
ORTHOGONAL POLYNOMIALS AND HYPERGEOMETRIC 
SERIES 

A. VAN DER SLUIS 

Introduction. In Part I of this paper we present a theory of Padé-approxi-
mants for Laurent series, and discuss their relation to orthogonal polynomials. 
For earlier results in this direction we may refer to (1 ; 7; 8). It is also indicated 
how this theory can be extended, for example, to matrix polynomials. 

In order to derive certain special types of orthogonal polynomials we 
need explicit expressions for Padé-approximants. In Part II we generalize a 
result of Padé (5), giving such expressions in the hypergeometric case. The 
resulting polynomials are the classical ones and basic analogues of them. 
Concerning these analogues see also Hahn (2). 

In the final part it is proved that under a much more natural and apparently 
less restrictive condition no more general polynomials result than those 
obtained in Part II. 

PART I 

1. Orthogonal polynomials. Our definition of orthogonality will be 
similar to the generalized definition of Krall (3). Suppose we are given a 
sequence ro, fi, r2, . . . , in a field R, such that each set of equations 

horo + qiri + . . . + qmrm = 0 

(1.1) | w = 1,2,3, . . . , 

[qorm-i + q_irm + . . . + gwlr2m_i = 0 

has exactly one solution with qm = 1 in R (in that case the sequence {rn} will 
be called regular). We then define a moment operator 12 operating on polynomials 
as follows 

m m 

(1.2) 8 £ p,x" = £ p,r„ 

and the set of polynomials Qo(x), Qi(x), (32(x), . . . , over R of respective 
degrees 0, 1, 2, . . . , is called orthogonal with respect to the sequence r0, ri, 
r2, . . . , if 
(1.3) tiQm(x)xn = 0 n <mr 
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which is equivalent to 

(1.4) QQn(x)Qm(x) =0 n^m. 

If R is the field of real numbers it is not true that each regular sequence 
{rn} can be obtained as a moment sequence of a non-negative distribution. 
Hence this notion of orthogonal polynomials is essentially more general than 
the usual one. 

If the polynomial 
m 

\£m\Xj = / J Q_n% j 
/x=0 

then from (1.3) it follows that the coefficients gM satisfy the equations (1.1); 
from the regularity of the sequence {rn} it follows that, apart from a constant 
factor, Qm is uniquely determined. 

If the orthogonal polynomials are considered in their monic form, that is, 
the coefficient of the highest power of x is one, then for the norm of Qm, de
fined as Nm = &Qm

2(x), we find that 

(1.5) Nm = q0rm + qirm+i + . . . + qmr2m, m > 0, 

where again Qm(x) = S q^. 
These norms are not zero, for suppose Nm = 0, then the set (1.1) with 

m + 1 instead of m would have a non-trivial solution with qm+i = 0. 

2. Padé-approximants. Consider the formal Laurent series 
oo 

with coefficients in R (in the sequel we will always suppress the limits of the 
summation index if these are — oo and + °°). If n is any integer and m is a 
positive integer, the non-zero polynomial Vmtn(x) of degree < m will be called 
a (Padé-) denominator of D{x) for the place (m, n), if in the formal product 
Vm,n(x) D(x) the terms containing +m have zero coefficients: 
any non-zero constant Vot7l(x) will be called a denominator of D(x) for the 
place (0, n). 

For each denominator Vm,n(x) we define a numerator Um,n{x) as the series 
obtained from Vm>n(x) D(x) by cancelling all terms after the one containing 
xn. Then the pair (Um,n(x), Vm,n(x)) will be called a {Padê-)approximant of 
D(x) for the place (m, n). 

We recall that if D(x) is a formal power series over the real numbers, then 
Um,n(x) Vm>n(x)~l is a Padé-fraction for the place (m, n) (cf., for example, 
Perron (6, §73)). Hence to any Padé-approximant of a real power series there 
corresponds a Padé-fraction. 

If k is an arbitrary, but fixed, integer, a sequence of approximants belonging 
to the places (m, m + k), m = 0 , 1 , 2 , . . . , will be called a diagonal of order k, 
denoted by Dk (the words ' 'place' ' and * 'diagonal" are of course derived 
from the notion of the Padé-table (6)). 
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For each approximant (Umtn(x), Vmtn(x)) we define an element pm%n (which 
may be zero) by means of the relation 

(2.1) Vm,n(x) D(x) — Um,n(x) = pm,nx
m+n+1 + higher powers of x. 

We remark that for m > 0 the non-zero polynomial Vm>n(x) = q0x
m + . . . 

qm-ix + qm is a denominator of X P^ for the place (ra, w) if and only if 

Q0pn-m+l + • • • + ÇmPn+l = 0 

(2.2) j 

1 <Zo£n + . . . + qmpn+m = 0 

Since the number of equations is always less than the number of unknowns, 
each place (ra, n) has a Padé-approximant. 

For the pm>n corresponding to this Vm,n we find 

(2.3) 
qopn+i + • • • + 

If (U, V) and (£/*, F*) are approximants for the same place, their sum, 
defined as (U + £/*, F + F*), is again an approximant for that place, and a 
constant multiple p.{U, F), defined as (pU, pV), is an approximant for each 
place for which ( U, V) is an approximant, except of course in the trivial case 
when this sum or multiple results in (0, 0). 

3. Regularity. The Padé-approximant (Um,n{x), Vmtn(x)) of the series 
D{x) for the place (m, n) will be called regular if (a) the constant term of 
Vm>n(x) is 1, that is, Vm,n(0) = 1, and (b) any other approximant for the 
place (m, n) is a constant multiple of (Umjn, Vm,n). 

Clearly condition (b) is equivalent to the condition that any other denomin
ator for the place (m, n) is a constant multiple of Vm>n. 

The denominator of a regular approximant will also be called regular. A 
set of approximants will be called regular if each of its elements is regular. 

For any place (w, n) there exists at most one regular approximant; 1 is a 
regular denominator for each place (0, n) and for the corresponding poiTl we 
have potH = pn+1 if D(x) = X p^c". 

As an immediate consequence of our definition, we have 

THEOREM 3.1. The series D(x) — X Pv^ has a regular approximant for the 
place (m, n), m > 0, if and only if the set (2. 2), considered as equations in the 
q^ has exactly one solution with qm = 1. 

If (Umtn, VmtTl) is an approximant such that the corresponding pmtU = 0, 
then x(Um,n, Vm>n), defined as (xUm,nfxVm,n), is an approximant for the 
place (m + 1, n + 1), the constant term of the denominator of which is 0; 
hence it cannot be a constant multiple of a regular approximant. This proves 
the following: 

THEOREM 3.2. If D(x) has a regular diagonal Dk, then none of the corres
ponding pm,m+k is zero. 
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If for a place (w, n) there exists no regular approximant, then there is an 
approximant for that place in which the denominator has constant term zero. 
For suppose that VmfTl is a denominator such that Fm>n(0) ^ 0. Then there is 
certainly a F*m>n that is no constant multiple of Vm,n. Then V*m,n(x) — 
V*m,n(0) Vm.niO)'1 Vm>n(x) is not zero, is a denominator for the place (m, n) 
and has constant term zero. This will be used in proving the following theorem, 
which is more or less a converse of Theorem 3.2: 

THEOREM 3.3. Let the series D{x) have a diagonal Dk consisting of approxi-
mants (Um,m+k, Vmtm+k) such that the corresponding pmtm+k are all different from 
zero, and Vm>m+k(0) = 1 for all m. Then Dk is regular. 

Proof. The approximant (i/o,*, Vofk) has denominator 1, hence is regular. 
Suppose that for a certain m the approximant (Um,m+k, VmtTn+k) is regular, and 
moreover that for the place (m + 1, m + k + 1) there exists no regular 
approximant. Then there is an approximant (£/*, V*) for this place such 
that V* (0) = 0, hence x~l(U*, V*) is an approximant for the place 
(m, m + k), and the corresponding p*m>m+k is zero. However, since pm,m+k 9^ 0, 
this approximant cannot be a constant multiple of ( Um,m+k, Vm>m+k), contradict
ing the assumed regularity of the latter. Hence, if (Um,m+ki Vmtm+k) is regular, 
there is a regular approximant for the place (m + 1, m + k + 1), and 
Vm+i,m+k+i is its denominator since Vm+i<m+k+i(0) = 1. Induction completes 
the proof. 

We remark that the proof of this theorem shows that if a series D(x) has a 
diagonal Dk for which the corresponding pm>m+k are all ^ 0, then all the 
approximants are constant multiples of regular approximants. Thus the con
dition Vm,m+k(0) = 1 in Theorem 3.3 has only a normalizing effect, and does 
not essentially restrict the class of series, which have a regular diagonal 
Dk, according to this theorem. 

4. Approximants of D(x2). In this section we give a theorem relating 
approximants of the series Dix2) to those of the series D(x). 

THEOREM 4.1. If the series D(x) = S P^xil has regular diagonals Dk and 
Dk+i consisting of approximants (Umtn(x), Vmtn(x)), then the series D*(x) = 
Y,PnX2li has a regular diagonal D2k+i consisting of approximants (U*m,n(x), 
V*mtn(x)) for which we have 

(4.i) v;m (*) = vm ,m+k+l 

together with analogous relations for U. 
Moreover, if we put 

V*,n(x) D*(pc) - U*,n(x) = p*,nx
m+n+l+. . . 

then 

(4.2) p2m,2m+2k+l = Pm,m+k} p2m+l,2m+2k+2 = Pm,m4-k+l-
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Proof. Consider any approximant (U(x), V(x)) of D(x2) for the place 
(2m + 1, 2m + 2k + 2); then 

V(x)D(x2) - U(x) = px'm+2k+i + qxim+2k+f> + . . . . 

Now V(x) can be written as Vm
r (x2) + x Vm"(x2)> where the subscript denotes 

the highest power of the polynomial variable. Similarly 

U(x) = UL+k+l(x2) + X Um+k(x2). 

Then we have 

V'm(x2)D(x2) - UU*+i(x2) = P *m+2W + . • • , 
xV^(x2)D(x2) - xU^+k(x

2) = q x*m+w + . . . , 
or 

(4.3) F ; ( X ) £ ( X ) - [ / U i W = ^ ^2m+"+2 + . . . , 
(4.4) F; ; (X) 2?(X) - ^ + , ( x ) = q x2m+k+2+ . . . . 

From the regularity of Dk+i it follows that, apart from an arbitrary constant 
factor, there is exactly one Vm''(x) satisfying (4.3), viz. Vm>m+k+i(x) and that 
P = Pm,m+k+l if Vm ~ vm,m+k+l' 

On the other hand, from Theorem 3.2 and the regularity of Dk it follows 
that the only Vm" (x) satisfying (4.4) is the zero polynomial. Hence all possible 
V{x) are constant multiples of Fw>m+fc+i(x2). Since, moreover, Vm,m+k+i(0) = l> 
it follows that V*2m+i,2m+2k,2(x) = Vm>m+]c+i(x2) is regular. It follows also 
that p*2m+i,2m+2k+2 = pm,m+k+i* The remaining part of the theorem can be 
proved in a similar way. 

It may be shown that no series D(xn), with n > 2, can have a regular 
diagonal. 

5. Recurrence relations for approximants. 

THEOREM 5.1. Let the series D(x) have diagonals Dk and Dk+\ consisting of 
approximants (Um,n, Vm>n) such that Dk is regular and Vm,m+k+i(Q) = 1 for all 
m. Then we have 

(5.1) ,m+k+l Pm,m+k+l Prn,m+kUm,m+k 

(5.2) , m+k-\-1 Pm,m-\-k+l Pm,m+k * m,m+k< 

Proof. The highest powers in the right-hand members of (5.1) and (5.2) 
are at most m + k + 1 and m + 1 respectively, whereas the right-hand 
side of (5.2) cannot be identically zero since it has constant term 1. Finally, 
multiplying the right-hand side of (5.2) by D(x) and subtracting the right-
hand side of (5.1) shows that the right-hand members of (5.1) and (5.2) 
constitute an approximant for the place (m + 1, m + k + 1). Since Dk is 
regular the relations (5.1) and (5.2) must be true. 

In a similar way one can prove 
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THEOREM 5.2. Let the series D(x) have diagonals Dk and Dk+i consisting of 
«approximants (Umtn, Vmtn) such that Dk+i is regular and Vmtm+k(0) = 1 for all 
m. Then we have 

(5.3) Vm+1 ,m+k+2 — t 'Wl .m-fc+l ~~ Pm+l,m+k+l Pm,m+k+l vm 

together with an analogous relation for U. 

Combining these two theorems we obtain 

THEOREM 5.3. Let the series D(x) have regular diagonals Dk and Dk+i con
sisting of approximants (Um,n, Vm,n). Then for all m we have 

(5.4) Vm+i,m+k+i = (1 — amx) Vm>m+k — bmx Fw»iiffl+jt_i 

where 

(5.5) 
C^m 'Pm,m-\-k j?m—l,m+k Pm,m+k+l Pm,m+k 

(5.6) 
Urn Pm,m+k Pm—ltm+k—l* 

An analogous relation for U holds likewise. 

6. Orthogonality relations of approximants. Let D(x) = 2] P^ have 
a regular diagonal Dk consisting of approximants (Um>m+k} Vmtm+k). If we write 
Vm,m+k = Ço%m + q\Xm~l + . . . + Cm where the gM of course depend on m, 
then the coefficients satisfy the equation (2.2) with n = m + k. By the sub
stitution 
(6.1) pk+i = r0, pk+2 = ru pk+z = r2, . . . 

this system is transformed into (1.1), the condition for orthogonality. Since 
Dk is regular, it follows that for each m > 0 and n = m + k the set (2.2) has 
exactly one solution with qm = 1, hence the same is true for the related 
system (1.1). Hence the polynomials q0 + q\x + . . . + qmxm = xmVmim+k(x~l) 
form a set of orthogonal polynomials with respect to the sequence pk+u 
pk+2, pk+z, . . . , and are monic by virtue of Vm,m+k(0) = 1. 

The same substitution (6.1) transforms (2.3) into (1.5). Hence the norm 
of xmVm>m+k(x-1) is pm>m+k. This proves 

THEOREM 6.1. Let the series D{x) = 2Z P^ have a regular diagonal Dk 

consisting of approximants (Um,m+k, Vm,m+k)\ then the polynomials Vm(x) 
defined by 
(6.2) Vm(x) = xmVm,m+k(x-i), m = 0, 1, 2 , . . . 

are monic, form an orthogonal set with respect to the sequence pk+i, pk+2, pk+tj • • • » 
and have norms pm,m+k. 

Since the sequence Vmtm+k forms a diagonal, the Vm(x) will be called diagonal 
polynomials. 

If the sequence D(x) = S Pnxfi has regular diagonals Dk and Dk+i, then 
from Theorem 4.1 it follows that D*(x) = YLPviï1* has a regular diagonal 
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D*2k+i, and from Theorem 6.1 and the relations (4.1) and (4.2) we then have 
the following: 

THEOREM 6.2. Let the series D(x) = X) P^ have regular diagonals Dk and 
Dk+i consisting of approximants (Um<n(x), Vm>n{x))\ then the polynomials 
Wm(x) defined by 

(6.3) W2m(x) = x2- Fm,w+*(x-2), W2m+1(x) = x2-+1FW(W+,+1(x-2) 

are monic, form an orthogonal set with respect to the sequence pk+i, 0, pk+2, 0, 
pw, 0, . . . , and have norms tt(W2m

2) = pm,m+k, tt(W2m+i2) = pm,m+k+i. 

These polynomials will be called stepline polynomials (since the sequence 
Vo,kj Vo,k+i, Vitkj Fi(fc+i, . . . , forms a stepline in the Padé-table). 

Combination of Theorems 6.1 and 5.3 gives 

THEOREM 6.3. Under the conditions of Theorem 6.2 the assertions of Theorem 
6.1 hold, and the polynomials Vm{x) satisfy the recurrence relation: 

(6.4) Vm+i(x) = (x - am) Vm(x) - bm Fm_i(x), m > 1, 

where am and bm are given by (5.5) and (5.6). 

Combination of Theorems 6.2, 5.1, and 5.2 gives 

THEOREM 6.4. Under the conditions of Theorem 6.2 the assertions of Theorem 
6.2 hold, and the polynomials Wm{x) satisfy the recurrence relations 

(6.5) W2m+1 = X W2m — pm,m+lc Pm-l,m+k W2m-U M > 1, 

(6.6) W2m+2 = x W2m+i - p W2m, m > 0. 

7. Extension to rings. Hitherto it has been assumed that we are working 
in a commutative field. It may now be pointed out that a similar theory exists 
if R is a not necessarily commutative ring with unit element. This is of im
portance when we consider matrix polynomials, that is, polynomials having 
matrix-coefficients. But in this case the orthogonality according to (1.3) is 
not complete since (1.4) is only true for n < m. However, if we take the 
matrices rv hermitian and for any two polynomials P{x) = X P^, Q(x) = 
X OpX* define an ''inner product" {P, Q} = 21 Pnrn+vQ*v then for any m ^ n 
we have {Qm, Qn} = 0 instead of (1.4). This is quite natural in connection 
with complex valued orthogonal functions, where f(x) and g(x) are called 
orthogonal with respect to a real non-negative distribution dipix) if 
Jf(xW(x) g(x) = 0. 

Returning to the general case where R is an arbitrary ring, we see that all 
notions in §§1-6 have a meaning. To render this true, we accept such rules 
as: the set of equations (1.1) has exactly one solution with qm = 1. However 
it is no longer true that to each place there corresponds an approximant. If 
we call a quantity b a right zero divisor if there is a c ^ 0 such that cb = 0, 
then the norms of a set of orthogonal polynomials are not even right zero 
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divisors. In the definition of regularity (§3) a constant left-multiple is re
quired. Theorem 3.1 remains true; in Theorem 3.2 the pmjm+jc are not right 
zero divisors, and Theorem 3.3 remains true under the additional condition 
that the pm,m+jc should not be right zero divisors. The final remark of §3 is no 
longer true. It may be remarked that the conditions of Theorem 3.3, with 
pm,m+k not right zero divisors, are much weaker than those in the corresponding 
Theorem 6.3 of the author's thesis. 

All the other theorems in Part I remain true, provided only that such 
expressions as pm,m+k pm,m+k-i~l, if present, exist; here ab~l will be said to 
exist and be equal to c if b is not a right zero divisor and a = cb. 

PART II 

8. General hypergeometric series. Let us compare the definition of the 
ordinary hypergeometric series 

(8.1) F{a,b;c,x) = £ ^±lL^a + » ~ ^ ' ' ' fl I " " ^ 
M=o c\c + 1) . . . (c + /x — l)/x! 

with that of the Heine series 

(8.2) H(a,b;c;x) = 

V (1 ~ <*)(! - og) • • • (1 - o g ^ H l - & ) . . . ( ! - frT1) 
U ( l - c ) ( l - ^ ) . . . ( l - ^ - 1 ) ( l - g ) . . . ( l - ^ ) * ' 

where q is not a root of unity. 
We remark that in both cases the coefficient of xn can be represented^as 

(7 = 0, 

( 8 - 3 ) '[C|0][c, l ] . . . 1 c , » - l ] k , l ] ' k , 2 ] . . . [o-, n] 
where 
(8.4) [s, k] = s + k, 

or 
(8.5) [s, k] = 1 - sq\ 

In both cases we have 

(8.6) k 0] = 0 
(8.7) [(7, h] j£ 0 for all h * 0 
and 

(8.8) [s,k + h] = gi(h)[s,k] + gi(h) 

for all /J, k and 5, where gi(Â) and gzQi) are functions of h only. 
To obtain a unified treatment of hypergeometric and Heine series we shall 

assume that [s> k] is any function with values in a commutative field R which 
is defined for all elements s of a set 5 (that need not consist of elements of R) 
and all integers k. Assume also that [s, k] satisfies (8.6) and (8.7) for a certain 
element a Ç S, and satisfies (8.8) for all 5 G S and all integers h and k. 
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By (8.6) and (8.7), the condition (8.8) is equivalent to 

(8.9) 
1 [a, A] [a, k + h] 
1 [b, 1] [J, / + A] 
1 [c, m] [c, m + h] 

= 0 for all a, b, c £ S and all h, A, Z, ra. 

In fact, if (8.8) holds then the columns in (8.9) are linearly dependent. 
Conversely, if in (8.9) we substitute a = s,b = c = (TJtn = 0,l= — h 5^ 0 
we obtain 

(8.10) [s, A + h] = -[cr, h][a, - A ] - 1 ^ A] + k A], 

which clearly has the form (8.8). It follows that for h ^ 0 we have 

gl(h) = -W,h][<r,-h]-\g2(h) = [cr.A], 

whereas gi(0) = 1, g2(0) = 0. 
To simplify our notation, we define 

(8.11) [s, k]0 = 1 

for all A and s, 

(8.12) [s, k]h = [5, A] [5, A + 1] . . . [5, A + A - 1] 

for all h > 0, A and 5 

(8.13) [5, A]_» = [s, A - I ] " 1 . . . [5, A - A]"1 

for all A > 0, A and 5 for which the right-hand member is denned. 
Then we have 

(8.14) [s, k]h = [s, k]m [s, A + m]h^.m 

for all h, A, m and 5 for which the right-hand member is defined. 
The series 

(8.15) F([a,k],[b,l\;[c,m];x) = É r ^ l f 1 ^ ^ 
M=o Lc, wJMl<r, /JM 

which is defined if [c, m + M] ^ 0 for all /x > 0 , will be called the general 
hypergeometric series. 

If [s, A] and a are given by (8.4) or (8.5), the general hypergeometric series 
is an ordinary hypergeometric or Heine series, respectively. Since [c, m + M] 
9^ 0 for all M > 0, we have the formal identity 

(8.16) F([a,k], [b,l]; [c,m]; x) - F ([a, A + 1], [b,l]\ [c, m + 1]; x) + 

[c,m]rl[b,l] {[c,m] - [a, k]}F([a, k + 1], [ M + 1]; [c, m + 2]; x) = 0. 

For the constant terms cancel, whereas the coefficient of xM, n > 0, is equal to 

[c, ra]~+i [0-, l ] " 1 [a, A + l]M_i [J, Z]M 

{[a, A][c, w + /x] - [a, A + /x][c, w] + ([c w] - [a, k])[v, M]}, 

which is zero by virtue of (8.10). 
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In a similar way it can be verified that 

(8.17) F{[a,k+ 1], [b,l]\ [c,m];x) - F([a,k], [b,l+ 1]; [c,m];x) + 
[c,m]~l{[a,k] - [b,l]}F{[a,k+ 1], [b,l+ 1]; [c, m + l ] ;x) = 0 

if [ct m + fx] ^ 0 for all M > 0. 

9. The functions [5, &]. In this section we investigate the functions [s, k] 
satisfying equations (8.6) to (8.8). 

If we put 
(9.1) - k l ] k - l ] - = J 

then from (8.10) for h = 1, s = a, it follows that 

(9.2) [*, k + 1] = q[a, k] + [a, 1]. 

Hence by induction 

(9.3) [<r, k + ft] = qh[a, k] + {qn~l + qh~2 + . . . + q + l)[er, 1] for & > 0. 

Putting k = 0 in (9.3) we obtain 

(9.4) k h] = (q71-1 + qh~2 + . . . q + l ) k 1] for A > 0; 

putting & = —h in (9.3) we obtain 

(9.5) [cr, -A] = - g - ^ " 1 + qh~* + . . . + q + l)[er, 1] for A > 0. 

Conversely, the relations (9.4) and (9.5) define the function [a, h] if [a, 1] 
and q are given. These elements can be chosen quite arbitrarily. We formulate 
this as a theorem: 

THEOREM 9.1. If [0-, 1] and q 9^ 0 are given elements, then the function [a, h] 
defined by (9.4) and (9.5) satisfies (8.6) and (8.8) for s — a, and all h, k. In order 
that this function satisfy (8.7) also, [a, 1] should be chosen ^ 0 and q should not 
be a root of unity different from 1. 

Another consequence of (9.4) and (9.5) is that 

(9.6) [0-, -h] = -q-hW, h] for all h. 

Substituting this result in (8.10) we obtain 

(9.7) [s, k + h] = qh[s, k] + [a, ft]. 

Hence 
(9.8) [a, k + h] - [cj + h] = qh{[a, k] - [c, I]}. 

From (9.7) we have the special case 

(9.9) [s, h] = qh[s, 0] + k ft], 

hence the function [s, h] is determined as soon as the functions [s, 0] and 
k A] are known (q being defined by (9.1)). This is formulated in the following 
theorem, which is readily verified: 
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THEOREM 9.2. If [o-, h] is any function satisfying conditions (8.6) to (8.8) 
for s — (j, and all hy k, and [s, 0] is any function defined for all s in some set S 
(of course [o-, 0] = 0), then the function [s, h] defined by (9.9) satisfies (8.8) 
(and of course (8.6) and (8.7)) for all s, h, k. 

This theorem enables us to extend the domain S of a function [s, h] satisfy
ing equations (8.6) to (8.8) : suppose we add an element a to S and take for 
[a, 0] an arbitrary element of R. Then, if we put [a, k] = qk[a, 0] + [cr, k] in 
accordance with (9.9), it follows that the extended function [s, k] still satisfies 
equations (8.6) to (8.8). 

We shall apply this in particular by first extending the field R, mentioned 
in the definition of the function [s, k] (cf. §8), to the field R(y) of rational 
functions in the variable y over R. Then we add the element y to 5 and define 
[y* 0] = y, hence 
(9.10) \y,k] = qky+W,k] 

(cf. §10). From (9.7) with (c, m} k) instead of (s, ky h) it follows that, if in 
the right-hand member of (9.10) we substitute [c, nt] for y = [y, 0], then 
[y, k] is replaced by [c} k + m\. Hence, if in [y, 0]M, considered as a polynomial 
in y, we substitute [c} m] for y, this expression is transformed into [c, w]M. 

In later sections we will add y to S, but take [y, 0] = y~l, hence 

(9.11) [y, k] = q«y-i + [a, k}. 

From Theorems 9.1 and 9.2 it follows that the class of all possible functions 
[s, h] is very limited. Actually (9.4) and (9.5) simplify to 

(9.12) [a,k] = [a, l].k if q = 1, 

(9.13) [a,k] = k H y ^ l if g ^ l . 

Hence : 

THEOREM 9.3. The function [s, k] satisfies 

(9.14) [s,k] = b ,0 ] + k l ] J if g = 1, 
or 

(9.15) [5, k] = qk[s, 0] + [cr, 1] Y ^ | ilq^l 

(in the latter case q cannot be a root of unity). 

From this theorem it follows that if q = 1, the series (8.15) always is an 
ordinary hypergeometrical series, whereas if q 9e 1 the series is a Heine 
series. However, as we wish to treat the hypergeometric and Heine series 
simultaneously, we shall not make use of this theorem in the present part. 
It has, however, some importance in connection with Part III. 

10. Hypergeometric polynomials. Since [a-, 0] = 0 it follows that 
[cr, — n]? = 0 for \x > n > 0. Hence F ([a, —n], [b, / ] ; [c, m]\ x) is a polynomial 
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of degree < n. These polynomials will be called general hypergeometric 
polynomials. 

In the following we shall consider expressions such as 

(10.1) [c, m]n F([<r, -n], [b, / ] ; [c, m];x), n > 0. 

If [c, m + n] has not an inverse for all /x > 0, we can still give a meaning 
to (10.1) by extending R to R(y), defining [y, k] by (9.10), and substituting 
[c, m] for y in 

b,0]n F([*, -n],[b,l]\b,0]',x). 

This definition is consistent with the usual meaning of (10.1) if [c, m + /*] 
has an inverse for all /z > 0. 

For polynomials of type (10.1) we have the following generalization of 
(8.17): 
<10.2) [c, m]n F{[c, -n + 1], [b, / ] ; [c, m];x) 

- [c, m]n F([(r, -n], [b, I + 1]; [c, m];x) 
+ (k , ~n] - [b, l]) [c, m + l ]„_ iF(k -n + 1], [b, I + 1]; [c, m + 1]; x) 
= 0, 

which holds for all b and c, n > 0, m and /. 
Let S' be the subset of 5 consisting of those elements s, to each of which 

there corresponds a uniquely determined element / f 5 such that for each k 

(10.3) W,-k] = f(s) q-*[s, k], 

where f(s) does not depend on k. 
Then it is only a matter of calculation to show that, if a, c G S'f m > 0 

and the left-hand member exists, 

(10.4) xm F([v, -m], [a, k]; [c, / ] ; aT1) = [a, Jfe]m[C| / ]«1g- | w ("H-1 )(-)w 

X F([cr, -ml [c', - l - m + 1]; [a', - ^ - m + 1]; xf(a)/(c)-1 qm+l-k+1). 

The set Sf is not empty, since (10.3) holds for s =* sf = a, f(a) = — 1. 
Actually, it is easy to see that under some circumstances S' may contain 
more than one element of 5, or may coincide with S. 

11. Pade's theorem. In this section we shall formulate and prove a 
generalization of a result of Padé (5). In the following, j denotes an arbitrary 
but fixed integer which may be — °°. 

THEOREM 11.1. Let the series 

(11.1) Fix) = S Mh* 
be defined. If for 0 < w < w - j + l « / g put 

(11.2) Vm.n(x) = ( - l ) w [ a > w " " m + 1 J g g » » ( ^ V 

X F ([a, —ml [c, n]; [a, n — m + 1]; x~\), 
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then Vmiîl(x) is a Padé denominator of F(x) for the place (m, n). Moreover, if 
we put 

(11.3) pm,n = ïj^-^Tqmn{[c,0] - [a,0]\ . . . {[c,m- 1] - [a,0]\ 
[c, v\m+n+i[c, n\m 

and 
(11.4) Fm,n(x) = F([a, n + 1], [o-, m + 1]; [c, m + n + l]\x), 

then there exists a series UmtTl(x) in which the highest exponent of x is < n, such 
that 

Proof. The existence of the series (11.1) implies the existence of {[c, n]m}~1 

in (11.2), and then from §10 it follows that Vm>n(x) is defined and represents 
a polynomial of degree < m. It also follows from the existence of (11.1) that 
pm>n and Fm>n are defined. Then (11.5m?w) implies that Vmtn(x) is a Padé-
denominator of F(x) for the place (m, n). The proof of (11.5m,w) will be per
formed by induction. 

Firstly, (11.5o,n) is true for all n > j — 1. 
From (10.2) with (c, a, m, n — 1, n — m + 1, x_1g) instead of (b, c} n, /, m, 

x) it follows after some calculations that 

yll.Kimn) Vm,n\%) — Vm—\>n\X) Qm,n% * m— l,n— l\%)' 

where 0m,n = [c, n + m — 2]2
_ 1 [a, n][c, n — l]gw_1, and these qm,n satisfy 

\^^-'*m,n) Pm—l,n—lÇm,n Pm—l,n* 

From (8.16) it follows after some calculations that 

\H--&m,n) * m— l,w—1 \%) = rm—\fU \X) rm^nrm^n\X) 

where, by (9.8), 

rm,n = [c,m + n— l]^1 [o-, m] {[c, m - 1] - [a, 0]} qn, 

and these rm,n satisfy 
^ l l . y m > w J Pm—l,n^m,n Pm,n-

Now suppose that for certain integers m and n the relations (11.5m_i>n_i) 
and (11.5m-i,«) have already been proved. Then using successively (11.6m,n), 
(11.5m_i>n), (11.5ro-ifW-i), (11.7ro,n), (11.8OT,„) and (11.9OTf„), and putting 

Um-i,n-i{x) we obtain 

Vm,n(x) F(x) = Vm-1>n(x) F(x) 
0.171,11% 

Vm-l,n-l(x) F(x) 
= = Um—l,n\pC) \ Pm—l,n% * m—\,n\%) 0m,n% Um—l,n—l\%) 

Oin,nPm—l,n—l% -*m—l,w—1 v*v 
= = Um—i,n\%) 0m,n% Um—l,n—l\pC) 

+ Pm-l,nXm+n (Fm-i,n(x) - F m _ i > n _ i ( x ) ) 
: = Um,n\pC) \ Pm—l,n ^m,n % *m,n\%) 

Um,n\%) i Pm,n X rmn\X). 
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Thus (11.5m,n) follows from (11.5m_if7l_i) and (11.5m_i,ro). Since (11.5o>n) is 
satisfied for all n > j — 1, it follows that (11.5OT,n) is true for 0 < m < n — j 
+ 1. 

Remarks. I. From (11.2) it follows that FTO,n(0) = 1. 
IL Padé's original theorem (cf. (5)) gives denominators for a certain class 
of hypergeometric series. This corresponds to the special case j = 0 of our 
theorem: we then have F(x) = F ([a, 0], [a, 1]; [c, 0]; x). For every finite j 
we have 

(11.10) F(*) = [ a , 0 ] ^ , 0 ] 7 V > ( [ a , j ] , [<r, 1]; [c,j];x). 

I I I . H a, ce S' (cf. §10), then from (11.2) and (10.5) it follows that 

(11.11) Vm,n(x) = F{[a, -m], [a', - » ] ; [c'f - m - * + 1]; xqf{c)f{a)-*). 

In particular we see that the ordinary hypergeometric polynomial F( — m} 

— a — n; — c — m — n + 1; x) is a, Padé-denominator of the ordinary hyper
geometric series F (a, 1; c\ x) for the place (m, n) if m < « + 1. This is Padé's 
original theorem. We also see that the Heine polynomial (for notation cf. 
(8.2)) H(q~m, a~lq-n\ C-lq-m-n+l\ xac~lq) is a Padé-denominator of the Heine 
series H (a, q; c; x) for the place (w, n) if m < n + 1. 

12. Confluent series. Consider the rational function field R(y), and, as in 
(9.11), let [y, 0] = y~l and [y, &] = qky~l + [a-, &]. This expression has an 
inverse in R(y) for every k. Then the coefficient of x* in the series F ([a, k], 
[b,l]l btOhxy-1) is 

[a, *]„ [a, /]„{ (ff + k ibO •. • (r-1 + k, M - lbOk IJM}"1. 

The substitution y = 0 in this expression gives a meaningful result. By this 
substitution we obtain from the given series the series 

2/yo(|#> #J, [6, /J;x/) = jLs — 7 — f i 2 x • 

In a similar way we obtain by putting y = 0 in 7^([a, k], [y, 0]; [c, m]; #3/) 
the series 

MJo [c, w]M[o- f l ] u • 

The series 2F0 and 1F1 will be called confluent series of the first kind. It is also 
easily verified that y = 0 in F([a, k], [b,l]; [y,m]\ xy~l) gives 2F0([a, k]y 

[b,l]; xq~m), and that y — 0 in F([a, k], [y,l]\ [c,m]; xy) gives 1F1([a, k]\ 
[c,m]; xq1). 

If q 5* 1 then for a special value of one of the parameters in F {[a, k], [b, 1]; 
[b, I] ; [c, m] ; #) we get series which are intimately connected with these con
fluent series of the first kind. In fact let [f, 0] = [a, 1] (1 — q)~1. Then 
[f, /*] = [f, 0] for all M; hence 

^(k^],[6,/];[f,m];x[f,0]) = £ ^ ^ r ^ 
M=o [0", IJM 
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This leads us to the definition of the confluent series of the second kind : 

*FÎ([a,k],[b,l];x) = F([a,fc],[J,/];[r,0];x[r,0]) f 

iFi([a,k];[c,m];x) = F([a, k], [f, 0 ] ; [c, m\\ x[f, 0]"1) , 

1F*0([a, k];x) = iFida, ft]; [f, 0]; x[r, 0]) = 2F*([a, fc], [y, 0]; *y)_ 0 , 

^ ( [ a , É]; x) = 2F0([a, ft], [f, 0]; x[f, 0]"1) = ^ ( [ a , ft]; \y, 0]; x ^ V o . 

The initial assumption q ^ 1 can be avoided by considering g as a variable 
over i?, in which case the defining expressions above for the four types of 
confluent series of the second kind certainly have a sense, and allow sub
stitution of any value for q which satisfies the conditions in Theorem 9.1. If 
q = 1 we again obtain the former confluent series. 

The close relationship between the series of different kinds arises from 
(10.4). In fact, if we apply confluence of any kind to (10.4), then on the left-
and right-hand sides confluent series of opposite kinds appear. 

From Theorem 11.1 it is easy to deduce corresponding theorems for the 
confluent series. If we replace x by xy~l, take c = y, where [y, n] = q^y~l 

+ [o-, ft] and put y = 0, we obtain the following: 

THEOREM 12.1. Let the series Ff(x) be defined by 

F'(X) = É [«. o]„<r**('-v 

for some integer j . If for 0 < m < ?z — j + 1 we put 

V£.n(x) = ( - 1 ) > , n - m + l ]mg-w \V\([<r , - m ] ; [a,n-m + 1]; x"V + 1 ) 
P'm,n = [a,l]m[a,0]n+1q-^m+nHm+n+1) 

FkAx) = Ma, n + 1], [cr, m + 1]; xq^-71'1) 

then there exists a series Um,n(%) of degree < n such that 

V m,n \X) * \X) U m,n \X) ~\~ Pm,nX * m,n \ X ) . 

Similar results can be obtained for all the other cases. 

13. Generalized classical orthogonal polynomials. I. If the general 
hypergeometric series has regular diagonals, then from Theorem 11.1 and 
Theorems 6.1 and 6.2 we can derive explicit forms for the corresponding 
orthogonal polynomials. 

Now, for all m, n such that 0 < w < w — j + l, the Vmin given by (11.2) 
have Vmtn(0) = 1, and hence, by virtue of Theorem 3.3 those Vmtm+Jc will 
constitute a regular diagonal if the corresponding pmtm+Jc are different from 
zero; by virtue of Theorem 3.2 this condition is also necessary, and then from 
(11.3) it follows that [a, /x] and {[c, n] — [a, 0]} should be different from zero 
for all JJL > 0. However, this condition is independent of ft, and hence all 
diagonals of order ft, ft > j — 1, are regular at the same time. Hence Theorems 
6.3 and 6.4 are applicable if this condition is satisfied. From Theorem 6.3 we 
obtain 
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THEOREM 13.1. Let ft be an arbitrary integer; let [a, /z], [c, /x] and {[c, /x] — 
[a, 0]} be different from zero for all \x > 0 and let the sequence [a, 0]A+i[c, O^+i"1, 
[a, 0]k+2[c, OJfc+2-1, . . . , be defined. Then the polynomials 

Vm(x) = ( - l )>,£ + l]Jc,m + ^ ^ 

are monic, orthogonal with respect to the sequence and have norms 

Pm,m+k = [<r, l]m[a, 0]m+k+1{[c, 0 ] 2 m + * + l k >» + k]m)~l{[c, 0 ] - [ a , 0 ] } . . . 

. . . {[c, m - 1] - [a, 0]} g»<«+*>. 

Moreover we have the recurrence relation 

Vm+i(x) = (x — am) Vm(x) - ômFm_i(x), 

where 
[g-, m]{[c, m - 1] - [a, 0]} m+fc [a, m + ft + l][c, m + ft] OT 

a m [c,2m + ft-l]2~
 g "^ [c,2m + ft]2 ~q 

and 

h — \ l ta> m + ft]fc, m + ft — !]{[£, m — 1] — [a, 0]} 
m " K W j [c, 2m + ft - 2]2[c, 2m + ft - 1]2 

If [5, ft] is given by (8.4), and we take ft = — 1, we obtain for FTO(#) : 

V . ( * ) « ( - D (e + f B _ i ) . . . ( e + 2 « - 2 ) F ( - w ' e + m - 1 ; o ; * ) ' 

which is easily seen to be a Jacobi polynomial (9), though in a different 
notation. For other values of ft we get the same set of polynomials. 

Hence, if [s, ft] is given by (8.5), we get Heine-analogues of the Jacobi 
polynomials. 

There is a companion theorem to Theorem 13.1 corresponding to Theorem 
6.4. This leads to the stepline polynomials 

W2m(x) = (-l)m[Y^^qim'm-1)F(W,-m],[c,m + k];[a,k+l]-,xiq), 
[c, m -f" "\m 

w2m+1(x) = {-ir [Cl^aXl%y^m~1)xF^ - " ] ' k * + * + H; 
[a, ft+ 2];x2g), 

orthogonal with respect to [a, 0]k+i[c, OJjt+r"1, 0, [a, 0]k+2[c, 0]k+2~\ 0, . . . , 
which in the case of ordinary hypergeometric series reduce to ultraspherical 
polynomials. Recurrence relations and norms can be deduced from Theorems 
6.4 and 11.1. The well-known relation between Jacobi and ultraspherical 
polynomials actually originates in (6.2) and (6.3) : if for ft = — 1 we denote 
Vm(x) by Jm(a, c;x) and Wm(x) by Pm(a,c;x), then P2m(a,c;x) = Jm(a,c;x2), 
P2m+i(a, c; x) = xJm(a + 1, c + 1; x2) (cf., for example, 9, (4.1.5)). The same 
is true for the relation between Laguerre and Hermite polynomials (cf. 9, 
(5.6.1)). 
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II. In a similar way we obtain from Theorem 12.1 as diagonal polynomials 

Vm(x) = ( - 1 ) > , k + l]mq-m'm+k\Fi(W, - « ] ; [a, k + 1]; xqm+k+1), 

which are orthogonal with respect to 

[a, OU, 2-**<*+1>,[o, 0W2<f i(*+1H*+2\ [a, 0]k+3q-^+2^+3\ . . . . 

if [a, JJL] 9e 0 for all M > 0 and if the moment sequence is defined. They are 
generalized Laguerre polynomials, and the corresponding stepline polynomials 
are generalized Hermite polynomials. 

III . Applying Theorem 6.1 to the theorem resulting from Theorem 11.1 by 
substitution of f for c} x[f, 0] for x(cî. §12), we obtain the polynomials 

Vn(x) = ( - 1 ) > , * + lU^^iFÎa*, - m ] ; [a, k + l];xq), 

which are orthogonal with respect to [a, 0]*+!, [a, 0^+2, [a, 0]jc+z, . . . , if 
[a, /x] 9e 0 for \x > 0, a F^ f and the moment-sequence is defined. They are 
also generalized Laguerre polynomials, and the corresponding stepline poly
nomials are likewise generalized Hermite polynomials. 

IV. If in Theorem 11.1 we replace [a, k] by qky~l + [<r, k], x by xy and put 
y = 0 we obtain 

Vn(x) = ( - l ) m [c , w + k]-\m{m+k\F,{[<j, -ml [c, m + &]; xg"*). 

These are orthogonal with respect to 
/7è*(*+l)r r Q l - l _4U+D(*+2)r n - , - l J(k+2)(k+Z)r n l - l 

if the moment-sequence is defined. These polynomials are generalizations of 
the Bessel polynomials, introduced by Krall and Frink (3). 

V. If in Theorem 11.1 we substitute f for a, x[f, 0 ] - 1 for x, we obtain 

Vm(x) = (-l)m[c, m + k]^1qimim~1)
2Fo([(TJ —m], [c, m + k]\ xq) 

orthogonal with respect to [c, 0]^+i -1, [c, 0]A;+2-1, [C, OJ^+3-1, . . . , if c 9^ f and 
the moment sequence is defined. These polynomials are also generalizations of 
the Bessel polynomials. 

VI. If to the Padé-theorem obtained in III we apply the substitutions 
described in IV, or if to the Padé-theorem obtained in IV we apply the sub
stitutions described in III we obtain in either case 

Vm(x) = (-l)mqm(m+k\F**(W, -m];xq'k). 

These polynomials are in fact the Stieltjes-Wigert polynomials, and are 
orthogonal with respect to g**<*+D, g*c*+D(*^ gè(*+2)(*+3)j . . . , if g ^ 1. 

VII. If to the Padé-theorem obtained in II we apply the substitutions des
cribed in V or if to the Padé-theorem obtained in V we apply the substitutions 
described in II, we obtain in each case 

Vm(x) = ( — 1) q i/'o Clo-, — m\',xq ). 
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These are also Stieltjes-Wigert polynomials, and in fact are the same as 
those in VI but with q~l replacing q. Hence they are orthogonal with respect to 

The expressions for the stepline polynomials in cases II to VII can be found 
from those for the diagonal polynomials. And also the recurrence relations and 
norms in cases II to VII and for the corresponding stepline polynomials can 
easily be deduced as in I. 

PART III 

14. Remarks concerning further generalization. The result of Part II 
being a generalization of the classical orthogonal polynomials, we note that 
the generalization of the hypergeometric series and consequently that of the 
classical orthogonal polynomials is strongly restricted by the rather un
natural-looking condition (8.8). This condition, it appears, has been intro
duced mainly to establish the recurrence relations (8.16) and (8.17), which 
are consequences of one another, and play an essential role in the proof of 
the key theorem 11.1 as they render the induction possible. It would therefore 
be much more natural to require, instead of (8.8), the existence of a relation 
of type (8.16). In view of (6.3), (11.6), and (11.8) the condition 

(14.1) F([a,k], [b,l]\ [c,m];x) - F([a,.k + 1], [b, / ] ; [c, m + 1]; x) + 
+ yp(a, b, c\ k, I, m)x F ([a, k + 1], [b, l+l])[c,m + 2]; x) = 0, 

where \p is a suitably chosen function, looks very natural and general. In the 
following sections, however, it will be shown that the class of series satisfying 
(8.1), (8.2), and (14.1) is not essentially more general than that considered 
in Part II, in the sense that it does not give rise to a more general class of 
orthogonal polynomials. 

From (14.1) it follows (cf. the proof of (8.16)) that 

(14.2) [a, k][c, m + n]- [a,k + n][c, tn] 
+ \f/(at by c; k, I, tn)[c, m][c, m + l][b, l]~l[<r, JJL] = 0 

for fx = 1, 2, 3, . . . . This can be written as 

(14.3) [a, k + n][c, m] - [a, k][c, m + M] = x(a, c; k, m)[a, /*], M = 1, 2, 3 , . . . 

and hence the first problem is to find the functions [s, k] and x satisfying (14.3). 
We shall solve this problem in the next section. To avoid unessential difficul
ties we shall assume that R is algebraically closed. Since in the following a 
and c will be considered constant, we put [a, k] — /(&), [c, k] = g(k), [a, k] 
= h(k), x(a, c; k, m) = x(k, m)> Then the difference equation (14.3) becomes 

(14.4) / ( * + n) g{m) - f(k) g{m + /*) = x (* , m) A(/0 M = 1, 2, 3, . . . . 

15. Solution of the difference equation. We shall first prove the 
following : 
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THEOREM 15.1. The functions f{k) and g(k) satisfying (14.4), none of them 
being identically zero, satisfy the same trinomial linear recurrence relation with 
constant coefficients not all zero, that is, 

[g(k + 2) + a g(k + 1) + r g(k) = 0 

Proof. First consider the case when / and g satisfy the relation 

(15.2) / ( * + 1) g{m) - / ( * ) g(m + 1) = 0 for all * and m 

(this occurs, for example, if x(&> w) = 0 ) . There exist ko and m0 such that 
f(ko) 7^ 0, g(m0) 9e 0; hence, putting 

f(k0 + l)f(h)-1 = g(mo + 1) girno)'1 = p, 

we have 
(15.3) f{k + 1) - pf(k) = 0 for all k 
(15.4) g(m + 1) — p g(m) = 0 for all m, 

which are identical binomial linear recurrence relations. 
Hence we may confine ourselves to the case when %(&, m) j£ 0, and without 

loss of generality we may assume x(0, 0) ^ 0. 
From (14.4) with k = 0, m = 0, we have 

(15.5) AG*) = x(0, 0 ) - 1 {/GO g(0) - /(0) gGO}, 

hence 

(15.6) f(k + n)g(m) - f(k) g(m + M) 
= x(k, m) x (0 , O)"1 !/(M)g(0)-/(0)g(M)i. 

Substituting n = 1 resp. (i = 2we obtain 

(15.7) / ( * + l)g(m) -f(k)g(m + 1) 
= x(k, m) x(0, 0 ) - 1 j /(l)g(0) - / ( 0 ) g ( l ) } , 

(15.8) f(k + 2)g(m) - f(k)g(m + 2) 
= x(k, m)'x(0, O)"1 {/(2)g(0)-/(0)g(2)}. 

Elimination of x(k, w) x(0> 0 ) - 1 from (15.7) and (15.8) gives 

(15.9) \f{k + 2)g(m) - f(k)g(m + 2)} {/(l)g(0) - /(0)g(l)} 
= {f{k + l)g{m) -f(k)g(m + l)H/(2)g(0) - / ( 0 ) g ( 2 ) } . 

Substituting ra = 0 in (15.9) and rearranging: 

(15.10) / ( * + 2)g(0) {/(l)g(0) - /(0)g(l)} 
- / ( * + l)g(0){/(2)g(0) - / ( 0 )g (2 )} + / (%(0){g( l ) / (2) - g(2)/(l)} = 0. 

Substituting k = 0 in (15.9) and rearranging: 

(15.11) g (« + 2)/(0) {/(l)g(0) - / ( 0 ) g ( l ) } 
- g ( m + D/(0). {/(2)g(0) - / (0 )g (2 )} + g(m)/(0){g(l)/(2) - g(2)/(l)} = 0. 
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Withou t loss of generality we may assume t h a t / ( l ) g ( O ) — / (O)g( l ) ¥" 0, 
since if / ( l )g(O) - / ( 0 ) g ( l ) = 0, the formula (15.7) coincides with (15.2), a 
case which has already been considered. 

We distinguish two possibilities. First suppose f(k)g(m) x(k, ni) ^ 0. Then 
we may assume wi thout loss of generality t h a t / (0)g(0) x(0, 0) j*- 0. And 
dividing (15.10) and (15.11) by g(0) and / (0 ) respectively it is clear t h a t 
f(k) and g(k) satisfy the same trinomial linear recurrence relation with con
s t an t coefficients which are not all zero. 

Now suppose f(k) g(m) %(&, ni) = 0. We still s u p p o s e / ( l ) g(0) — f(0) g(l) 
9e 0. Now, if ki and mi are such t ha t / (&i ) and g(nii) are not zero, we have 
x(ki, nti) = 0 and hence 

/ ( * i + M) g(wi) - /(fti) g(f»i + M) = 0 for M = 1, 2, 3, . . . . 

Hence 

g(mi + M) = « ( f » i ) / ( * i ) - 7 ( i i + M) for /I = 1, 2, 3, . . . . 

F rom this it follows t h a t g(ni) satisfies any linear recurrence relation with 
cons tant coefficients t h a t is satisfied by/( fe) . However, for m — mi it follows 
from (15.9) t h a t f(k) satisfies a trinomial linear recurrence relation with 
cons tan t coefficients. This completes the proof of the theorem. 

A check of this proof shows t h a t (14.4) has only been used for fx — 1 and 2. 
Wi th the assumption tha t R is algebraically closed, it is now easy to derive 

from Theorem 15.1 the func t ions / , g, h and x satisfying (14.4). In fact, from 
the theory of linear difference equations, it follows (and it is easy to verify 
this directly), t h a t any f u n c t i o n s / a n d g satisfying (15.1) are given by 

(15.12) / ( * ) = a&X + u2pl g(m) = œ*p7 + <*&* , 

whenever the equation x2 + qx + r = 0 has distinct roots pi and p2. If this 
equat ion has two coincident roots p we have 

(15.13) / ( * ) = (œik + œ2)p\ g(m) = (co3m + <n)p». 

In both cases coi, . . . , a>4 are arbi t rary constants . 
Corresponding to (15.12) we find x(k, ™) = uiu±pip2

m — ^2^sp2kpim and 
Hn) = PS - p2fi-

Corresponding to (15.13) we find 

x(k, m) = {coi(co3m + co4) — co3(o>i& + co2)}pk+m and h(y) = ixp». 

Recalling the role of the func t ions / , g, and h,'we obtain the following: 

T H E O R E M 15.2. Every function [s, k] such that the general hyper geometric 
series satisfies the functional equation (14.1) is given either by 

(15.14) [s, k] = o>i(s)pl + u2(s)pk2, W l(<r) = - co2(cr) = 1 
or by 
(15.15) [s, k] = {koii(s) + cc2(s)}p\ «i(cr) = 1, co2(cr) - 0, 

where p, pi and p2 are not zero, pi ^ p2. 
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16. The nature of the more general series. Let us first consider the 
case in which [s, k] is given by (15.14). Put sf = — w2(s) o)i(s)"1 if œi(s) ^ 0, 
put a = p2pi~ly and put [sf, k]' = 1 — s'q*. Then, if coi(a), coi(6), co\(c) are all 
9e 0, we find after some calculations that the series in (8.15) is equal to 
F([a\k]\[b\lY; [c\mY; xœ^œ^œ^-'p^1^-1). Now consider the 
case that not all of coi(a), a>i(ô), coi(c) are different from zero, for example, 
wi(a) = 0. Then the series in (8.15) is equal to iFi([b', / ] ' ; [cf,m]'\ xw2(a) 
coi(b)o)i(c)~1p2Cpil~m~1). Similar results are obtained in the other cases 
when one or more of wi(a), wi(ô), coi(c) are zero. It follows that if [s, k] is given 
by (15.14) the general hypergeometric series always coincides with a (possibly 
confluent) Heine series in which the variable x may be multiplied by a constant 
factor. 

Let us now consider the case in which [s, k] is given by (15.15). Put 
s' = co2(5)a)i(5)_1 if coi(s) 9^ 0 and put |V, k]n = s' + k. If wi(a), a>i(b) and 
coi(c) are different from zero, we find that the series in (8.15) is equal to 

F([a', k]", [bf, l]"; [c', mT\ x^{a)^b)^{c)^ p^~^). 

Similarly, if one or more of the coi(a), coi(J), coi(c) are zero, we get confluent 
series. Investigation of all possible cases finally gives 

THEOREM 16.1. If the function [s, k] is such that the series F([a, k], [6, / ] ; 
[c,m];x) satisfies the functional equation (14.1), then this series is always a 
{possibly confluent) ordinary hypergeometric or Heine series in which the variable 
x may be multiplied by a constant factor. 

This theorem implies the justification of our assertion in §14, that the 
series which satisfy (14.1) instead of (8.8) do not give a more general class of 
orthogonal polynomials than those obtained in Part II. 
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