A ONE-PARAMETER SUBSEMIGROUP WHICH MEETS MANY REGULAR \mathscr{D}-CLASSES

E. D. TYMCHATYN

We give an example which answers affirmatively the following problem posed by Hofmann and Mostert (1, p. 200):
P. 10. Let S be a compact semigroup with identity 1 , zero 0 , and totally ordered \mathscr{D}-class space S / \mathscr{D}. Suppose that there is a one-parameter semigroup containing 0 and 1. Can S have any regular \mathscr{D}-classes aside from $D(0)$ and $D(1)$?

I am indebted to Professor K. H. Hofmann and Professor P. S. Mostert for their many helpful suggestions.

1. We first give a method of embedding a given semigroup S in a semigroup R so that in the commutative diagram

the bottom map is an isomorphism of partially ordered spaces and some non-regular \mathscr{D}-class of S is embedded into a regular \mathscr{D}-class of R.

We generalize the notion of a Rees product as follows: Let X and Y be sets and let S^{\prime} be a partial semigroup (i.e., a set on which a partially defined associative multiplication is given) containing a subsemigroup S. Suppose that $S S^{\prime}$ and $S^{\prime} S$ are defined and $S S^{\prime} S \subset S$. If [,]: $Y \times X \rightarrow S^{\prime}$ is a function, then the set $X \times S \times Y$ becomes a semigroup [X, S, Y] with the multiplication $(x, s, y)(a, b, c)=(x, s[y, a] b, c)$. If X, Y, and S^{\prime} are topological spaces, [,] is a map, and the partial multiplication on S^{\prime} is continuous, then $[X, S, Y$] is a topological semigroup.

Lemma. Let $[X, S, Y]$ be as above and suppose that
(i) S^{\prime} contains a subsemigroup A with identity 1 such that S is an ideal of A,
(ii) there exist $a \in X$ and $b \in Y$ with $[b, a]=1$,
(iii) $S S^{\prime} \cup S^{\prime} S \subset A$,
(iv) for each $x \in X(y \in Y)$ there exists $y \in Y(x \in X)$ and $s \in S$ such that $s[y, x]([y, x] s)$ is a unit of A,
(v) $J_{S}(s)=J_{A}(s)$ for $s \in S$.

Then the \mathscr{J}-classes of $[X, S, Y]$ are exactly the sets $X \times J_{S}(s) \times Y$, for $s \in S$.

[^0]Proof. Assume that s and t are \mathscr{J}-equivalent in S. Then $s \in(S \cup 1) t(S \cup 1)$. Let $u \in X$ and $v \in Y$. By hypothesis, $S[Y \times u]$ is a subset of A and contains a unit of A. Since S is an ideal of $A, S[Y \times u]$ contains the identity of A. Thus,

$$
\begin{aligned}
(S \cup 1) t(S \cup 1) \subset(S \cup 1)(S[Y \times u]) t & ([v \times X] S)(S \cup 1) \\
& \subset(S \cup 1)[Y \times u] t[v \times X](S \cup 1)
\end{aligned}
$$

Hence, $(x, s, y) \in[X, S, Y](u, t, v)[X, S, Y]$ for all $(x, y) \in X \times Y$. Similarly,

$$
(u, t, v) \in[X, S, Y](x, s, y)[X, S, Y]
$$

therefore, (u, t, v) is \mathscr{J}-equivalent to (x, s, y) in $[X, S, Y]$.
Now suppose that (x, s, y) and (u, t, v) are \mathscr{J}-equivalent in $[X, S, Y$]. Let $\left(x_{1}, s_{1}, y_{1}\right)$ and (x_{2}, s_{2}, y_{2}) be in [X, S, Y]. If

$$
(x, s, y)=\left(x_{1}, s_{1}, y_{1}\right)(u, t, v)\left(x_{2}, s_{2}, y_{2}\right)
$$

then

$$
(x, s, y)=\left(x_{1}, s_{1}\left[y_{1}, u\right] t\left[v, x_{2}\right] s_{2}, y_{2}\right)
$$

Thus

$$
s \in S S^{\prime} t S^{\prime} S \subset A t A
$$

If $(x, s, y)=\left(x_{1}, s_{1}, y_{1}\right)(u, t, v)$, we can similarly show that $s \in A t \subset A t A$. Dually, $t \in A s A$; thus, t and s are \mathscr{J}-equivalent in A. By (v), t and s are \mathscr{J}-equivalent in S.
2. Under the conditions of (1), an element $(x, s, y) \in[X, S, Y]$ is idempotent if and only if $s[y, x] s=s$. If $s[y, x] s=s$, then s is a regular element of the partial semigroup S^{\prime}. However, s need not be a regular element of the subsemigroup S.

We use this fact to embed a non-regular \mathscr{J}-class $J_{S}(s)$ of S into a regular \mathscr{J}-class $X \times J_{S}(s) \times Y$ of $[X, S, Y]$.

Example 1. Consider the following partial subsemigroups of the real line with addition as the operation: $S^{\prime}=[-1, \infty[, A=[0, \infty[$ and $S=[1, \infty[$. Let $X=Y=[0,1]$. Define $[]:, Y \times X \rightarrow S^{\prime}$ by $[y, x]=\max (1, x+y)-2$. Then $[X, S, Y$] is a topological semigroup with the multiplication

$$
(x, s, y)(u, t, v)=(x, s+t+[y, u], v) .
$$

It is easy to check that the hypotheses of the lemma are satisfied. Hence, the \mathscr{J}-classes of $[X, S, Y]$ are the sets $[0,1] \times r \times[0,1], r \geqq 1$. The set of idempotents is
$\{(x, r, y) \in[X, S, Y] \mid r+[y, x]=0\}=\{(x, 1, y) \in[X, S, Y] \mid x+y \leqq 1\}$.
Define $f:[1, \infty[\rightarrow[X, S, Y]$ by $f(r)=(1, r, 1)$; then f is an isomorphism of semigroups onto the subsemigroup $1 \times S \times 1$.

We can make [X, S, Y] into a compact topological semigroup C by letting the element at infinity in the one-point compactification of $[X, S, Y$] act as a zero. Then C is a compact semigroup with a totally ordered \mathscr{J}-class space in
which the top \mathscr{J}-class is regular and C contains a piece $P=\overline{f([1, \infty[)}$ of a oneparameter semigroup as a cross section for the \mathscr{J}-classes. Note that P passes through the top \mathscr{J}-class without meeting it in an idempotent.
3. We now wish to extend the semigroup C of Example 1 to a semigroup Q with identity such that C will be an ideal of Q and P will be contained in a one-parameter semigroup from the identity to the zero of Q.

Suppose that T is a topological semigroup acting on the right and on the left of a topological semigroup R so that

$$
\begin{array}{rlrl}
(r \cdot t) r^{\prime} & =r\left(t \cdot r^{\prime}\right), & & (t \cdot r) \cdot t^{\prime}=t \cdot(r \cdot t), \\
& r \cdot\left(r^{\prime} \cdot t\right)=r r^{\prime} \cdot t, \tag{a}\\
(t \cdot r) \cdot r^{\prime} & =t \cdot r r^{\prime}, & & (r \cdot t) \cdot t^{\prime}=r \cdot t t^{\prime},
\end{array} \quad t \cdot\left(t^{\prime} \cdot r\right)=t t^{\prime} \cdot r,
$$

for all $r, r^{\prime} \in R, t, t^{\prime} \in T$. Then $T \cup R$ is a topological semigroup with the multiplication which extends the given multiplications on T and R and satisfies $r t=r \cdot t$ and $t r=t \cdot r$ for $t \in T, r \in R$.

Let S be a closed ideal of T and let $f: S \rightarrow R$ be a continuous morphism of semigroups satisfying

$$
\begin{equation*}
s \cdot r=f(s) r, \quad r \cdot s=r f(s), \quad f(t s)=t \cdot f(s), \quad f(s t)=f(s) \cdot t \tag{b}
\end{equation*}
$$

for $s \in S, t \in T, r \in R$.
Define an equivalence relation ρ on $T \cup R$ by $x \rho y$ if and only if $x=y$, $x=f(y), y=f(x)$, or $f(x)=f(y)$. Then ρ is a closed congruence on $T \cup R$. We denote the quotient semigroup $(T \cup R) / \rho$ by $T \pi R$.

The semigroup $T \pi R$ has an identity if and only if T has an identity which acts on R on both sides as an identity. The Green classes of elements in $T \backslash S$ are the same whether they are taken relative to T or relative to $T \pi R$. If the \mathscr{J}-class spaces of both T and R are totally ordered and T meets the top \mathscr{J}-class of R, then the \mathscr{J}-class space of $T \pi R$ is totally ordered.
4. We now give an application of the extension method in § 3 .

Let X, Y, S, S^{\prime}, and [,] define a Rees product $[X, S, Y$] as in $\S 1$. Let A be a subsemigroup of S^{\prime} such that S is an ideal of A and A has an identity 1. Suppose that there exists $(b, a) \in Y \times X$ with $[b, a]=1$. Let T be a semigroup and I an ideal of T.

Suppose that T acts on X on the left and on Y on the right so that $I \cdot X=T \cdot a=a$ and $Y \cdot I=b \cdot T=b$. Suppose also that there exist functions

$$
\phi: T \times X \rightarrow A \quad \text { and } \quad \psi: Y \times T \rightarrow A
$$

satisfying the following:
(i) $\phi\left(t t^{\prime}, x\right)=\phi\left(t, t^{\prime} \cdot x\right) \phi\left(t^{\prime}, x\right)$ and $\psi\left(y, t t^{\prime}\right)=\psi(y, t) \psi\left(y \cdot t, t^{\prime}\right)$ for $t, t^{\prime} \in T$, $x \in X, y \in Y$;
(ii) $\psi(y, t)[y \cdot t, u]=[y, t \cdot u] \phi(t, u)$ for $u \in X, y \in Y, t \in T$;
(iii) $\phi(r, a)[b, x]=\phi(r, x)$ and $\psi(y, r)=[y, a] \psi(b, r)$ for $x \in X, y \in Y, r \in I$.

Let $R=[X, S, Y]$ and let T act on the right and on the left of R as follows:

$$
\begin{aligned}
t \cdot(x, s, y) & =(t \cdot x, \phi(t, x) s, y) \\
(x, s, y) \cdot t & =(x, s \psi(y, t), y \cdot t)
\end{aligned}
$$

for $t \in T$ and $(x, s, y) \in R$.
Let $t, t^{\prime} \in T$ and let (x, s, y) and (u, v, w) be in R. It is straightforward to check that

$$
(t \cdot(x, s, y)) \cdot t^{\prime}=t \cdot\left((x, s, y) \cdot t^{\prime}\right)
$$

and that

$$
t \cdot((x, s, y)(u, v, w))=(t \cdot(x, s, y))(u, v, w) .
$$

Since T acts on X and (i) holds,

$$
t t^{\prime} \cdot(x, s, y)=t \cdot\left(t^{\prime} \cdot(x, s, y)\right)
$$

Since (ii) holds,

$$
((x, s, y) \cdot t)(u, v, w)=(x, s, y)(t \cdot(u, v, w)) .
$$

Thus, the conditions (a) are satisfied.
Define $f: I \rightarrow R$ by $f(r)=(a, \phi(r, a), b)$ for each $r \in I$. Since (i) holds and $T \cdot a=a$, it follows that f is a homomorphism of semigroups.

Since (ii) holds,

$$
\psi(b, r)=\psi(b, r)[b \cdot r, a]=[b, r \cdot a] \phi(r, a)=\phi(r, a) .
$$

For $r \in I$ and $(x, s, y) \in R$,

$$
r \cdot(x, s, y)=(r \cdot x, \phi(r, x) s, y)=(a, \phi(r, a)[b, x] s, y)=f(r)(x, s, y)
$$

since $I \cdot X=a$ and since (iii) holds. Furthermore,

$$
(x, s, y) \cdot r=(x, s \psi(y, r), y \cdot r)=(x, s[y, a] \psi(b, r), b)=(x, s, y) f(r)
$$

since $Y \cdot I=b$ and since (iii) holds. Similarly, $t \cdot f(r)=f(t r)$ and $f(r) \cdot t=f(r t)$ for $r \in I$ and $t \in T$. Thus, condition (b) is satisfied and we may form $T \pi R$.

If S, X, and Y are topological spaces, T is a topological semigroup, the partial multiplication on S^{\prime} is continuous, I is a closed ideal of T, and all actions and functions are continuous, then $T \pi R$ is a topological semigroup.

Example 2. Let $R=[X, S, Y]$ be as in Example 1. Let $T=[0, \infty[$ with addition as the operation and let $I=[1, \infty[$. Let T act on the right and on the left of X and Y by $t \cdot x=x \cdot t=\min (1, x+t)$ for $t \in T, x \in[0,1]=X=Y$. Define $\phi: T \times X \rightarrow A=[0, \infty[$ by $\phi(t, x)=\max (0, t+[1, x])$ and $\psi: Y \times T \rightarrow A$ by $\psi(y, t)=\max (0, t+[y, 1])$. Let $a=b=1$.

It is tedious but not difficult to show that all the conditions of $\S 4$ are satisfied. Thus, we can form $T \pi R$. Since I is a closed ideal of T, T and R are topological semigroups, and all actions and functions are continuous, $T \pi R$ is a topological semigroup.

We identify T with the semigroup $1 \times[0, \infty[\times 1$ with the multiplication $(1, x, 1)(1, y, 1)=(1, x+y, 1)$. The semigroup $T \pi R$ may be described as

$$
(1 \times[0, \infty[\times 1) \cup([0,1] \times[1, \infty[\times[0,1])
$$

with the multiplication

$$
(x, r, y)(u, s, v)= \begin{cases}(u+r, s, v) & \text { if } 1 \leqq s, r+u \leqq 1 \\ (x, r, y+s) & \text { if } 1 \leqq r, y+s \leqq 1 \\ (x, r+[y, u]+s, v) & \text { otherwise. }\end{cases}
$$

Since the identity $(1,0,1)$ of T acts as an identity on $R, T \pi R$ has an identity. The \mathscr{J}-classes in $T \pi R$ are the same as the \mathscr{D}-classes. By the remarks made in $\S 3, T \pi R$ has a totally ordered \mathscr{D}-class space. One can check that (x, s, y) and (u, t, v) are \mathscr{D}-equivalent in $T \pi R$ if and only if $s=t$. The only regular \mathscr{D}-classes of $T \pi R$ are $(1,0,1)$ and $[0,1] \times 1 \times[0,1]$.

We can embed $T \pi R$ in a compact semigroup Q by letting the element at infinity in the one-point compactification of $T \pi R$ act as a zero. The non-zero elements of Q have the same Green classes relative to Q as relative to $T \pi R$ and the \mathscr{D}-class space of Q is totally ordered.

Clearly, $(1 \times[0, \infty[\times 1)$ together with the zero of Q is a one-parameter semigroup running from the identity to the zero of Q. This one-parameter semigroup passes through the regular \mathscr{D}-class $D((1,1,1))$ without meeting it in an idempotent. Thus, this example answers (1, p. 200, P. 10) positively.

Reference

1. K. H. Hofmann and P. S. Mostert, Elements of compact semigroups (Charles E. Merrill Books, Columbus, Ohio, 1966).

University of Oregon, Eugene, Oregon;
University of Saskatchewan, Saskatoon, Saskatchewan

[^0]: Received December 28, 1967. This research was supported in part by National Science Foundation Grant No. GP-6960.

