space and n is a non-negative integer. 

Proof. Induction on n. The case n = 0 is trivial. Suppose n > 0, Yn{X), 
and the hypothesis of Fn{X). Since F0(X) (cf. (2.2)), we have F0(X) and 
w > 2. Let 

ra—1 m 

F = u u (c4 n re,). 
Since FKJ TF = X, the inductive hypothesis gives Fn-\(F C\ TF). Let 

i^=(c,n u TCAC\TF, ie( i » - i ) . 

Then 

ra—1 m—1 

U (Kt H rXO = 0 and U ^ = f O TF. 

Since Fn-i(F Hi TF), m — 1 > (w — 1) + 2 (whence m > w + 2) and there 
are n + l integers k0, . . . , kn such that lKko<...<knKm — 1 and 

0 ^ n rx 4 s ( "n r'c*,) n (re*, n r ( u rc j ), 
which implies the desired conclusion. 

(2.8) Fn{X) implies Ln(X) if X is a T-space and n is a non-negative integer. 

This is obvious. 

If n is a non-negative integer and X is a 2"-space, we define 

Pn(X). Suppose m is a positive integer, each of A\, . . . , Am is a closed subset 
ofX, 

m m 

\J (AiDTAi) = 0 and U 04* U TAt) = X. 

Then m > n + 1 and there is an integer sequence ko, . . . , kn such that 

1 < k0 < . . . < kn < m 
and 

n T*AU * 0. 

(2.9) Yn(X) implies Fn(X) if X is a T-space and n is a non-negative integer. 
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Proof. The case n = 0 is trivial. Suppose n > 0, Yn(X), and the hypothesis 
oîPn(X).Let 

Since Yn(X), Yn^(Z). By (2.7), ^ _ i ( Z ) . The sets Z r\At, i £ {1 , . . . , m], 
satisfy the hypothesis of Fn-i(Z). Hence w > (n — 1) + 2 and there is an 
integer sequence ko, . . . , kn such that 1 < ko < . . . < kn < m and 

i=0 i=0 

Pn(X) implies a statement, Rn(X), which in appearance is slightly stronger 
than Pn{X). If n is a non-negative integer and X is a T-space, we define 

Rn(X). Suppose m is a positive integer, F\, F_i, . . . , Fm, F^n are 2m closed 
subsets of X, 

m 

U (Ft O F-t) = 0 
i= l 

and, /or any point p in X, there is an i in { ± 1 , . . . , ±ra} SZ^ZJ / t o p (z Ft and 
Tp G 7*1 *. 77œw m > w + 1 #m£ /Âere w an integer sequence k0, . . . , kn such 
that 1 < ko < . . . < kn < m and 

n 

n JW* ^ 0. 
(2.10) Pn(X) implies Rn(X) if X is a T-space and n is a non-negative 

integer. 

Proof. Suppose Pn(X) and the hypothesis of Rn{X). Define At to be 
Ft P\ TF-i. A\, . . . , Am satisfy the hypothesis of Pn(X). 

(2.11) Rn{X) implies Pn(X) if X is a T-space and n is a non-negative integer. 

This is obvious. 

If n is a non-negative integer and X is a T-space, we define 

Vn(X). If each of B\, . . . , Bn+i is a closed subset of X containing no antipodal 
pair and 

U (Bt U TBt) = X, 

then 
»+i 
nBt^0. 

(2.12) Pn(X) implies Vn(X) if n is a non-negative integer and X is a T-space. 

Proof. Set m = n + 1 and let A * = r*+1£z-, i 6 {1, . . . , m\. 
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If n is a non-negative integer and X is a T-space, we define 

Tn(X). Suppose that each of Ai, ^4_i, . . . , An+i, A^-i is a closed subset of X 
containing no antipodal pair, At C\ A-i = 0, i Ç { l , . . . , w + l } , and 

n+l 

U (At\JA-t) = X. 

n+l 

(2.13) FW(X) implies Tn{X) if X is a T-space and n is a non-negative integer. 

Proof. Suppose (a) each of A\, A_h . . . , An+h ^4_w_i is a closed subset of 
the T-space X, 

n+l n+ l n+ l 

(b) u 04*n ra,) = u (^-in r^_«) = u (At n^-0 = 0, 
i = i t = i i = i 

71+1 

(c) X=\J (At\JA.t) 
2 = 1 

and (d) Fn(X). 
Let Bi = Ai and, if 2 < i < » + 1, let 

Bt = AiU\TA.in VA-,J 

Then 
71+1 

U ( 5 , U TBj) = X. 

Since A f does not intersect either TA f or A-f (see (b)), Bt does not intersect 
r B « , * € { 1 , . . . , » + 1}. By (d) 

n+l 

z=l 

To complete the proof it will suffice to prove that 

n+l n+ l 

n s, = n 4*. 
2=1 i - 1 

By an induction on i it will be shown that 

i i 

r\B3= nA„ * e | i , . . . , n + i). 
3=1 J = l 

If i — 1, the assertion holds by the definition of B\. Suppose 2 < i < n + 1 
and it is known that 

i - i i - i 

?=i i = i 
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Then 

By (b), 

Hence 

nB, = ( n A,) n \A,u(r.4_«n u A.tjj 

-- ( QAt) u [ ( QA}J n r̂ _4 n ( u ^-y)J. 

n ^ = nAj. 

(2.14) Tn(X) implies Vn(X) if X is a T-space and n is a non-negative integer. 

This is obvious. 

(2.15) Vn(X) implies Cn{X) if X is a T-space and n is a non-negative integer. 

This is obvious. 

If n is a non-negative integer and X is a T-space, we define 

Hn(X). If X is covered by a finite collection of closed severed sets, some n + 1 
members of the collection have a point in common. 

(2.16) Pn(X) implies Hn(X) if X is a T-space and n is a non-negative integer. 

This is obvious. 

If n is a non-negative integer and X is a T-space, we define 

Jn{X). If X is covered by a finite collection of open severed sets, some n + 1 of 
them have a point in common. 

(2.17) Hn(X) implies Jn(X) if X is a normal T-space and n is a non-negative 
integer. 

Proof. Suppose (a) X is a normal T-space, (b) m is a positive integer, (c) 
each of Di, . . . , Dm is an open severed subset of X, 

m 

(d) ^ D i = X 

and (e) Hn(X). 
(1.2) implies there are closed severed sets Ci, . . . , Cm such that Ct C Du 

i £ {1, . . . , m}i and 
m 

\JCt = X. 

By (e) there is a subset A of { 1 , . . . , m\ of cardinality n + 1 such that 
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(2.18) Jn(X) implies On(X) if X is a T-space and n is a non-negative integer. 

This is obvious. 

If « is a non-negative integer and X is a T-space, we define the sentence 
Zn(X). 

Z0(X). X * 0. 
Zn(X), n > 0. There is no continuous map f from X into Sn~l such that 

Tfp = fTp for each p in X. 

(2.19) On(X) implies Zn(X) if X is a T-space and n is a non-negative integer. 

Proof. This is obvious if n = 0. Suppose n > 0, X is a T-space such that 
On(X), and / is a continuous function from X into S^-1 such that Tfp = fTp 
for each p in X. 5W_1 is covered by the n severed open sets D\, . . . , Dn, where 

Di = { ( * i , . . . ,*„) € S*-1 :*< ^ 0 } , i e {1, . . . ,**}. 

{/"IDi, . . . ,/-1T>w} is a covering of X by open severed sets, contrary to On{X). 

For each non-negative integer n and T-space X we define 

En (X). If f is a continuous function from X into Rn such that fTp = —fp 
for each p in X, then, for some p in X, fp = 0. 

(2.20) Zn(X) implies En(X) if X is a T-space and n is a non-negative integer. 

Proof. Suppose n is a non-negative integer, X is a T-space such that Zn(X)9 

and / is a continuous function from X into Rn such that fTp = —fp ^ 0 for 
each p in X. Let g : (Rn - {0}) -> S""1 be the function such that 

( n *Yh 

g\Xi, . . . j Xn) = \ / j %i J • [Xij . . . , Xn). 

Then gf : X —> 5W_1 is a continuous function such that fTp = Tfp, p £ X, 
which contradicts Zn(X). 

(2.21) En(X) implies Bn{X) if X is a T-space and n is a non-negative integer. 

Proof. This is obvious if n = 0. Suppose n > 0, X is a T-space such that 
En(X), and g : X —> i?w is continuous. L e t / : X —» Rn denote the function such 
that//? = gp - gTp, p e X. For each p in X,fp = -fTp. Since En(X), there 
is a £* in X such tha t /£* = 0. g£* = gTp*. 

(2.22) Bn(X) implies Cn(X) if X is a normal T-space and n is a non-negative 
integer. 

Proof. The case n = 0 is trivial. Suppose n > 0, X is a normal T-space, 
£W(X), each of ^4i, . . . , An is a closed subset of X, and 

Û (Atn TA,) = 0. 
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By (1.1), for each i in {1, . é . , n}, there is a continuous function ft from X into 
[0, 1] such tha t /* assumes the value 0 at each point of A t and the value 1 at 
each point of TA t. f = (fi, . . . , fn) is a continuous function from X into 
euclidean w-space. Since Bn(X), there is a point p in X such that //> = /7^>. 
If, for some i, p were in ^4* or 2^4*, then-ftp = /* 7̂ >, which contradicts the 
construction of ft. Hence p is not in 

\J(At\JTAt). 

Most of the information contained in Theorems (2.1) to (2.22) is summarized 
by 

(2.23) If n is a non-negative integer and X is a normal T-space, then the follow­
ing are equivalent: Cn(X), On(X), Yn(X), An(X), Ln{X), Fn(X), Pn(X), Rn(X), 
Vn(X), Tn(X), Hn(X), Jn{X), Zn(X), En(X), Bn(X). 

3. Remarks. Ln{Sn) was stated in 1930 (8, p. 26). Bn(S
n) was stated in 

1933 (2, Satz II, p. 178). A weakened form of An(S
n) was stated in 1935 

(1, Satz X, p. 487). A2(S
2) and T2(S

2) were stated and the higher-dimensional 
cases hinted at by Tucker in 1945 (9, pp. 295, 298-299). Rn(S

n) and Fn(S
n) 

were stated in 1952 (4, Theorem 1, p. 435; Theorem 2, p. 436). In 1960 Had-
wiger stated Hn(S

n) and, in a slightly different form, Jn(S
n) (6, Satz 1, p. 52; 

Satz II, p. 53). Yn(X) was suggested by a theorem due to Yang (10, (4.1), 
p. 270). Yang proved the equivalence of various properties of bicompact 
Hausdorff T-spaces in which T has no fixed point (10, (4.4), (4.5), pp. 271-272). 
Zn(X) plays a fundamental role in (11). Conner and Floyd stated without 
proof the equivalence of some properties of normal fixed-point-free T-spaces 
(3, (3.4), p. 421). Most of these references have additional theorems on the 
n-sphere, which perhaps could have extended the list of properties considered 
here. A quick and elementary proof of Pn(S

n) can be effected by first proving a 
combinatorial theorem due to Fan (5, Theorem 2, p. 370) and then passing to 
the continuous case in the usual manner (cf., e.g., Hadwiger's proof of ^(S71); 
6, pp. 54-56). Homological properties of a T-space X sufficient to imply Bn(X) 
have been given by Yang (10, (4.6), p. 272) and Jaworowski (7, Theorem 
7, p. 252). 
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