
Chapter 1

Basic Definitions and Concepts
fromMetric Spaces

In this chapter, we gather some basic definitions, concepts, and results from metric spaces which
are required throughout the book. For detail study of metric spaces, we refer to [8, 46, 61, 95, 110,
150, 154].

1.1 Definitions and Examples

Definition 1.1 Let X be a nonempty set. A real-valued function d ∶ X × X → ℝ is said to be a
metric on X if it satisfies the following conditions:

(M1) d(x, y) ≥ 0 for all x, y ∈ X;
(M2) d(x, y) = 0 if and only if x = y for all x, y ∈ X;
(M3) d(x, y) = d(y, x) for all x, y ∈ X; (symmetry)
(M4) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X. (triangle inequality)

The set X together with a metric d on X is called a metric space and it is denoted by (X, d). If there
is no confusion likely to occur we, sometime, denote the metric space (X, d) by X.
Example 1.1 Let X be a nonempty set. For any x, y ∈ X, define

d(x, y) = { 0, if x = y,
1, if x ≠ y.

Then d is a metric, and it is called a discrete metric. The space (X, d) is called a discrete metric space.

The above example shows that on each nonempty set, at least one metric that is a discrete metric
can be defined.

Example 1.2 LetX = ℝn, the set of ordered n-tuples of real numbers. For any x = (x1, x2, … , xn) ∈
X and y = (y1, y2, … , yn) ∈ X, we define

(a) d1(x, y) = n∑
i=1

||xi − yi||, (called taxicab metric)
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(b) d2(x, y) = ( n∑
i=1

(xi − yi)2)
1

2

, (called usual metric)

(c) dp(x, y) = ( n∑
i=1

||xi − yi||p)
1

p , p ≥ 1

(d) d∞(x, y) = max
1≤i≤n ||xi − yi||. (called max metric)

Then, d1, d2, dp (p ≥ 1), d∞ are metrics on ℝn.

Example 1.3 Let ℓ∞ be the space of all bounded sequences of real or complex numbers, that is,

ℓ∞ = {{xn} ⊂ ℝ or ℂ ∶ sup
1≤n<∞ ||xn|| < ∞} .

Then,

d∞(x, y) = sup
1≤n<∞ ||xn − yn|| , for all x = {xn} , y = {yn} ∈ ℓ∞,

is a metric on ℓ∞ and (ℓ∞, d∞) is a metric space.

Example 1.4 Let s be the space of all sequences of real or complex numbers, that is,

s = {{xn} ⊂ ℝ or ℂ} .
Then,

d(x, y) = ∞∑
n=1

1
2n

||xn − yn||
1 + ||xn − yn|| , for all x = {xn} , y = {yn} ∈ s,

is a metric on s.

Example 1.5 Let ℓp, 1 ≤ p < ∞, denote the space of all sequences {xn} of real or complex numbers

such that
∞∑
n=1

||xn||p < ∞, that is,

ℓp = {{xn} ⊂ ℝ or ℂ ∶ ∞∑
n=1

||xn||p < ∞} , for 1 ≤ p < ∞.
Then,

d(x, y) = ( ∞∑
n=1

||xn − yn||p)
1

p , for all x = {xn} , y = {yn} ∈ ℓp,
is a metric on ℓp and (ℓp, d) is a metric space.

Example 1.6 Let B[a, b] be the space of all bounded real-valued functions defined on [a, b], that is,
B[a, b] = {f ∶ [a, b] → ℝ ∶ | f(t)| ≤ k for all t ∈ [a, b] and for some constant k ∈ ℝ} .
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Then,

d( f, g) = sup
t∈[a,b] || f(t) − g(t)|| , for all f, g ∈ B[a, b],

is a metric on B[a, b].
Example 1.7 Let C[a, b] be the space of all continuous real-valued functions defined on [a, b]. For
any f, g ∈ C[a, b], we define the real-valued functions d∞ and d1 on C[a, b] × C[a, b] as follows:

d∞( f, g) = sup
t∈[a,b] || f(t) − g(t)||

and

d1( f, g) = ∫b

a

|| f(t) − g(t)|| dt,
where the integral is the Riemann integral which is possible because the functions f and g are
continuous on [a, b]. Then, d∞ and d1 are metrics on C[a, b].
Definition 1.2 Let X be a nonempty set. A real-valued function d ∶ X × X → ℝ is said to be a
pseudometric on X if it satisfies the following conditions:

(PM1) d(x, y) ≥ 0 for all x, y ∈ X;
(PM2) d(x, y) = 0 if x = y for all x, y ∈ X;
(PM3) d(x, y) = d(y, x) for all x, y ∈ X; (symmetry)
(PM4) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X. (triangle inequality)

The set X together with a pseudometric d on X is called a pseudometric space.

Example 1.8 Let X = ℝ2 and d(x, y) = |x1 − y1| for all x = (x1, x2), y = (y1, y2) ∈ X. Then, d
is not a metric on X; however, it is a pseudometric on X. Indeed, for x = (0, 0), y = (0, 1) ∈ X, we
have d(x, y) = 0 but x ≠ y. Therefore, it is not a metric on X. It can be easily checked that d satisfies
the conditions (PM1) – (PM4).

Definition 1.3 Let X be a nonempty set. A real-valued function d ∶ X × X → ℝ is said to be a
quasimetric on X if it satisfies the following conditions:

(QM1) d(x, y) ≥ 0 for all x, y ∈ X;
(QM2) d(x, y) = 0 if and only if x = y for all x, y ∈ X;
(QM3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X. (triangle inequality)

The set X together with a quasimetric d on X is called a quasimetric space.

Example 1.9 The real-valued functions d1, d2 ∶ ℝ × ℝ → ℝ defined by

d1(x, y) = { y − x, if y ≥ x,𝛼(x − y), if y < x,
for 𝛼 > 0, and

d2(x, y) = { ey − ex, if y ≥ x,
e−y − x−x, if y < x,

are quasimetrics on ℝ.
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Definition 1.4 Let (X, d) be a metric space and let A and B be nonempty subsets of X. The distance
between the sets A and B is given by

d(A,B) = inf {d(x, y) ∶ x ∈ A, y ∈ B} .
Since d(x, y) = d(y, x), we have d(A,B) = d(B,A).

If A is a singleton set {x}, then
d({x},B) = inf {d(x, y) ∶ y ∈ B} .

It is called the distance of a point x ∈ X from the set B, and we write d(x,B) in place of d({x},B).
Remark 1.1 (a) The equation d(x,B) = 0 does not imply that x belongs to B.

(b) If d(A,B) = 0, then it is not necessary that A and B have common points.

Example 1.10 Let A = {x ∈ ℝ ∶ x > 0} and B = {x ∈ ℝ ∶ x < 0} be subsets of ℝ with the usual
metric. Then d(A,B) = 0, but A and B have no common point. If x = 0, then d(x,B) = 0; but x ∉ B.

Definition 1.5 Let (X, d) be a metric space and A be a nonempty subset of X. The diameter of A,
denoted by diam(A), is given by

diam(A) = sup {d(x, y) ∶ x, y ∈ A} .
The set A is called bounded if there exists a constant k such that diam(A) ≤ k < ∞. In other words,
A is bounded if its diameter is finite, otherwise it is called unbounded.

In particular, the metric space (X, d) is bounded if the set X is bounded.

1.2 Open Sets and Closed Sets

Definition 1.6 Let (X, d) be a metric space. Given a point x0 ∈ X and a real number r > 0, the sets

Sr(x0) = {y ∈ X ∶ d(x0, y) < r}
and

Sr[x0] = {y ∈ X ∶ d(x0, y) ≤ r}
are called open sphere (or open ball) and closed sphere (or closed ball), respectively, with center at
x0 and radius r.

Remark 1.2 (a) The open and closed spheres are always nonempty, since x0 ∈ Sr(x0) ⊆ Sr[x0].
(b) Every open (respectively, closed) sphere in ℝ with the usual metric is an open (respectively,

closed) interval. But the converse is not true; for example, (−∞,∞) is an open interval inℝ but
not an open sphere.

Definition 1.7 Let A be a nonempty subset of a metric space X.

(a) A point x ∈ A is said to be an interior point of A if x is the center of some open sphere contained
in A. In other words, x ∈ A is an interior point of A if there exists r > 0 such that Sr(x) ⊆ A.
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(b) The set of all interior points of A is called interior of A and it is denoted by A∘, that is,
A∘ = {x ∈ A ∶ Sr (x) ⊆ A for some r > 0} .

(c) The set A is said to be open if each of its points is the center of some open sphere contained
entirely in A; that is, A is an open set if for each x ∈ A, there exists r > 0 such that Sr(x) ⊆ A.

(d) Let x ∈ X. The set A is said to be a neighborhood of x if there exists an open sphere centered at
x and contained in A, that is, if Sr(x) ⊆ A for some r > 0. In case A is an open set, it is called an
open neighborhood of x.

Remark 1.3 In a metric space, we have the following:

(a) An open sphere Sr(x) with center at x and radius r is a neighborhood of x.

(b) The interior of A is the neighborhood of each of its points.

(c) Every open set is the neighborhood of each of its points.

(d) The set A is open if and only if each of its points is an interior point, that is, A = A∘.
(e) Arbitrary union of open sets is open.

(f) Finite intersection of open sets is open.

(g) Arbitrary intersection of open sets need not be open.

Theorem 1.1 Let A and B be two subsets of a metric space X. Then,

(a) A ⊆ B implies A∘ ⊆ B∘;
(b) (A ∩ B)∘ = A∘ ∩ B∘;
(c) (A ∪ B)∘ ⊇ A∘ ∪ B∘.
Definition 1.8 Let A be a subset of a metric space X. A point x ∈ X is said to be a limit point
(accumulation point or cluster point) of A if each open sphere centered at x contains at least one
point of A other than x.

In other words, x ∈ X is a limit point of A if

(Sr(x) − {x}) ∩ A ≠ ∅, for all r > 0.
The set of all limit points of A is called derived set and it is denoted by A′.
Definition 1.9 A point x ∈ X is said to be an isolated point of A if there exists an open sphere
centered at xwhich contains no point of A other than x itself, that is, if Sr(x)∩A = {x} for some r > 0.

Remark 1.4 If a point x ∈ X is not a limit point of A, then it is an isolated point. Hence every point
of a metric space X is either a limit point or an isolated point of X.

Example 1.11 Consider the metric space X = {0, 1, 1
2
, 1
3
, 1
4
,⋯} with the usual metric given by the

absolute value. Then, 0 is the only limit point of X while all other points are the isolated points of X.

Definition 1.10 Let A be a subset of a metric space X. The closure of A, denoted by A or clA, is
the union of A and the set of all limit points of A, that is, A = A ∪ A′.

In other words, x ∈ A if every open sphere Sr(x) centered at x and radius r > 0 contains a point
of A, that is, x ∈ A if and only if Sr(x) ∩ A ≠ ∅ for every r > 0.
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Remark 1.5 Let A and B be subsets of a metric space X. Then,

(a) ∅ = ∅;

(b) X = X;

(c) (A) = A;

(d) A ⊆ B implies A ⊆ B;

(e) A ∪ B = A ∪ B;
(f) A = (A)′;
(g) A ∩ B ⊆ A ∩ B, but A ∩ B ⊉ A ∩ B.
Theorem 1.2 Let (X, d) be a metric space and A be a subset of X. Then, x ∈ A if and only if
d(x,A) = 0.

Definition 1.11 Let A be a subset of a metric space X. The set A is said to be closed if it contains
all its limit points, that is, A′ ⊆ A.

Remark 1.6 (a) LetA be a subset of ametric spaceX. Then clearlyA is closed if and only ifA = A.

(b) Let A be a subset of a metric space X. Then A is closed if and only if the complement of A is an
open set.

(c) In a metric space, every finite set, empty set, and whole space are closed sets.

(d) Arbitrary intersection of closed sets is closed.

(e) Finite union of closed sets is closed. However, arbitrary union of closed sets need not be closed.

Definition 1.12 Let A be a subset of a metric space X. A point x ∈ X is called a boundary point
of A if it is neither an interior point of A nor of X ⧵ A, that is, x ∉ A∘ and x ∉ (X ⧵ A)∘.

In other words, x ∈ X is a boundary point of A if every open sphere centered at x intersects both
A and X ⧵ A.

The set of all boundary points of A is called the boundary of A and it is denoted by bd(A).
Remark 1.7 It is clear that bd(A) = A ∩ (X ⧵ A) = A ∩ Ac.
1.3 Complete Metric Spaces

Definition 1.13 Let (X, d) be ametric space. A sequence {xn} of points of X is said to be convergent
if there is a point x ∈ X such that for each 𝜀 > 0, there exists a positive integer N such that

d(xn, x) < 𝜀, for all n > N.
The point x ∈ X is called a limit point of the sequence {xn}.

More preciously, a sequence {xn} in a metric space X converges to a point x ∈ X if the sequence{d(xn, x)} of real numbers converges to 0.

Since d(xn, x) < 𝜀 is equivalent to xn ∈ S𝜀(x), the definition of convergent sequence can be
restated as follows:
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A sequence {xn} in a metric space X converges to a point x ∈ X if and only if for each 𝜀 > 0,
there exists a positive integer N such that

xn ∈ S𝜀(x), for all n > N.
For a convergent sequence {xn} to x, we use the following symbols:

xn → x or lim
n→∞ xn = x

and we express it by saying that xn approaches x or that xn converges to x.

Definition 1.14 A sequence {xn} in a metric space X is said to be bounded if the range set of the
sequence is bounded.

Remark 1.8 In a metric space, every convergent sequence is bounded.

Definition 1.15 Let (X, d) be a metric space. A sequence {xn} in X is said to be a Cauchy sequence
if for each 𝜀 > 0, there exists a positive integer N such that

d(xn, xm) < 𝜀, for all n,m > N.
Theorem 1.3 Every convergent sequence in a metric space is a Cauchy sequence.

Exercise 1.1 Let (X, d) be a metric space and {xn} be a sequence in X such that d(xn, xn+1) < 1

2n
for all n. Prove that {xn} is a Cauchy sequence.

Proof Let 𝜀 > 0 and choose a positive integerN such that
1

2N−1
< 𝜀. Then for all n > m > N, we have

d(xm, xn) ≤ d(xm, xm+1) + d(xm+1, xm+2) +⋯+ d(xn−1, xn)< 1
2m

+ 1
2m+1

+⋯+ 1
2n−1

< ∞∑
k=m

1
2k

= 1
2m−1

< 1
2N−1

< 𝜀.
Definition 1.16 A metric space (X, d) is said to be complete if every Cauchy sequence in X
converges to a point in X.

Example 1.12 The spaceℝn with respect to all the metrics given in Example 1.2 is complete. The
space C[0, 1] with respect to the metric d1 given in Example 1.7 is not complete.

Remark 1.9 A metric space (X, d) is complete if and only if every Cauchy sequence in X has a
convergent subsequence.

Exercise 1.2 Let (X, dX) and (Y, dY) be metric spaces. Define

dX×Y((x, y), (u, v)) = dX(x, u) + dY(y, v), for all (x, y), (u, v) ∈ X × Y.
Prove that dX×Y is a metric on X × Y. Further, if (X, dX) and (Y, dY) are complete, then prove that(X × Y, dX×Y) is also complete.
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Theorem 1.4 (Cantor’s Intersection Theorem) Let (X, d) be a complete metric space and {An} be
a decreasing sequence (that is, An+1 ⊆ An) of nonempty closed subsets of X such that diam(An) → 0

as n→∞. Then, the intersection
∞⋂
n=1

An contains exactly one point.

The converse of the above theorem is the following:

Theorem 1.5 Let (X, d) be a metric space. If any decreasing sequence {An} of nonempty closed sets
in X with diam(An) → 0 as n→∞ has exactly one point in its intersection, then (X, d) is complete.
Definition 1.17 A nonempty subset A of a metric space X is said to be dense (or everywhere dense)
in X if A = X, that is, if every point of X is either a point or a limit point of A.

In other words, a set A is dense in X if for any given point x ∈ X, there exists a sequence of
points of A that converges to x.

It can be easily seen that a subset A of X is dense if and only if Ac has empty interior.

Before giving the examples of dense sets, we provide the criteria for being dense.

Theorem 1.6 Let A be a nonempty subset of a metric space X. The following statements are
equivalent:

(a) For every x ∈ X, d(x,A) = 0.

(b) A = X.

(c) A has nonempty intersection with every nonempty open subset of X.

Example 1.13 (a) The set of all rational numbers ℚ is dense in the usual metric space ℝ sinceℚ = ℝ.

(b) Since ℝ ⧵ ℚ = ℝ, the set of all irrational numbers ℝ ⧵ ℚ is dense in the usual metric space ℝ.

(c) The set A = {a + ib ∈ ℂ ∶ a, b ∈ ℚ} is dense in ℂ since A = ℂ.

(d) The set ℚn = ℚ ×ℚ ×⋯×ℚ⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟
n-times

is dense in ℝn with the usual metric.

(e) The set

A = {x = (a1, a2, … , an, 0, 0, …) ∶ ai ∈ ℚ for all 1 ≤ i ≤ n and n ∈ ℕ}
is dense in the space ℓp, 1 ≤ p < ∞, with the following metric:

dp(x, y) = ( ∞∑
i=1

|xi − yi|p)1/p ,
where x = {x1, x2, …} and y = {y1, y2, …} in ℓp.

(f) The set P[a, b] of all polynomials defined on [a, b] with rational coefficients is dense in C[a, b].
(g) Let (X, d) be a discrete metric space. Since every subset of X is closed, the only dense subset of

X is itself.

Definition 1.18 Ametric space X is said to be separable if there exists a countable dense set in X.
A metric space which is not separable is called inseparable.
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Example 1.14 (a) The usual metric space ℝ is separable since the set of all rational numbers ℚ
is dense in ℝ.

(b) The usual metric space ℂ is separable since the set A = {a + ib ∈ ℂ ∶ a, b ∈ ℚ} is dense in ℂ.

(c) The Euclidean spaceℝn is separable since the setℚn = ℚ ×ℚ ×⋯×ℚ⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟
n-times

is countable and dense

in ℝn.

(d) The space ℓp, 1 ≤ p < ∞, is separable as the set

A = {x = (a1, a2, … , an, 0, 0, …) ∶ ai ∈ ℚ, 1 ≤ i ≤ n and for all n ∈ ℕ}
is countable and dense in the space ℓp.

(e) The space C[a, b] is separable since the set P[a, b] of all polynomials defined on [a, b] with
rational coefficients is countable and dense in C[a, b].

(f) A discrete metric space X is separable if and only if the set X is countable.

Example 1.15 The space ℓ∞ of all bounded sequences of real or complex numbers with the metric

d∞(x, y) = sup
1≤n<∞ |xn − yn|,

where x = {xn} and y = {yn} in ℓ∞, is not separable.

Definition 1.19 Two metrics d1 and d2 on the same underlying set X are said to be equivalent if
for every sequence {xn} in X and x ∈ X,

lim
n→∞ d1(xn, x) = 0 if and only if lim

n→∞ d2(xn, x) = 0,
that is, a sequence converges to x with respect to the metric d1 if and only if it converges to x with
respect to the metric d2.

The metric spaces (X, d1) and (X, d2) are said to be equivalent if the metrics d1 and d2 are
equivalent.

Remark 1.10 If two metrics are equivalent, then the families of open sets are same in (X, d1) and(X, d2).
The following result provides a sufficient condition for two metrics on a set to be equivalent.

Theorem 1.7 Two metrics d1 and d2 on a nonempty set X are equivalent if there exist constants
k1, k2 > 0 such that

k1d2(x, y) ≤ d1(x, y) ≤ k2d2(x, y), for all x, y ∈ X. (1.1)

1.4 Compact Spaces

Definition 1.20 Let X be a metric space and Λ be any index set.

(a) A collection F = {G𝛼}𝛼∈Λ of subsets of X is called a cover of X if ⋃𝛼∈ΛG𝛼 = X, that is,
every element of X belongs to at least one member of F . If each member of F is an open set
in X, then it is called an open cover of X.
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(b) A subcollection C of a cover F of X is called a subcover if C is itself a cover of X. C is called
a finite subcover if it consists only a finite number of members.
In other words, if there exist G𝛼1

,G𝛼2
, … ,G𝛼n ∈ F such that ⋃n

k=1G𝛼k = X, then the

subcollection C = {G𝛼1
,G𝛼2

, … ,G𝛼n } is called a finite subcover of X.
In this case, F is said to be reducible to a finite cover or contains a finite subcover.

Definition 1.21 Let X be a metric space and Y be a subset of X. A collection F = {G𝛼}𝛼∈Λ of
subsets of X is said to be a cover of Y if Y ⊆ ⋃𝛼∈Λ G𝛼.
Definition 1.22 A metric space X is said to be compact if every open cover of X has a finite
subcover.

A nonempty subset Y of a metric space (X, d) is compact if it is a compact metric space with the
metric induced on it by d.

Theorem 1.8 Every closed subset of a compact metric space is compact.

Definition 1.23 A collection 𝒞 = {C1,C2, …} of subsets of a metric space X is said to have the
finite intersection property if every finite subcollection of 𝒞 has nonempty intersection, that is, for
every finite collection {C1,C2, … ,Cn} of 𝒞, we have⋂n

i=1 Ci ≠ ∅.

Theorem 1.9 A metric space X is compact if and only if every collection of closed sets in X having
finite intersection property has nonempty intersection.

Definition 1.24 Ametric space X is said to have the Bolzano–Weierstrass property if every infinite
subset of X has a limit point.

Definition 1.25 A metric space X is said to be sequentially compact if every sequence in X has a
convergent subsequence.

A subset A of a metric space X is said to be sequentially compact if every sequence in A contains
a subsequence which converges to a point in A.

It is well known that

compactness⇔ Bolzano–Weierstrass property⇔ sequentially compactness

Definition 1.26 Let (X, d) be a metric space and 𝜀 > 0 be given. A subset A of X is called an 𝜀-net
if A is finite and X = ⋃x∈A S𝜀(x), that is, if A is finite and its points are scattered through X in such
a way that each point of X is distant by less than 𝜀 from at least one point of A.

In other words, a finite subset A = {x1, x2, … , xn} of X is an 𝜀-net for X if for every point y ∈ X,
there exists an xi0 ∈ A such that d (y, xi0) < 𝜀.
Example 1.16 Let X = {(x, y) ∈ ℝ × ℝ ∶ x2 + y2 < 4}, that is, X is the open sphere centered at

the origin and radius 2. If 𝜀 = 3

2
, then the set

A = {(1, −1), (1, 0), (1, 1), (0, −1), (0, 0), (0, 1), (−1, −1), (−1, 0), (−1, 1)}
is an 𝜀-net for X.

On the other hand, if 𝜀 = 1/2, then A is not an 𝜀-net for X. For example, the point y = ( 1

2
, 1
2
)

belongs to X but the distance between y and any point in A is greater than
1

2
.

https://doi.org/10.1017/9781009351430.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009351430.002


Basic Definitions and Concepts fromMetric Spaces 11

Definition 1.27 Ametric space (X, d) is said to be totally bounded if it has an 𝜀-net for each 𝜀 > 0.

Remark 1.11 Every totally bounded metric space X is bounded but the converse is not true in
general.

Since X is totally bounded, it has an 𝜀-net A = {x1, x2, … , xn} for each 𝜀 > 0. Then, X =⋃n
i=1 S𝜀(xi). Since finite union of bounded sets is bounded, it follows that X is bounded.

Example 1.17 Under the usual metric d(x, y) = |x − y|, the real line ℝ is neither bounded nor
totally bounded. Under the metric d∗(x, y) = min {|x − y|, 1}, the real line ℝ is bounded but not
totally bounded.

Theorem 1.10 Every totally bounded and complete metric space is compact.

Theorem 1.11 Every totally bounded metric space is separable.

Remark 1.12 A discrete metric space is compact if and only if it is finite.

1.5 Continuous Functions

Definition 1.28 Let X be a nonempty set. A function f ∶ X→ ℝ is said to be

(a) bounded above if there exists a real number k such that f(x) ≤ k for all x ∈ X;

(b) bounded below if there exists a real number k such that k ≤ f(x) for all x ∈ X;

(c) bounded if it is both bounded above as well as bounded below.

Definition 1.29 Let (X, dX) and (Y, dY) be metric spaces. A function f ∶ X → Y is said to be
continuous at a point x0 ∈ X if for every 𝜀 > 0, there exists a 𝛿 > 0 such that for all x ∈ X,

dX(x, x0) < 𝛿 implies dY( f(x), f(x0)) < 𝜀,
that is,

x ∈ S𝛿(x0) implies f(x) ∈ S𝜀( f(x0)),
(see Figure 1.1). In other words, f is continuous at a point x0 ∈ X if for every 𝜀 > 0, there exists a𝛿 > 0 such that

f(S𝛿(x0)) ⊆ S𝜀( f(x0)).
The function f is said to be continuous on X if it is continuous at every point of X.

Theorem 1.12 Let X and Y bemetric spaces and f ∶ X→ Y be a function. The following statements
are equivalent:

(a) f is continuous on X.
(b) For every sequence {xn} in X such that xn → x ∈ X implies f(xn) → f(x).
(c) f−1(B) is open in X wherever B is open in Y.
(d) f−1(D) is closed in X wherever D is closed in Y.

(e) f(A) ⊆ f(A) for every subset A of X.
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12 Fixed Point Theory and Variational Principles in Metric Spaces

Figure 1.1 A continuous function

Theorem 1.13 Let X and Y be metric spaces and f ∶ X → Y be a continuous function. If A is a
compact subset of X, then f(A) is compact in Y.
Exercise 1.3 Prove that a continuous real-valued function defined on a compact set is bounded
and it assumes maximum and minimum values.

Proof Let f ∶ X→ ℝ be continuous andA be a compact subset of ametric spaceX. By Theorem 1.13,
we see that f(A) is a compact subset of ℝ. By Heine-Borel Theorem “A subset of ℝ is closed and
bounded if and only if it is compact”, f(A) is closed and bounded. Thus, sup f(A) and inf f(A) exist
and belong to f(A). Therefore, there exist ̂x, ̃x ∈ A such that for all y ∈ A, inf f(A) = f( ̂x) ≤ f(y) ≤
f( ̃x) = sup f(A).
Exercise 1.4 Let (X, d) be a metric space and A be a nonempty compact subset of X. Prove that for
every x0 ∈ X, there exists a y0 ∈ A such that

d(x0, y0) = d(x0,A) = inf
y∈A d(x0, y).

Proof Consider the real-valued function f ∶ A → ℝ+ defined by f(x) = d(x, x0) for all x ∈ A.
Now | f(x) − f(y)| = |d(x, x0) − d(y, x0)| ≤ d(x, y), so f is continuous on A. But A is compact, so f
has a minimum on A by Exercise 1.3. That is, there exists a y0 ∈ A such that f(y0) = d(x0, y0) =
inf
y∈A d(x0, y) = d(x0,A).
Definition 1.30 Let (X, d) and (Y, 𝜌) bemetric spaces. A function f ∶ X→ Y is said to be uniformly
continuous if for each 𝜀 > 0, there exists a 𝛿 > 0 (depends only on 𝜀) such that for every x, y ∈ X,

d(x, y) < 𝛿 implies 𝜌( f(x), f(y)) < 𝜀.
Remark 1.13 Every uniform continuous function is continuous but the converse need not be true
in general.

Example 1.18 (a) Let X be a discrete metric space and Y be any metric space. Then, any function
f ∶ X→ Y is uniformly continuous.

(b) Let X = (0, 1) be a metric space with the metric induced by the usual metric on ℝ and Y = ℝ
with the usual metric. The function f ∶ X→ Y defined by f(x) = 1

x
, for all x ∈ X, is not uniformly

continuous.
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(c) No polynomial function of degree greater than 1 is uniformly continuous on the usual metric
space ℝ. Note that any polynomial function is continuous.

(d) The logarithmic function is not uniformly continuous on the usual metric space X = (0,∞).
Exercise 1.5 Let (X, d) be a metric space. Prove that the function y ↦ d(x, y) is uniformly
continuous.

Theorem 1.14 Let (X, d) and (Y, 𝜌) be metric spaces and f ∶ X → Y be a continuous function. If
X is compact, then f is uniformly continuous.

Theorem 1.15 Let (X, d) and (Y, 𝜌) be metric spaces and f ∶ X → Y be an uniformly continuous
function. If {xn} is a Cauchy sequence in X, then {f(xn)} is also a Cauchy sequence in Y.

The following example shows that a continuous function may not map a Cauchy sequence into
a Cauchy sequence.

Example 1.19 Let X = (0,∞) with the induced usual metric on ℝ and Y = ℝ with the usual

metric. The function f ∶ X → Y defined by f(x) = 1

x
, for all x ∈ X, is continuous on X. Clearly,{xn ∶ xn = 1

n
}
n∈ℕ is a Cauchy sequence in X. But {f ( 1

n
)}
n∈ℕ = {n}∞n=1 is not a Cauchy sequence in

Y. Indeed, the absolute difference of any two distinct points is at least as large as 1.

Exercise 1.6 Show that the function f(x) = ex defined on the usual metric spaceℝ is not uniformly
continuous.

Exercise 1.7 Let (X, d) be a metric space and A be a nonempty subset of X. Prove that the function
f ∶ X→ ℝ defined by

f(x) = d(x,A), for all x ∈ X,
is uniformly continuous.

In view of Theorem 1.12 (b), a function f ∶ X→ Y from a metric space X to a metric space Y is
continuous at a point x ∈ X if and only if for every sequence {xn} that converges to x ∈ X, we have
lim
n→∞ f(xn) = f(x).
Definition 1.31 Let X be a metric space. A function f ∶ X→ ℝ is said to be

(a) lower semicontinuous at a point x ∈ X if f(x) ≤ lim inf
n→∞ f(xn) whenever xn → x as n → ∞,

equivalently,

f(x) ≤ lim inf
y→x

f(y);
(b) upper semicontinuous at a point x ∈ X if f(x) ≥ lim sup

n→∞ f(xn) whenever xn → x as n → ∞,

equivalently,

f(x) ≥ lim sup
y→x

f(y);
(c) upper semicontinuous (respectively, lower semicontinuous) on X if it is upper semicontinuous

(respectively, lower semicontinuous) at each point of X.
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14 Fixed Point Theory and Variational Principles in Metric Spaces

Example 1.20 Let f ∶ ℝ → ℝ be defined by

f(x) = { −1, if x < 0,
1, if x ≥ 0.

Then, f is upper semicontinuous at x = 0 but not lower semicontinuous at x = 0 (see Figure 1.2).

Figure 1.2 An upper semicontinuous function

Example 1.21 Let f ∶ ℝ → ℝ be defined by

f(x) = { −1, if x ≤ 0,
1, if x > 0.

Then, f is lower semicontinuous at x = 0 but not upper semicontinuous at x = 0 (see Figure 1.3).

Figure 1.3 A lower semicontinuous function
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Remark 1.14 (a) A function f ∶ X→ ℝ is lower (respectively, upper) semicontinuous on X if and
only if the lower level set {x ∈ X ∶ f(x) ≤ 𝛼} (respectively, the upper level set {x ∈ X ∶ f(x) ≥ 𝛼})
is closed in X for all 𝛼 ∈ ℝ. Equivalently, f is lower (respectively, upper) semicontinuous on X
if and only if the set {x ∈ X ∶ f(x) > 𝛼} (respectively, {x ∈ X ∶ f(x) < 𝛼}) is open in X for all𝛼 ∈ ℝ.

(b) A function f ∶ X → ℝ is lower (respectively, upper) semicontinuous on X if and only if the
epigraph {(x, 𝛼) ∈ X × ℝ ∶ f(x) ≤ 𝛼} (respectively, the hypograph {(x, 𝛼) ∈ X × ℝ ∶ f(x) ≥ 𝛼})
of f is closed in X.

In view of the above remark, Penot and Théra [142] gave the following definition of lower
semicontinuous functions.

Definition 1.32 Let X be a metric space. A function f ∶ X→ ℝ is said to be

(a) lower semicontinuous on X if for each x ∈ X and each 𝛼 ∈ ℝ such that f(x) > 𝛼, there exists𝛿 > 0 such that f(y) > 𝛼 for all y ∈ S𝛿(x);
(b) upper semicontinuous on X if for each x ∈ X and each 𝛼 ∈ ℝ such that f(x) < 𝛼, there exists𝛿 > 0 such that f(y) < 𝛼 for all y ∈ S𝛿(x).

The following theorem shows that the conditions for lower semicontinuity on a metric space X
given in Definition 1.31 and Definition 1.32 are equivalent.

Theorem 1.16 Let (X, d) be ametric space, x ∈ X and f ∶ X→ ℝ be a function. Then the following
statements are equivalent:

(a) f is lower semicontinuous at x.
(b) For every 𝜀 > 0, there is a 𝛿 > 0 such that f(x) − f(y) < 𝜀 whenever d(x, y) < 𝛿.
Proof (a) ⇒ (b) Suppose that f is lower semicontinuous at x. Set 𝜆 ∶= lim inf

y→x
f(y), and let 𝜀 > 0.

Then there is a 𝛿 > 0 such that ||𝜆 − inf f(S𝛿(x))|| < 𝜀.
By the definition of the lower semicontinuity of f at x, we have

f(x) ≤ 𝜆.
Thus, for every y ∈ S𝛿(x), we have

f(x) − f(y) ≤ 𝜆 − f(y) ≤ 𝜆 − inf
z∈S𝛿(x) f(z) < 𝜀.

(b)⇒ (a) Let 𝜀 > 0 and choose a positive 𝛿0 such that f(x) − f(y) < 𝜀
2
for all y ∈ S𝛿(x). Assume that̄x ∈ S𝛿0(x) such that

f( ̄x) < inf
z∈S𝛿0 (x) f(z) + 𝜀

2
.

Hence, 𝛼 ∶= f(x) − inf
z∈S𝛿(x) f(z) < f(x) − f(x) + 𝜀

2
, for all positive 𝛿 ≤ 𝛿0. (1.2)
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16 Fixed Point Theory and Variational Principles in Metric Spaces

Note that the number 𝛼 in (1.2) is positive. It follows that||||f(x) − inf
z∈S𝛿(x) f(z)|||| < 𝜀, for all positive 𝛿 ≤ 𝛿0.

Therefore, f(x) ≤ lim inf
y→x

f(y), that is, f is lower semicontinuous at x.

Similarly, we can have the following result for upper semicontinuous functions.

Theorem 1.17 Let (X, d) be ametric space, x ∈ X and f ∶ X→ ℝ be a function. Then the following
statements are equivalent:

(a) f is upper semicontinuous at x.
(b) For every 𝜀 > 0, there is a 𝛿 > 0 such that f(y) − f(x) < 𝜀 whenever d(x, y) < 𝛿.

The following theorem establishes that every lower semicontinuous function attains its
minimum in any compact set.

Theorem 1.18 Let K be a nonempty compact subset of a metric space (X, d) and f ∶ X→ ℝ be a
lower semicontinuous function. Then, f attains its minimum on K.

Proof Set 𝜆 ∶= inf
z∈K f(z). If 𝜆 = −∞, then there exists a sequence {xn} in K such that lim

n→∞ f(xn) =−∞. Without loss of generality, we may assume that {xn} converges to x ∈ K by the compactness of
K. By the lower semicontinuity of f, we have

f(x) ≤ lim
n→∞ f(xn) = −∞,

which is not possible. Thus, 𝜆 ∈ ℝ. Now take a sequence {xn} in K such that lim
n→∞ f(xn) = 𝜆. Assume

that {xn} converges to x0 ∈ K by the compactness of K. Again, by the lower semicontinuity of f, we
have

f(x0) ≤ lim
n→∞ f(xn) = 𝜆 = inf

z∈K f(z).
This means that x0 is a minimizer of f on K.

Exercise 1.8 Let K be a nonempty compact subset of a metric space (X, d) and f ∶ X → ℝ be an
upper semicontinuous function. Prove that f attains its maximum on K.

Chen et. al. [58] introduced the following concept of lower semicontinuity from above.

Definition 1.33 Let X be a metric space. A function f ∶ X→ ℝ is said to be

(a) lower semicontinuous from above at a point x ∈ X if for any sequence {xn} in X converging to x
and satisfying f(xn+1) ≤ f(xn) for all n ∈ ℕ, we have f(x) ≤ lim

n→∞ f(xn);
(b) upper semicontinuous from below at a point x ∈ X if for any sequence {xn} in X converging to x

and satisfying f(xn+1) ≥ f(xn) for all n ∈ ℕ, we have f(x) ≥ lim
n→∞ f(xn);

(c) lower semicontinuous from above (respectively, upper semicontinuous from below) on X if it
is lower semicontinuous from above (respectively, upper semicontinuous from below) at every
point of X.
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Obviously, lower (respectively, upper) semicontinuity implies lower semicontinuity from above
(respectively, upper semicontinuity from below), but the converse implications do not hold.

Example 1.22 Let f ∶ ℝ → ℝ be a function defined by

f(x) = { x + 1

2
, if x < 0,

x2 + 1, if x ≥ 0.
Then, f is lower semicontinuous from above at x = 0, but not lower semicontinuous at this point.

Example 1.23 Let f ∶ ℝ → ℝ be a function defined by

f(x) = ⎧⎪⎨⎪⎩
x − 1, if x < 0,
0, if x = 0,
x + 1, if x > 0.

Then, f is lower semicontinuous from above as well as upper semicontinuous from below at x = 0,
but it is neither lower nor upper semicontinuous at this point.

By Theorem 1.18, we have that every bounded below and lower semicontinuous real-valued
function has a minimum on a compact set. However, Chen et al. [58] showed that the Weierstrass’s
theorem still holds for bounded below and lower semicontinuous from above functions.

Theorem 1.19 Let K be a nonempty compact subset of ametric space X and f ∶ K→ ℝ be bounded
below and lower semicontinuous from above. Then, there exists ̄x ∈ K such that f( ̄x) = inf

y∈K f(y).
Proof Since K is compact and f is bounded below, there exists a sequence {xn} in K such that xn →̄x ∈ K, f(x1) ≥ f(x2) ≥ ⋯ ≥ f(xn) ≥ ⋯ and f(xn) → inf

y∈K f(y).
By the lower semicontinuity from above, we have

f( ̄x) ≤ lim
n→∞ f(xn) = inf

y∈K f(y).
Hence, f( ̄x) = inf

y∈K f(y).
Chen et al. [58] also showed that Ekeland’s variational principle andCaristi’s fixed point theorem

hold for lower semicontinuity from above functions.

Definition 1.34 A function 𝜑 ∶ [0,∞) → [0,∞) is said to be right upper semicontinuous, also
called upper semicontinuous from the right, if 𝜑(t) ≥ lim sup

r→t+ 𝜑(r) for all t ≥ 0.

Example 1.24 Define a function 𝜑 ∶ [0,∞) → [0,∞) by
𝜑(t) = { √t, if t ∈ [0, 1),√t + 1, if t ∈ [1,∞).

We see that 𝜑(1) = 2 and the function 𝜓 is discontinuous at t = 1. Note that lim
t→1− 𝜑(t) = 1 and

lim sup
t→1+ 𝜑(t) = 2. Thus, the function 𝜑 is right upper semicontinuous.
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Lemma 1.1 [89] Let 𝜑 ∶ [0,∞) → [0,∞) be a right upper semicontinuous function such that𝜑(t) < t for all t > 0. Then, lim
n→∞𝜑n(t) = 0.

Proof Since for each t > 0, 𝜑(t) < t, we have 𝜑2(t) = 𝜑(𝜑(t)) < 𝜑(t) < t. By induction, we
obtain a nonincreasing sequence {𝜑n(t)}. So we can assume that {𝜑n(t)} decreases to a nonnegative
number c. If c > 0, then

c > 𝜑(c) ≥ lim sup
n→∞ 𝜑(𝜑n(t)) = lim

n→∞𝜑n+1(t) = c,
which is a contraction. Hence c = 0, and lim

n→∞𝜑n(t) = 0.

Lemma 1.2 [89] Let 𝜑 ∶ [0,∞) → [0,∞) be a right upper semicontinuous function such that𝜑(t) < 1 for all t > 0. Then the function Φ ∶ [0,∞) → [0,∞), defined by Φ(t) = 𝜑(t)t, is right
upper semicontinuous and Φ(t) < t for all t > 0.

Proof Since for each t > 0, 𝜑(t) < 1, we have Φ(t) = 𝜑(t)t < t, and

Φ(t) = 𝜑(t)t ≥ (lim sup
r→t+ 𝜑(r)) t

= lim sup
r→t+ (𝜑(r)r)

= lim sup
r→t+ Φ(r).

Hence, Φ(t) is right upper semicontinuous.

Lemma 1.3 [89] Let 𝜑 ∶ [0,∞) → [0, 1) be such that lim sup
r→t+ 𝜑(r) < 1 for all t > 0, and let

Ψ(t) = max {𝜑(t), lim sup
r→t+ 𝜑(r)} for all t > 0. Then, the function Ψ ∶ [0,∞) → [0, 1) is right upper

semicontinuous and Ψ(t) ≥ 𝜑(t) for all t ≥ 0.

Proof Since for each t > 0, 𝜑(t) < 1, and lim sup
r→t+ 𝜑(r) < 1 for all t > 0, we have Ψ(t) =

max {𝜑(t), lim sup
r→t+ 𝜑(r)} < 1, and Ψ is a function from [0,∞) to [0, 1).

Nowwe prove thatΨ is right upper semicontinuous. Let𝛼 = lim sup
r→t+ Ψ(r). Then by the definition

of upper limit, there exists a nonincreasing sequence {tn} with limit t such that lim
n→∞Ψ(tn) = 𝛼.

Denote 𝛼n = Ψ(tn), then lim
n→∞𝛼n = 𝛼. For each 𝜀 > 0, n = 1, 2, …, if Ψ(tn) = 𝜑(tn), take t′n = tn, and

if Ψ(tn) = lim sup
r→t+ 𝜑(r), by the definition of upper limit, we can choose t′n, tn−1 > t′n ≥ tn such that

𝜑(t′n) ≥ lim sup
r→t′n 𝜑(r) − 𝜀 = 𝛼n − 𝜀.
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In both the cases, we have {t′n ∶ tn−1 > t′n ≥ tn} such that 𝜑(t′n) ≥ 𝛼n − 𝜀 and t′n → t+. Since
lim sup
r→t+ 𝜑(r) ≥ lim

n→∞𝜑(t′n) ≥ lim
n→∞(𝛼n − 𝜀) = 𝛼 − 𝜀,

we have

Ψ(t) = max {𝜑(t), lim sup
r→t+ 𝜑(r)} ≥ 𝛼 − 𝜀, for all 𝜀 > 0.

Hence, Ψ(t) ≥ 𝛼 = lim sup
r→t+ Ψ(r).
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