
A ONE-PARAMETER SUBSEMIGROUP WHICH 
MEETS MANY REGULAR ^-CLASSES 

E. D. TYMCHATYN 

We give an example which answers affirmatively the following problem 
posed by Hofmann and Mostert (1, p. 200): 

P. 10. Let 5 be a compact semigroup with identity 1, zero 0, and totally 
ordered ^-class space S/£ï. Suppose that there is a one-parameter semigroup 
containing 0 and 1. Can S have any regular ^-classes aside from D(0) and 
D(D? 

I am indebted to Professor K. H. Hofmann and Professor P. S. Mostert for 
their many helpful suggestions. 

1. We first give a method of embedding a given semigroup 5 in a semigroup 
R so that in the commutative diagram 

S >R 

1 1 

the bottom map is an isomorphism of partially ordered spaces and some 
non-regular i^-class of S is embedded into a regular j^-class of R. 

We generalize the notion of a Rees product as follows: Let X and F be sets 
and let 5 ' be a partial semigroup (i.e., a set on which a partially defined 
associative multiplication is given) containing a subsemigroup S. Suppose that 
SS' and S'S are defined and SS'S C 5. If [, ]: F X X -> S' is a function, then 
the set X X S X Y becomes a semigroup [X, S, Y] with the multiplication 
(x, s, y) (a, by c) = (x, s[y, a]b, c). If X, Y, and S' are topological spaces, [, ] 
is a map, and the partial multiplication on Sf is continuous, then [X, 5, Y] is a 
topological semigroup. 

LEMMA. Let [X, S, Y] be as above and suppose that 
(i) S' contains a subsemigroup A with identity 1 such that S is an ideal of A, 

(ii) there exist a 6 X and b Ç Y with [b, a] = 1, 
(iii) SS'US'SCA, 
(iv) for each x G X (y Ç F) there exists y £ Y (x G X) and s € S such that 

s[y, x] ([y, x]s) is a unit of A, 
(v) J8(s) = JA(s) for s e S. 

Then the J -classes of [X, S, Y] are exactly the sets X X Js(s) X F, for s £ S. 
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Proof. Assume that 5 and / a re / -equiva lent in S. Then s G ( 5 U 1) / (5U 1). 
Let u G X and v € F. By hypothesis, 5 [ F X u] is a subset of A and contains 
a unit of A. Since 5 is an ideal o f i , 5 [ F X w] contains the identity of A. Thus, 

( S U 1)/(SU 1) C ( S U 1)(S[FX w])*([w X X ] S ) ( S U 1) 
C (SU 1)[F X M]*[W X X ] ( S U 1). 

Hence, (x, 5, y) G [X, S, F](w, *, v)pT, S, F] for all (x, y) G X X F. Similarly, 

(W,*,ÎO G [X,S, Y](x,s,y)[X,S, F]; 

therefore, (w, /, v) i s / -equ iva len t to (x, s, y) in [X, S, F]. 
Now suppose that (x, 5, y) and (w, /, z;) a re / -equ iva len t in [X, S, F]. Let 

(xi, s\y yi) and (x2, s2, 3>2) be in [X, S, F]. If 

(x, 5, 3O = (xi, 5i, 3>i) (u, t, v) (x2, s2, y2), 

then 

(x, 5, y) = (xly si[yh n}t[v, x2]s2, y2). 
Thus 

5 G 5 S W S C M . 

If (x, 5, y) = (xi, 5i, yi)(u, ty v), we can similarly show that s £ At d AtA. 
Dually, / G AsA; thus, / and 5 a r e / - equ iva l en t in ^4. By (v), / and s are 
/ - equ iva len t in S. 

2. Under the conditions of (1), an element (x,syy) G [X, S, F] is idem-
potent if and only if s[y, x]s = s. If s£y, x]s = s, then 5 is a regular element of 
the partial semigroup S'. However, 5 need not be a regular element of the 
subsemigroup S. 

We use this fact to embed a non-regular/-class Js(s) of S into a regular 
/ - c l a s s X X / a ( s ) X F of [X, S, F]. 

Example 1. Consider the following partial subsemigroups of the real line 
with addition as the operation: S' = [ — 1, 00 [, A = [0, 00 [ and S = [1, 00 [. 
L e t X = F = [0, 1]. Define [ , ]: F X X -> S' by [y, x] = max(l , x + y) - 2. 
Then [X, S, F] is a topological semigroup with the multiplication 

(x, s, y) (u, t,v) = (x,s + t + [y, u], v). 

I t is easy to check that the hypotheses of the lemma are satisfied. Hence, the 
/ - c l a s ses of [X, S, F] are the sets [0, 1] X r X [0, 1], r ^ l . The set of 
idempotents is 

{(x, r, y) € [X, S, F]|r + [y, x] = 0} = {(x, 1, y) € [X, S, F]|x + y ^ 1}. 

Define/: [1, 00 [ —> [X, S, F] by / ( r ) = (1, r, 1) ; then / is an isomorphism of 
semigroups onto the subsemigroup 1 X S X 1. 

We can make [X, S, F] into a compact topological semigroup C by letting 
the element at infinity in the one-point compactification of [X, S, F] act as a 
zero. Then C is a compact semigroup with a totally ordered / - c l a s s space in 
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which the top^/-class is regular and Ccontains a piece P = / ( [ l , oo[) of a one-
parameter semigroup as a cross section for the ^-classes. Note that P passes 
through the top^/-class without meeting it in an idempotent. 

3. We now wish to extend the semigroup C of Example 1 to a semigroup Q 
with identity such that C will be an ideal of Q and P will be contained in a 
one-parameter semigroup from the identity to the zero of Q. 

Suppose that T is a topological semigroup acting on the right and on the 
left of a topological semigroup R so that 

(r-t)r' = rip-r'), {t-r)-t' = / • (>• / ) , r-{rf-t) = rr'-t, 
(a) 

(t-r)-r' = t-rr', {r-t)-tf = r-tt', t-it'-r) = tf'-r 

for all r, r' G R, t, tf G T. Then T \J R is a topological semigroup with the 
multiplication which extends the given multiplications on T and R and 
satisfies rt = r-t and tr = t-r for / G T, r £ R. 

Let 5 be a closed ideal of J1 and l e t / : 5—» R be a continuous morphism of 
semigroups satisfying 

(b) s-r =f(s)r, r-s = rf(s), f(ts) = t-f(s), f(st) = /(*)•* 

for s G S J G r , r G R. 
Define an equivalence relation p on T VJ R by x p y if and only if # = y, 

x — /60» ^ = f(x)t or f(x) = / 6 0 - Then p is a closed congruence on T^J R. 
We denote the quotient semigroup (T VJ R)/p by T T R. 

The semigroup T w R has an identity if and only if T has an identity which 
acts on R on both sides as an identity. The Green classes of elements in T\S 
are the same whether they are taken relative to T or relative to T ir R. If the 
^ -c lass spaces of both T and R are totally ordered and T meets the top 
^X-class of R, then the ^/-class space of T r R is totally ordered. 

4. We now give an application of the extension method in § 3. 
Let X, F, S, S', and [, ] define a Rees product [X, 5, Y] as in § 1. Let A be 

a subsemigroup of S' such that S is an ideal of A and A has an identity 1. 
Suppose that there exists (6, a) G Y X X with [&, a] = 1. Let T be a semi
group and / an ideal of T. 

Suppose that T acts on X on the left and on Y on the right so that 
I'X = T-a = a and Y-I = b-T = b. Suppose also that there exist functions 

<j>:TXX^A and ^: F X T -> A 

satisfying the following: 
(i) 4>{tt\x) = <t>(t,t''x)<l>(t',x)cind\p(y, tf) = f(y, t)t(yt,t') for *, *' G T, 

x G X, y G F ; 
(ii) tfr(y, Ob '* . «] = b , M * ( * , u) for w G X, y G F, * G T; 

(iii) 0(r, a)[6,a:] = $(r, x) and^(y , r ) = £y,û#(&,r) for x G X, y G Y,r £ I. 
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Let R = [X, S, Y] and let T act on the right and on the left of R as follows: 

t- (x, 5, y) = (/-x, <£(/, x)s, y), 

(x,s,y)-t = (x, s\f/(y, t),yt) 

for / G T and (x, s, y) G R. 
Let /, t' G T and let (x, s, y) and (u, v, w) be in R. I t is straightforward to 

check that 

(t-(x,s,y))-t' = / • ( ( x , 5 l y ) - 0 
and that 

t• ((x, s, y) («, v, w)) = (t- {x, s,y))(u, v, w). 

Since T acts on X and (i) holds, 

tif-(x, s, y) = t-(t'-(x, s, y)). 

Since (ii) holds, 

((x, 5, 3/) •/) (u, v, w) = (x, s, y) (t- (u, v,w)). 

Thus, the conditions (a) are satisfied. 
Define/: I —> R by f(r) = (a, <f>(r, a), b) for each r G I. Since (i) holds and 

T-a — a, it follows t h a t / is a homomorphism of semigroups. 
Since (ii) holds, 

lK&, r) = f(b, r)[fr-r, a] = [&, r-a]0(r, a) = 0(r, a). 

For r G / and (x, 5, y) G -K, 

r-(x, 5, y) = (r-x, 0(r, x)s, 3/) = (a, 0(r, a)[6, x]s, y) = f(r)(x, s, y) 

since I-X — a and since (iii) holds. Furthermore, 

(x, 5, y)-r = (x, 5^(y, r) , y r ) = (x, s[y, a]^(6, r) , 6) = (x, 5, y)/(r) 

since Y-I = b and since (iii) holds. Similarly, J-/(r) = f(tr) and / ( r ) •/ = f(rt) 
for r G / and t £ T. Thus, condition (b) is satisfied and we may form T IT R. 

If 5, X, and F are topological spaces, T is a topological semigroup, the 
partial multiplication on S' is continuous, 7 is a closed ideal of T, and all 
actions and functions are continuous, then T T R is a topological semigroup. 

Example 2. Let R = [X, S, Y] be as in Example 1. Let T = [0, 00 [ with 
addition as the operation and let I = [1, 00 [. Let T act on the right and on the 
left of X and F by t-x = x-t = min(l, x + t) for t G F, x G [0, 1] = X = F. 
Define < ( > : r x l - > i = [0,co[ by *(*, x) = max(0, i + [1, x]) and 
yp: Y XT-^ A by ^(3/, t) = max(0, i + \y, 1]). Let a = b = 1. 

I t is tedious but not difficult to show that all the conditions of § 4 are 
satisfied. Thus, we can form T T R. Since I is a closed ideal of T, T and R are 
topological semigroups, and all actions and functions are continuous, T TT R is 
a topological semigroup. 
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We identify T with the semigroup 1 X [0, oo[X 1 with the multiplication 
(1, x, 1)(1, y, 1) = (1, x + yf 1). The semigroup T ir R may be described as 

( I X [0 ,co[X l ) U ([0,1] X [ l , o o [ X [0,1]) 

with the multiplication 

!

{u + r, s, v) if 1 ^ s, r + u ^ 1, 

(x, r, y + s) if 1 g r, y + s ^ 1, 
(x, r + [y, #] + 5, u) otherwise. 

Since the identity (1, 0, 1) of T acts as an identity on R, TTR has an 
identity. The ^/-classes in T r R are the same as the «©"-classes. By the 
remarks made in § 3, T ir R has a totally ordered .©-class space. One can 
check that (x, s, y) and (u, t, v) axe «©-equivalent in T w R if and only iî s = t. 
The only regular «©-classes of T T R are (1, 0, 1) and [0, 1] X 1 X [0, 1]. 

We can embed T w R in a compact semigroup Q by letting the element at 
infinity in the one-point compactification of T w R act as a zero. The non-zero 
elements of Q have the same Green classes relative to Q as relative to T ir R 
and the .©-class space of Q is totally ordered. 

Clearly, (1 X [0, oo [ X 1) together with the zero of Q is a one-parameter 
semigroup running from the identity to the zero of Q. This one-parameter 
semigroup passes through the regular .©-class Z>((1, 1, 1)) without meeting it 
in an idempotent. Thus, this example answers (1, p. 200, P. 10) positively. 
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