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Abstract
This paper gives a self-contained proof of the non-existence of nontrivial bi-infinite geodesics in directed planar last-
passage percolation with exponential weights. The techniques used are couplings, coarse graining, and control of
geodesics through planarity and estimates derived from increment-stationary versions of the last-passage percolation
process.
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1. Introduction

1.1. Bi-infinite geodesics in random growth

Since their inception over 50 years ago in the work of Eden [14] and Hammersley and Welsh [20],
random growth models have been central drivers of the mathematical theory of spatial random processes.
Particularly important classes of growth models are undirected first-passage percolation (FPP) and
directed last-passage percolation (LPP), where growth proceeds along optimal paths called geodesics.
The structure of these geodesics has been a challenging object of study.

Under natural assumptions, the existence of a geodesic between two points in space is straightforward.
A compactness argument gives the existence of a semi-infinite geodesic: that is, a one-sided infinite
path that furnishes the geodesic between any two of its points. The existence or non-existence of bi-
infinite geodesics has turned out to be a very hard problem. This question was first posed to H. Kesten
by H. Furstenberg in the context of FPP [25, page 258]. Apart from its significance for random growth,
this existence issue is tied to questions about ground states of certain disordered models of statistical
physics ([4, page 105], [29, Chapter 1]).

The development of mathematical techniques for infinite geodesics in two-dimensional FPP began
with the work of C. Newman and coauthors in the 1990s [28]. Licea and Newman [26] ruled out directed
bi-infinite geodesics with given direction in an unknown set of full Lebesgue measure. Much more
recently, a bi-infinite geodesic in any fixed direction has been ruled out, but subject to a local regularity
condition on the limit shape, by [17] in LPP and by [1, 12] in FPP. The new approach in these works was
based on Busemann functions. Bi-infinite FPP geodesics have also been ruled out in certain restricted
subsets of the lattice, such as half-planes [3, 36]. However, despite all the effort, a feasible strategy for
solving the bi-infinite existence problem in FPP without restrictive assumptions is not presently visible.

In the seminal paper of Johansson [23], the Tracy-Widom distribution of the limit fluctuation in LPP
was proved for geometric and exponential weights. This led to a large literature on exactly solvable
models in the Kardar-Parisi-Zhang (KPZ) class and gave rise to a new subject, integrable probability.
Deep results on exactly solvable models have identified the limiting objects, the KPZ fixed point [27],
and the directed landscape [13], and provide a benchmark for the expected behavior of LPP with
general weight distributions in accordance with the KPZ universality conjecture. While progress in
exactly solvable models in the past 20 years has been striking, for general LPP, basic questions such
as regularity of the limit shape and the order of fluctuations remain open. Moreover, the methods of
integrable probability are often so specialized that it seems unlikely that they can provide a roadmap for
approaching general growth models.

Parallel to the development of integrable probability, a suite of more robust probabilistic techniques
for deriving fluctuation bounds evolved. After the seminal paper of Cator and Groeneboom [9] on the
Poissonian planar growth model, [5] derived the 1/3 shape exponent and 2/3 transversal exponent in the
exponential LPP. These papers point the way to a proof of the KPZ exponents under a strictly concave
shape function and sufficiently mixing Busemann functions. This approach has also been successful for
a class of zero-range processes that goes beyond exactly solvable models [6].

Ergodic Busemann functions were developed for general LPP in [18]. The point of view was that
of queueing theory, where Busemann functions can be identified with fixed points of stationary queues
in tandem. The follow-up work [17] proved results about competition interfaces, directed semi-infinite
geodesics, and the nonexistence of bi-infinite geodesics in a particular direction, under regularity
assumptions on the shape function.

In exactly solvable planar directed LPP, techniques have now improved to the point where the existence
problem of bi-infinite geodesics can be given a complete solution. The first proof of nonexistence
in planar LPP with exponential weights appeared in the 2018 preprint [7] of Basu, Hoffman, and
Sly. Their work relies on fluctuation and moderate deviation estimates for the passage times that
come from integrable probability. These estimates were originally obtained through combinatorial
analysis, asymptotic analysis of Fredholm determinants, and random matrix methods. Further results
from these estimates were derived in the preprint [8] by Basu, Sidoravicius, and Sly, in particular
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Figure 1.1. An up-right path from (0, 0) to (7, 4) on the lattice Z2.

to control transversal fluctuations of geodesics, and then applied to the bi-infinite geodesic problem
in [7].

The concentration bounds used in [7] should hold for LPP models outside the exactly solvable ones;
but it is unclear how these bounds can be obtained from the conjectural basic properties of the general
LPP, such as strict concavity of the shape function and strong mixing of the Busemann functions. Our
paper does not have a result for general LPP, but our proof does lay out a possible route from fairly basic
properties of LPP to the non-existence of bi-infinite geodesics. We do this through deeper insight into
the queueing picture obtained in [15]. Going through the proofs in this paper, the reader should see that
our choice of the exponential distribution can be viewed as an assumption on the basic properties of the
model, conjectured to hold for any continuous distribution with sufficiently decaying moment. Along
the way, nothing beyond standard probability tools such as coupling and coarse graining is needed.

Next we state the main result and then relate our proof to existing literature. In particular, we contrast
our work with [7] in more detail.

1.2. Main result

The model studied is a version of nearest-neighbor directed LPP on the planar integer lattice, also
known as the corner growth model (CGM). Let 𝜔 = {𝜔𝑥}𝑥∈Z2 be an assignment of random weights on
the vertices of Z2. The weights 𝜔𝑥 are independent and identically distributed (i.i.d) random variables
with rate one exponential distribution: that is, P(𝜔𝑥 > 𝑡) = 𝑒−𝑡 for each 𝑥 ∈ Z2 and real 𝑡 ≥ 0. The
last-passage value 𝐺𝑥,𝑦 for coordinatewise ordered points 𝑥 ≤ 𝑦 on Z2 is defined by

𝐺𝑥,𝑦 = max
𝑥• ∈Π𝑥,𝑦

|𝑦−𝑥 |1∑
𝑘=0

𝜔𝑥𝑘 , (1.1)

where Π𝑥,𝑦 is the set of nearest-neighbor up-right paths 𝑥• = (𝑥𝑘 )𝑛𝑘=0 that start at 𝑥0 = 𝑥 and end at
𝑥𝑛 = 𝑦, with 𝑛 = |𝑦 − 𝑥 |1 = the number of nearest-neighbor steps from 𝑥 to 𝑦. Such paths are defined by
the requirement 𝑥𝑘+1 − 𝑥𝑘 ∈ {𝑒1, 𝑒2}. (See Figure 1.1.) When the weights have a continuous distribution
such as the exponential, (1.1) has a unique maximizing path 𝜋𝑥,𝑦 ∈ Π𝑥,𝑦 called the ( point-to-point or
finite) geodesic.

A bi-infinite geodesic is a nearest-neighbor up-right path {𝑥𝑘 }𝑘∈Z indexed by all integers, with the
property that for all 𝑚 < 𝑛, the path segment 𝑥 [𝑚,𝑛] = {𝑥𝑘 }𝑛𝑘=𝑚 is the geodesic between 𝑥𝑚 and 𝑥𝑛. A
straight line {𝑥𝑘 = 𝑥 + 𝑘𝑒𝑖}𝑘 ∈ Z, for 𝑥 ∈ Z2 and 𝑖 ∈ {1, 2}, is trivially a bi-infinite geodesic because there
are no alternative paths between any two of its points. Let us call a bi-infinite geodesic nontrivial if it
is not of this type. The main result is that the exponential CGM has no nontrivial bi-infinite geodesics.

Theorem 1.1. Assume that weights have i.i.d. exponential distribution. Then with probability one, there
are no nontrivial bi-infinite geodesics.
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1.3. Related work

Among past work on geodesics, our proof is in spirit aligned with the Damron-Hanson work on FPP
[11, 12] and with the general LPP work in [17, 22], in the sense that the stationary version of the process
lies at the heart of the matter. Compared to earlier work on the exponential CGM that utilized couplings
with the stationary version, such as [5, 31, 35], two specific new developments made this paper possible:

(i) The discovery in [15] of the stationary distribution of the joint LPP process with multiple charac-
teristic directions. A bivariate version of this distribution is constructed in Theorem 3.1 below.

(ii) A novel argument for controlling the location of the geodesic by coupling the bulk process with two
distinct stationary processes from two different directions (Lemma 5.5 below).

One can be fairly confident that these features extend to both zero-temperature and positive-
temperature polymer models in 1+1 dimensions that possess a tractable stationary version. This in-
cludes various last-passage models in both discrete and continuous space, such as those studied in
[2, 19, 24, 30, 33, 34], and the four currently known solvable polymer models [10]. In positive-
temperature polymer models, the analogous question concerns the existence of bi-infinite Gibbs mea-
sures, as discussed in [21]. These matters are left for future work.

As in [7] by Basu, Hoffman, and Sly, our proof comes in two parts:

(a) The main argument rules out bi-infinite geodesics with finite positive slope.
(b) An easier argument shows that no geodesic can come infinitely often arbitrarily close to an axis in

the macroscopic scale.
Beyond this superficial similarity, the two proofs are quite different in both parts (a) and (b).

Our part (a) in Section 5 is a straightforward estimation of the probability that a geodesic through
the origin connects the boundaries of a square at scale 𝑁 . By contrast, [7] controls complicated events
that involve coalescence of geodesics. This yields additional results of interest, but the simplicity of the
bi-infinite geodesic problem is obscured. Their sharper tools give a better estimate of the probability of
a connection through the origin, namely 𝑂 (𝑁−1/3), while our cruder bound is 𝑂 (𝑁−1/24). In Remark
5.6 we indicate the precise place where our estimates grow beyond optimal order of magnitude.

Part (b) in [7] utilizes fluctuations. Our part (b) in Section 6 uses the limit shape and planarity.

We conclude this introduction by observing that the non-existence of bi-infinite geodesics will be
a tool for further results. To cite an example, article [22] studies a random graph in the CGM that
represents an analogue of shocks in Hamilton-Jacobi equations. Theorem 4.3 in [22] shows that the
absence of bi-infinite geodesics implies certain coalescence properties of this ‘instability graph’.

Section 2 outlines the proof of Theorem 1.1 and describes the organization of the rest of the paper.
We provide a self-contained exposition of the entire proof, including proof sketches of many auxiliary
results that we use. We collect below some notation for easy reference.

1.4. Notation and conventions

Z≥0 = {0, 1, 2, 3, . . . } and Z>0 = {1, 2, 3, . . . }. For real numbers 𝑎 and 𝑏, 𝑎 ∨ 𝑏 = max{𝑎, 𝑏} and
�𝑎, 𝑏� = [𝑎, 𝑏] ∩ Z. 0 denotes the origin of both R and R2. 𝐶 (𝜀) and 𝑁0 (𝜀) are constants that depend
on a parameter 𝜀, but their values can change from line to line.

For 𝑥 = (𝑥1, 𝑥2), 𝑦 = (𝑦1, 𝑦2) ∈ R2, we use the following conventions. The standard basis vectors
are 𝑒1 = (1, 0) and 𝑒2 = (0, 1). The ℓ1-norm is |𝑥 |1 = |𝑥1 | + |𝑥2 |. Integer parts and inequalities are
interpreted coordinatewise: 	𝑥
 = (	𝑥1
, 	𝑥2
), and 𝑥 ≤ 𝑦 means 𝑥1 ≤ 𝑦1 and 𝑥2 ≤ 𝑦2. Notation
[𝑥, 𝑦] represents both the line segment [𝑥, 𝑦] = {𝑡𝑥 + (1 − 𝑡)𝑦 : 0 ≤ 𝑡 ≤ 1} and the rectangle
[𝑥, 𝑦] = {(𝑧1, 𝑧2) ∈ R2 : 𝑥𝑖 ≤ 𝑧𝑖 ≤ 𝑦𝑖 for 𝑖 = 1, 2}. The context makes clear which one is used. An open
line segment is ]𝑥, 𝑦[ = {𝑡𝑥 + (1 − 𝑡)𝑦 : 0 < 𝑡 < 1}. The lattice rectangle and line segment are denoted
by �𝑥, 𝑦� = [𝑥, 𝑦] ∩ Z2. Path segments are abbreviated by 𝜋 [𝑚,𝑛] = (𝜋𝑖)𝑛𝑖=𝑚.
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Figure 2.1. The event 𝑊𝑁, 𝜀 . The thickset portions of the boundary are 𝜕𝑁 ,𝜀 and 𝜕𝑁 ,𝜀 . They are
connected by the geodesic 𝜋𝑢,𝑣 through the origin.

𝑋 = 𝑋 −𝐸𝑋 denotes a random variable 𝑋 centered at its mean. 𝑋 ∼ Exp(𝜆) for 0 < 𝜆 < ∞ means the
random variable 𝑋 has exponential distribution with rate 𝜆: in other words, 𝑃(𝑋 > 𝑡) = 𝑒−𝜆𝑡 for 𝑡 ≥ 0.

2. Outline of the proof

We state two auxiliary theorems and use them to prove Theorem 1.1. Then we sketch the main ideas
behind the auxiliary theorems and explain the organization of the rest of the paper.

By the shift-invariance of the underlying weight distribution, it suffices to prove that with probability
one, no nontrivial bi-infinite geodesic goes through the origin. This task is split into two cases: either
the geodesic ultimately stays away from the axes on a macroscopic scale, or it comes infinitely often
macroscopically close to some axis.

For the first case, for large positive integers 𝑁 and small 𝜀 > 0, we rule out geodesics that connect
the southwest boundary of the lattice square �−𝑁, 𝑁�2 to its northeast boundary through the origin and
whose empirical average slope is in the range [𝜀, 𝜀−1]. Define these portions of the boundary of the
square: in the southwest

𝜕𝑁, 𝜀 =
(
{−𝑁} × �−𝑁,−𝜀𝑁�

)
∪
(
�−𝑁,−𝜀𝑁� × {−𝑁}

)
(2.1)

and in the northeast

𝜕𝑁, 𝜀 =
(
{𝑁} × �𝜀𝑁, 𝑁�

)
∪
(
�𝜀𝑁, 𝑁� × {𝑁}

)
. (2.2)

Define the following event, illustrated in Figure 2.1:

𝑊𝑁, 𝜀 =
{
∃ points 𝑢 ∈ 𝜕 𝑁, 𝜀 and 𝑣 ∈ 𝜕 𝑁, 𝜀 such that

the geodesic 𝜋𝑢,𝑣 goes through the origin
}
.

(2.3)

We have the following quantitative control of this event.

Theorem 2.1. For each 𝜀 > 0, there exists a constant 𝐶 (𝜀) > 0 such that P(𝑊𝑁, 𝜀) ≤ 𝐶 (𝜀)𝑁− 1
24 for all

𝑁 ≥ 1.

Theorem 2.1 rules out all geodesics that stay macroscopically away from the axes. The next theorem
shows that there are no nontrivial geodesics that come macroscopically arbitrarily close to an axis.
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Theorem 2.2. The following statement holds with probability one. For 𝑖 ∈ {1, 2} and each 𝑥 ∈ Z2
≥0,

{𝑥𝑘 = 𝑥 + 𝑘𝑒𝑖}𝑘 ∈ Z≥0 is the only semi-infinite geodesic that satisfies 𝑥0 = 𝑥 and lim
𝑘→∞

𝑘−1𝑥𝑘 · 𝑒3−𝑖 = 0.

We combine the two theorems above to rule out all nontrivial bi-infinite geodesics.

Proof of Theorem 1.1, assuming Theorems 2.1 and 2.2. Fix a positive sequence 𝜀 𝑗 ↘ 0. Define the
event

𝐴 =
⋂
𝑗≥1

⋂
𝑀 ≥1

⋃
𝑁 ≥𝑀

𝑊𝑐
𝑁, 𝜀 𝑗

.

Theorem 2.1 implies that P(𝐴) = 1:

P(𝐴𝑐) =P
( ⋃

𝑗

⋃
𝑀

⋂
𝑁 ≥𝑀

𝑊𝑁, 𝜀 𝑗

)
≤
∑
𝑗

P

( ⋃
𝑀

⋂
𝑁 ≥𝑀

𝑊𝑁, 𝜀 𝑗

)
=
∑
𝑗

lim
𝑀→∞

P

( ⋂
𝑁 ≥𝑀

𝑊𝑁, 𝜀 𝑗

)

≤
∑
𝑗

lim
𝑀→∞

P(𝑊𝑀,𝜀 𝑗 ) ≤
∑
𝑗

lim
𝑀→∞

𝐶 (𝜀 𝑗 )𝑀− 1
24 = 0.

For 𝑖 ∈ {1, 2}, let 𝐵𝑖 be the event that there are no semi-infinite geodesics {𝑥𝑘 }𝑘≥0 such that 𝑥0 = 0
and lim𝑘→∞ 𝑘−1𝑥𝑘 · 𝑒𝑖 = 0 except for the trivial one, {𝑥𝑘 = 𝑘𝑒3−𝑖}𝑘 ∈ Z≥0 . Let 𝑅 reflect the weight
configuration across the origin: (𝑅𝜔)𝑥 = 𝜔−𝑥 for 𝑥 ∈ Z2. Define the event

𝐵 = 𝐵1 ∩ 𝐵2 ∩ 𝑅−1𝐵1 ∩ 𝑅−1𝐵2.

On the event 𝐵, every semi-infinite geodesic that either starts or ends at the origin satisfies the condition
that, far enough from the origin, it lies entirely inside a closed cone with apex at the origin and disjoint
from the coordinate axes. Theorem 2.2 and the reflection invariance of the distribution of the weights 𝜔
imply that P(𝐵) = 1.

We claim that on the full-probability event 𝐴∩𝐵, there are no nontrivial bi-infinite geodesics through
the origin. To show this, suppose there exists a nontrivial bi-infinite geodesic 𝜋 through the origin in the
weight configuration 𝜔. Consider the following dichotomy:

(i) ∃ 𝑗 , 𝑀 ∈ Z>0 such that 𝜋 connects 𝜕𝑁, 𝜀 𝑗 to 𝜕𝑁, 𝜀 𝑗 for all 𝑁 ≥ 𝑀 , or
(ii) ∀ 𝑗 , 𝑀 ∈ Z>0, ∃𝑁 ≥ 𝑀 such that 𝜋 misses either 𝜕𝑁, 𝜀 𝑗 or 𝜕𝑁, 𝜀 𝑗 .

Alternative (i) forces 𝜔 ∈ 𝐴𝑐 . In alternative (ii), if 𝜋 misses 𝜕𝑁, 𝜀 𝑗 infinitely often for each 𝜀 𝑗 , it
follows that lim𝑘→∞ 𝑘−1𝜋𝑘 · 𝑒𝑖 = 0 for either 𝑖 = 1 or 2. Thus 𝜔 ∈ 𝐵𝑐1 ∪ 𝐵𝑐2 . Similarly, missing 𝜕𝑁, 𝜀 𝑗

infinitely often for each 𝜀 𝑗 implies 𝑅𝜔 ∈ 𝐵𝑐1 ∪ 𝐵𝑐2 .
Thus a nontrivial bi-infinite geodesic through the origin is possible only on the zero-probability event

𝐴𝑐 ∪ 𝐵𝑐 . �

Sketch of the proof of Theorem 2.1. Theorem 2.1 comes from two distinct stages.
(i) In the first stage, the southwest boundary 𝜕𝑁 ,𝜀 is divided into blocks of size 𝑁2/3 and the northeast

boundary 𝜕𝑁 ,𝜀 into blocks of size 𝑁19/24. The probability that a geodesic connects two diagonally
opposite blocks through the origin is bounded by 𝑁−2/5 (Lemma 5.5). The control here comes from
random walk bounds on the location where a geodesic crosses the 𝑦-axis. These bounds are developed
through a coupling with increment-stationary LPP processes.

(ii) The second stage shows that any geodesic that connects an 𝑁2/3-block through the origin to a
point outside its opposite 𝑁19/24-block violates the 𝑁2/3 KPZ wandering exponent. Through another
coupling argument, the probability of this happening is bounded by 𝑁−3/8 (Lemma 5.7).

Multiplying by the number of 𝑁2/3-blocks gives the estimate 𝑂 (𝑁1/3 · 𝑁−2/5 + 𝑁1/3 · 𝑁−3/8) =
𝑂 (𝑁−1/24). �
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Figure 3.1. The independent increment variables from Theorem 3.1. Left: 𝐽𝜆 below 𝑥 and 𝐽𝜌 above 𝑥
from part (i). Middle and right: 𝐼𝛼 and 𝐽𝛼 increments on down-right lattice paths from part (ii).

Sketch of the proof of Theorem 2.2. Comparison with increment-stationary LPP processes shows that
the quantity 𝐺0, 𝜋𝑛 − 𝐺𝑒2 , 𝜋𝑛 blows up if 𝜋𝑛 is a path above the 𝑥-axis but 𝑛−1𝜋𝑛 comes arbitrarily close
to the 𝑥-axis. This rules out the possibility that 𝜋• is a geodesic. �

The next two sections develop tools: Section 3 a coupling of increment-stationary LPP processes and
Section 4 bounds on geodesic fluctuations. The proof of Theorem 2.1 follows in Section 5 and that of
Theorem 2.2 in Section 6.

3. Stationary last-passage percolation

Pick 0 < 𝜆 < 𝜌 < 1 and a base vertex 𝑢 ∈ Z2. We construct two coupled LPP processes 𝐺𝜆
𝑢,• and

𝐺
𝜌
𝑢,• on the nonnegative quadrant 𝑢 + Z2

≥0 such that their increments are jointly stationary under lattice
translations. Both processes use the same i.i.d. Exp(1) weights {𝜔𝑥}𝑥 ∈ 𝑢+Z2

>0
in the bulk. They have

boundary conditions on the positive 𝑥- and 𝑦-axes centered at 𝑢, coupled in a way described in the next
theorem.

For 𝛼 ∈ {𝜆, 𝜌}, the definition of the process 𝐺𝛼
𝑢,• goes as follows. The boundary weights are denoted

by {𝐼𝛼𝑢+𝑖𝑒1
, 𝐽𝛼𝑢+ 𝑗𝑒2

: 𝑖, 𝑗 ∈ Z>0}. Put 𝐺𝛼
𝑢,𝑢 = 0, and on the boundaries

𝐺𝛼
𝑢, 𝑢+ 𝑘𝑒1

=
𝑘∑
𝑖=1

𝐼𝛼𝑖𝑒1
and 𝐺𝛼

𝑢, 𝑢+ 𝑙𝑒2
=

𝑙∑
𝑗=1

𝐽𝛼𝑗𝑒2
for 𝑘, 𝑙 ≥ 1. (3.1)

In the bulk for 𝑥 = (𝑥1, 𝑥2) ∈ 𝑢 + Z2
>0,

𝐺𝛼
𝑢, 𝑥 = max

1≤𝑘≤𝑥1−𝑢1

{ 𝑘∑
𝑖=1

𝐼𝛼𝑢+𝑖𝑒1
+ 𝐺𝑢+𝑘𝑒1+𝑒2 , 𝑥

}∨
max

1≤ℓ≤𝑥2−𝑢2

{ ℓ∑
𝑗=1

𝐽𝛼𝑢+ 𝑗𝑒2
+ 𝐺𝑢+𝑒1+ℓ𝑒2 , 𝑥

}
= 𝐺𝛼

𝑢, 𝑥−𝑒1 ∨ 𝐺
𝛼
𝑢, 𝑥−𝑒2 + 𝜔𝑥 .

(3.2)

𝐺𝛼
𝑢,• does not use a weight at the base point 𝑢. Inside the braces above, 𝐺𝑥,𝑦 is the LPP process (1.1)

that uses the bulk weights 𝜔. Define increment variables for vertices 𝑥 ∈ 𝑢 + Z2
>0 by

𝐼𝛼𝑥 = 𝐺𝛼
𝑥 − 𝐺𝛼

𝑥−𝑒1 and 𝐽𝛼𝑥 = 𝐺𝛼
𝑥 − 𝐺𝛼

𝑥−𝑒2 . (3.3)

An important part of the next theorem for the sequel is the independence of various collections of
increment variables. These are illustrated in Figure 3.1.

Theorem 3.1. Let 0 < 𝜆 < 𝜌 < 1 and 𝑢 ∈ Z2. There exists a coupling of the boundary weights
{𝐼𝜆𝑢+𝑖𝑒1

, 𝐼
𝜌
𝑢+𝑖𝑒1

, 𝐽𝜆𝑢+ 𝑗𝑒2
, 𝐽𝜌𝑢+ 𝑗𝑒2

: 𝑖, 𝑗 ∈ Z>0} such that the joint process (𝐺𝜆
𝑢,• , 𝐺

𝜌
𝑢,•) has the following

properties:
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(i) (Joint) The joint process of increments is stationary: for each 𝑣 ∈ 𝑢 + Z2
≥0,

{
(𝐺𝜆

𝑢,𝑣+𝑥 − 𝐺𝜆
𝑢,𝑣 , 𝐺

𝜌
𝑢,𝑣+𝑥 − 𝐺

𝜌
𝑢,𝑣 ) : 𝑥 ∈ Z2

≥0
} 𝑑
=
{
(𝐺𝜆

𝑢,𝑢+𝑥 , 𝐺
𝜌
𝑢,𝑢+𝑥) : 𝑥 ∈ Z2

≥0
}
. (3.4)

The following independence property holds along vertical lines: for each 𝑥 ∈ 𝑢+Z2
>0, the variables

{𝐽𝜆𝑥+ 𝑗𝑒2
: 𝑢2 − 𝑥2 + 1 ≤ 𝑗 ≤ 0} and {𝐽𝜌𝑥+ 𝑗𝑒2

: 𝑗 ≥ 1} are mutually independent.
(ii) (Marginal) For both 𝛼 ∈ {𝜆, 𝜌} and each 𝑣 ∈ 𝑢 + Z2

≥0, the increment variables {𝐼𝛼𝑣+𝑖𝑒1
, 𝐽𝛼𝑣+ 𝑗𝑒2

:
𝑖, 𝑗 ∈ Z>0} are mutually independent with marginal distributions

𝐼𝛼𝑣+𝑖𝑒1
∼ Exp(1 − 𝛼) and 𝐽𝛼𝑣+ 𝑗𝑒2

∼ Exp(𝛼).

The same is true of the variables {𝐼𝛼𝑣−𝑖𝑒1
, 𝐽𝛼𝑣− 𝑗𝑒2

: 0 ≤ 𝑖 < 𝑣1 − 𝑢1, 0 ≤ 𝑗 < 𝑣2 − 𝑢2}.
(iii) (Monotonicity) The boundary weights can be coupled with i.i.d. Exp(1) weights {𝜂𝑢+𝑖𝑒1 , 𝜂𝑢+ 𝑗𝑒2 :

𝑖, 𝑗 ≥ 1} independent of the bulk weights 𝜔 so that these inequalities hold almost surely for all
𝑖, 𝑗 ≥ 1:

𝜂𝑢+𝑖𝑒1 ≤ 𝐼𝜆𝑢+𝑖𝑒1
≤ 𝐼

𝜌
𝑢+𝑖𝑒1

and 𝜂𝑢+ 𝑗𝑒2 ≤ 𝐽
𝜌
𝑢+ 𝑗𝑒2

≤ 𝐽𝜆𝑢+ 𝑗𝑒2
. (3.5)

Proof. We construct a joint LPP process (𝐿𝜆𝑥 , 𝐿
𝜌
𝑥)𝑥 ∈ 𝑢+Z≥0×Z on the discrete right half-plane with origin

at 𝑢. In the interior, we have i.i.d. Exp(1) weights {𝜔𝑥 : 𝑥1 > 𝑢1} as before. For 𝛼 ∈ {𝜆, 𝜌}, let
Y𝜆 = {𝑌𝜆𝑗 } 𝑗∈Z and Y𝜌 = {𝑌𝜌𝑗 } 𝑗∈Z be independent sequences of i.i.d. variables with marginal distributions
𝑌 𝛼
𝑗 ∼ Exp(𝛼), independent of 𝜔. From these, we define the boundary weights J𝜆 = {𝐽𝜆𝑢+ 𝑗𝑒2

} 𝑗∈Z and
J𝜌 = {𝐽𝜌𝑢+ 𝑗𝑒2

} 𝑗∈Z on the 𝑦-axis through 𝑢 by the equation (J𝜌, J𝜆) = (Y𝜌, 𝐷 (Y𝜆,Y𝜌)). 𝐷 is the
departure process operator from (A.1) in Appendix A. This gives a pair of coupled sequences (J𝜌, J𝜆).
Marginally, {𝐽𝛼𝑢+ 𝑗𝑒2

} 𝑗∈Z are i.i.d. Exp(𝛼).
For 𝛼 ∈ {𝜆, 𝜌}, define the LPP values on the 𝑦-axis by

𝐿𝛼𝑢 = 0, 𝐿𝛼𝑢+ 𝑗𝑒2
− 𝐿𝛼𝑢+( 𝑗−1)𝑒2

= 𝐽𝛼𝑢+ 𝑗𝑒2
for 𝑗 ∈ Z.

This results in negative values 𝐿𝛼𝑢+ 𝑗𝑒2
for 𝑗 < 0. Complete the definitions by putting, again for 𝛼 ∈ {𝜆, 𝜌}

and now for 𝑥 ∈ 𝑢 + Z>0 × Z,

𝐿𝛼𝑥 = sup
𝑗: 𝑗≤𝑥2−𝑢2

{
𝐿𝛼𝑢+ 𝑗𝑒2

+ 𝐺𝑢+𝑒1+ 𝑗𝑒2 ,𝑥

}
, 𝐼𝛼𝑥 = 𝐿𝛼𝑥 − 𝐿𝛼𝑥−𝑒1 and 𝐽𝛼𝑥 = 𝐿𝛼𝑥 − 𝐿𝛼𝑥−𝑒2 . (3.6)

The supremum is achieved at a finite 𝑗 because the boundary variables 𝐽𝛼 are stochastically larger than
the bulk weights. This follows from the distributional properties established in the next paragraph.

For 𝑘 ≥ 0, denote the sequences of 𝐽-increments on the vertical line shifted by 𝑘𝑒1 from the 𝑦-axis by
J𝛼,𝑘 = {𝐽𝛼,𝑘𝑗 } 𝑗∈Z = {𝐽𝛼𝑢+𝑘𝑒1+ 𝑗𝑒2

} 𝑗∈Z and the sequences of weights by s𝑘 = {𝑠𝑘𝑗 } 𝑗∈Z = {𝜔𝑢+𝑘𝑒1+ 𝑗𝑒2 } 𝑗∈Z.
J𝛼,0 is the original boundary sequence J𝛼 we began with. Then, in terms of Lemma A.2, we have
the following. With (𝜎, 𝛼1, 𝛼2) = (1, 𝜌, 𝜆), (J𝜌, J𝜆) has the distribution of (a1, a2); and for each
𝑘 ≥ 1 and 𝛼 ∈ {𝜆, 𝜌}, J𝛼,𝑘 = 𝐷 (J𝛼,𝑘−1, s𝑘 ). Repeated application of Lemma A.2(iv) implies the
distributional equality (J𝜌,𝑘 , J𝜆,𝑘 ) 𝑑

= (J𝜌, J𝜆) for all 𝑘 ≥ 0. Lemma A.2(v) gives the property that, for
any 𝑥 ∈ 𝑢 + Z≥0 × Z, the increment variables

{𝐽𝜆𝑥+ 𝑗𝑒2
: 𝑗 ≤ 0} and {𝐽𝜌𝑥+ 𝑗𝑒2

: 𝑗 ≥ 1} are mutually independent. (3.7)

The evolution in (3.6) satisfies a semigroup property: for each 𝑘 , the values 𝐿𝛼𝑥 for 𝑥1 ≥ 𝑢1 + 𝑘 + 1
satisfy

𝐿𝛼𝑥 = sup
𝑗: 𝑗≤𝑥2−𝑢2

{
𝐿𝛼𝑢+𝑘𝑒1+ 𝑗𝑒2

+ 𝐺𝑢+(𝑘+1)𝑒1+ 𝑗𝑒2 ,𝑥

}
.
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It follows that the entire process of increments is invariant under translations that keep it in the half-
space: for 𝑧 ∈ Z≥0 × Z,

{𝐼𝜆𝑧+𝑥+𝑒1 , 𝐼
𝜌
𝑧+𝑥+𝑒1 , 𝐽

𝜆
𝑧+𝑥 , 𝐽

𝜌
𝑧+𝑥 : 𝑥 ∈ 𝑢 + Z≥0 × Z}

𝑑
= {𝐼𝜆𝑥+𝑒1 , 𝐼

𝜌
𝑥+𝑒1 , 𝐽

𝜆
𝑥 , 𝐽

𝜌
𝑥 : 𝑥 ∈ 𝑢 + Z≥0 × Z}.

(3.8)

(The index is 𝑥 + 𝑒1 rather than 𝑥 in the 𝐼-increments simply because these are not defined on the
boundary where 𝑥1 = 𝑢1.)

We claim that for 𝛼 ∈ {𝜆, 𝜌} and for any new base point 𝑣 ∈ 𝑢 + Z≥0 × Z,

{𝐼𝛼𝑣+𝑖𝑒1
, 𝐽𝛼𝑣+ 𝑗𝑒2

: 𝑖, 𝑗 ∈ Z>0} are mutually independent with marginal distributions

𝐼𝛼𝑣+𝑖𝑒1
∼ Exp(1 − 𝛼) and 𝐽𝛼𝑣+ 𝑗𝑒2

∼ Exp(𝛼).
(3.9)

Since everything is shift-invariant, we can take 𝑣 = 𝑢. As observed above, J𝛼 is a sequence of i.i.d.
Exp(𝛼) random variables by Lemma A.2(i). Thus it suffices to prove the marginal statement about
{𝐼𝛼𝑢+𝑖𝑒1

: 𝑖 ≥ 1} because these variables are a function of {𝐽𝛼𝑢+ 𝑗𝑒2
, 𝜔𝑢+(𝑖, 𝑗) : 𝑖 ≥ 1, 𝑗 ≤ 0}, which are

independent of {𝐽𝛼𝑢+ 𝑗𝑒2
: 𝑗 ≥ 1}.

The claim for {𝐼𝛼𝑢+𝑖𝑒1
: 𝑖 ≥ 1} follows from proving inductively the following statement for each

𝑛 ≥ 1:
{𝐼𝛼𝑢+𝑖𝑒1

, 𝐽𝛼𝑢+𝑛𝑒1+ 𝑗𝑒2
: 1 ≤ 𝑖 ≤ 𝑛, 𝑗 ≤ 0} are mutually independent with

marginal distributions 𝐼𝛼𝑢+𝑖𝑒1
∼ Exp(1 − 𝛼) and 𝐽𝛼𝑢+𝑛𝑒1+ 𝑗𝑒2

∼ Exp(𝛼).
(3.10)

Begin with the case 𝑛 = 1. From the inputs given by inter-arrival times {𝑎 𝑗 = 𝐽𝛼𝑢+ 𝑗𝑒2
: 𝑗 ≤ 0}

and service times {𝑠 𝑗 = 𝜔𝑢+𝑒1+ 𝑗𝑒2 : 𝑗 ≤ 0}, equations (A.3) compute the inter-departure times
{𝑑 𝑗 = 𝐽𝛼𝑢+𝑒1+ 𝑗𝑒2

: 𝑗 ≤ 0} and the sojourn time 𝑡0 = 𝐼𝛼𝑢+𝑒1 . Part of Lemma A.2(ii) then gives exactly
statement (3.10) for 𝑛 = 1. (The dual-service variables 𝑠∧𝑗 that also appear in Lemma A.2(ii) are not
needed here.)

Continue inductively. Assume that (3.10) holds for a given 𝑛. Then feed to the queueing operators
inter-arrival times {𝑎 𝑗 = 𝐽𝛼𝑢+𝑛𝑒1+ 𝑗𝑒2

: 𝑗 ≤ 0} and service times {𝑠 𝑗 = 𝜔𝑢+(𝑛+1)𝑒1+ 𝑗𝑒2 : 𝑗 ≤ 0}, all
independent of {𝐼𝛼𝑢+𝑖𝑒1

: 1 ≤ 𝑖 ≤ 𝑛}. Compute the inter-departure times {𝑑 𝑗 = 𝐽𝛼
𝑢+(𝑛+1)𝑒1+ 𝑗𝑒2

: 𝑗 ≤ 0}
and the sojourn time 𝑡0 = 𝐼𝛼

𝑢+(𝑛+1)𝑒1
. Lemma A.2(ii) extends the validity of (3.10) to 𝑛 + 1. Claim (3.9)

has been verified.
To prove Theorem 3.1, take the coupled boundary weights {𝐼𝛼𝑢+𝑖𝑒1

, 𝐽𝛼𝑢+ 𝑗𝑒2
: 𝑖, 𝑗 ≥ 1, 𝛼 ∈ {𝜆, 𝜌}} as

constructed above. The LPP process {𝐺𝛼
𝑢,𝑥 : 𝑥 ∈ 𝑢 + Z2

≥0} defined by (3.1)–(3.2) is then exactly the
same as the restriction {𝐿𝛼𝑥 : 𝑥 ∈ 𝑢 + Z2

≥0} of 𝐿𝛼. Namely, (3.2) can be rewritten as follows:

𝐺𝛼
𝑢, 𝑥 = max

1≤𝑘≤𝑥1−𝑢1

{
𝐿𝛼𝑢+𝑘𝑒1

+ 𝐺𝑢+𝑘𝑒1+𝑒2 , 𝑥

}∨
max

1≤ℓ≤𝑥2−𝑢2

{
𝐿𝛼𝑢+ℓ𝑒2

+ 𝐺𝑢+𝑒1+ℓ𝑒2 , 𝑥

}
= sup

𝑗≤0

{
𝐿𝛼𝑢+ 𝑗𝑒2

+ max
1≤𝑘≤𝑥1−𝑢1

[
𝐺𝑢+𝑒1+ 𝑗𝑒2 ,𝑢+𝑘𝑒1 + 𝐺𝑢+𝑘𝑒1+𝑒2 , 𝑥

] }
∨

max
1≤ℓ≤𝑥2−𝑢2

{
𝐿𝛼𝑢+ℓ𝑒2

+ 𝐺𝑢+𝑒1+ℓ𝑒2 , 𝑥

}
= sup

𝑗: 𝑗≤𝑥2−𝑢2

{
𝐿𝛼𝑢+ 𝑗𝑒2

+ 𝐺𝑢+𝑒1+ 𝑗𝑒2 ,𝑥

}
= 𝐿𝛼𝑥 .

Invariance (3.4) comes from (3.8). The statement in part (i) about independence comes from (3.7). The
first statement of part (ii) of the theorem comes from (3.9) and the second statement from (3.10).

As the last step, we prove part (iii). The inequality 𝐽𝜌𝑢+ 𝑗𝑒2
≤ 𝐽𝜆𝑢+ 𝑗𝑒2

comes directly from (A.4), due to
the construction (J𝜌, J𝜆) = (Y𝜌, 𝐷 (Y𝜆,Y𝜌)). Then (A.5) gives the inequality 𝐼𝜆𝑢+𝑖𝑒1

≤ 𝐼
𝜌
𝑢+𝑖𝑒1

because,
in terms of the notation used above, the sequence I𝛼,𝑘 = {𝐼𝛼𝑢+𝑘𝑒1+ 𝑗𝑒2

} 𝑗∈Z satisfies I𝛼,𝑘 = 𝑆(J𝛼,𝑘−1, s𝑘 ).
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Define
𝜂𝑢+𝑖𝑒1 = (1 − 𝜆)𝐼𝜆𝑢+𝑖𝑒1

and 𝜂𝑢+ 𝑗𝑒2 = 𝜌𝐽
𝜌
𝑢+ 𝑗𝑒2

for 𝑖, 𝑗 ≥ 1.

Inequalities (3.5) hold now. By the already proved part (ii) of the theorem, marginally {𝜂𝑢+𝑖𝑒1 }𝑖≥1 are
i.i.d. Exp(1) and {𝜂𝑢+ 𝑗𝑒2 } 𝑗≥1 are also i.i.d. Exp(1). These two sequences are independent of each other
because the weights {𝜂𝑢+𝑖𝑒1 }𝑖≥1 = {(1 − 𝜆)𝐼𝜆𝑢+𝑖𝑒1

}𝑖≥1 are functions of {𝐽𝜆𝑢+ 𝑗𝑒2
, 𝜔𝑢+(𝑖, 𝑗) : 𝑖 ≥ 1, 𝑗 ≤ 0},

and these latter are independent of {𝐽𝜌𝑢+ 𝑗𝑒2
: 𝑗 ≥ 1}, by construction and by (3.7). Part (iii) is proved. �

4. Bounds for geodesic fluctuations

Let 𝐺𝜌
𝑢,• be a stationary LPP process with base point 𝑢 as described in Theorem 3.1, with independent

boundary weights 𝐼𝑢+𝑖𝑒1 ∼ Exp(1 − 𝜌) and 𝐽𝑢+ 𝑗𝑒2 ∼ Exp(𝜌) for 𝑖, 𝑗 ≥ 1. For a northeast endpoint
𝑥 ∈ 𝑢 + Z2

>0, let 𝑍𝜌𝑢,𝑥 be the signed exit point of the geodesic 𝜋𝜌,𝑢,𝑥• of 𝐺𝜌
𝑢,𝑥 from the west and south

boundaries of 𝑢 + Z2
≥0. More precisely,

𝑍
𝜌
𝑢,𝑥 =

⎧⎪⎪⎨⎪⎪⎩
arg max

𝑘

{ ∑𝑘
𝑖=1 𝐼𝑢+𝑖𝑒1 + 𝐺𝑢+𝑘𝑒1+𝑒2 , 𝑥

}
, if 𝜋𝜌,𝑢,𝑥1 = 𝑢 + 𝑒1,

−arg max
ℓ

{ ∑ℓ
𝑗=1 𝐽𝑢+ 𝑗𝑒2 + 𝐺𝑢+ℓ𝑒2+𝑒1 , 𝑥

}
, if 𝜋𝜌,𝑢,𝑥1 = 𝑢 + 𝑒2.

(4.1)

The open line segment of interior directions is denoted by ]𝑒2, 𝑒1 [= {(𝑠, 1 − 𝑠) : 0 < 𝑠 < 1}. The
parameter 𝜌 ∈ (0, 1) of the stationary LPP process is in one-to-one correspondence with a direction
vector 𝜉 = (𝜉1, 1 − 𝜉1) ∈ ]𝑒2, 𝑒1 [ through these equations:

𝜉 = 𝜉 (𝜌) =
(

(1 − 𝜌)2

(1 − 𝜌)2 + 𝜌2 ,
𝜌2

(1 − 𝜌)2 + 𝜌2

)
⇐⇒ 𝜌 = 𝜌(𝜉) =

√
1 − 𝜉1

√
𝜉1 +

√
1 − 𝜉1

. (4.2)

Direction 𝜉 (𝜌) is called the characteristic direction associated with the parameter 𝜌. A key property
that distinguishes 𝜉 (𝜌) among all 𝜂 ∈ ]𝑒2, 𝑒1 [ is that |𝑍𝜌

𝑢,𝑢+	𝑁 𝜂
 | = 𝑜(𝑁) almost surely if and only if
𝜂 = 𝜉 (𝜌). Write the characteristic direction as

𝜉 (𝜌) = (𝜉1(𝜌), 𝜉2(𝜌)) = 𝛼[𝜌] ((1 − 𝜌)2, 𝜌2)

by introducing

𝛼[𝜌] = 1
(1 − 𝜌)2 + 𝜌2 . (4.3)

Note the bounds 1 ≤ 𝛼[𝜌] ≤ 2.
This section derives basic estimates for later use. We take the base point as the origin 𝑢 = 0, but in

later applications the base point will vary. Abbreviate the sum of boundary weights on the 𝑥-axis as
𝑆
𝜌
𝑘 =

∑𝑘
𝑖=1 𝐼

𝜌
𝑖𝑒1

= 𝐺𝜌
0,𝑘𝑒1

. The starting point for the estimates is the variance formula of the next theorem.

Theorem 4.1. For (𝑚, 𝑛) ∈ Z2
>0,

Var[𝐺𝜌
0, (𝑚,𝑛) ] = − 𝑚

(1 − 𝜌)2 + 𝑛

𝜌2 + 2
1 − 𝜌

E
[
𝑆
𝜌

(𝑍𝜌
0, (𝑚,𝑛) )

+

]
. (4.4)

Sketch of proof. We give the main steps of the argument. Detailed proofs appear in Lemma 4.6 of [5]
and in Section 5.3 of [35]. Utilizing

𝐺
𝜌
0, (𝑚,𝑛) =

𝑚∑
𝑖=1

𝐼
𝜌
(𝑖,0) +

𝑛∑
𝑗=1

𝐽
𝜌
(𝑚, 𝑗) =

𝑛∑
𝑗=1

𝐽
𝜌
(0, 𝑗) +

𝑚∑
𝑖=1

𝐼
𝜌
(𝑖,𝑛)
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and the independence of {𝐼𝜌(𝑖,𝑛) , 𝐽
𝜌
(𝑚, 𝑗) : 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛} from Theorem 3.1(ii), deduce

Var
[
𝐺
𝜌
0, (𝑚,𝑛)

]
= −Var

[ 𝑚∑
𝑖=1

𝐼
𝜌
(𝑖,𝑛)

]
+ Var

[ 𝑛∑
𝑗=1

𝐽
𝜌
(0, 𝑗)

]
+ 2Cov

[ 𝑚∑
𝑖=1

𝐼
𝜌
(𝑖,0) ,

𝑚∑
𝑖=1

𝐼
𝜌
(𝑖,𝑛)

]
. (4.5)

The first two terms of (4.4) and (4.5) match. Let 𝐼𝜆,𝜌𝑥 be increment variables (3.3) for a process whose
independent boundary weights satisfy 𝐼𝜆,𝜌(𝑖,0) ∼ Exp(𝜆) and 𝐽𝜆,𝜌(0, 𝑗) ∼ Exp(𝜌). Complete the proof through

Cov
[ 𝑚∑
𝑖=1

𝐼
𝜌
(𝑖,0) ,

𝑚∑
𝑖=1

𝐼
𝜌
(𝑖,𝑛)

]
= − 𝜕

𝜕𝜆
E

[ 𝑚∑
𝑖=1

𝐼
𝜆,𝜌
(𝑖,𝑛)

] ����
𝜆=1−𝜌

=
1

1 − 𝜌
E
[
𝑆
𝜌

(𝑍𝜌
0, (𝑚,𝑛) )

+

]
.

The line above comes by calculating the middle derivative in two ways. For the left equality, condition
on

∑𝑚
𝑖=1 𝐼

𝜆,𝜌
(𝑖,0) and differentiate its density. For the right equality, express the boundary variables 𝐼𝜆,𝜌(𝑖,0) as

functions of uniform random variables and take the differentiation inside the expectation. �

Next we derive a bound on the exit point. This CGM result is from [5], which adapted the seminal
result from [9]. A proof also appears in Section 5.4 of [35].

Theorem 4.2. For 0 < 𝜀 < 1
2 and 𝜅 > 0, there exists a finite constant 𝐵(𝜀, 𝜅) such that

P
{
|𝑍𝜌0, (𝑚,𝑛) | ≥ ℓ

}
≤ 𝐵(𝜀, 𝜅)

( 𝑁2

ℓ3 + 𝑁8/3

ℓ4

)
for all 𝑚, 𝑛, 𝑁, ℓ ≥ 1 (4.6)

whenever 𝜌 ∈ [𝜀, 1 − 𝜀] and | (𝑚, 𝑛) − 𝑁𝜉 (𝜌) |1 ≤ 𝜅.

Proof. It suffices to prove the bound

P
{
𝑍
𝜌
0, (𝑚,𝑛) ≥ ℓ

}
≤ 𝐵(𝜀, 𝜅)

( 𝑁2

ℓ3 + 𝑁8/3

ℓ4

)
(4.7)

because the other probability P{𝑍𝜌0, (𝑚,𝑛) ≤ −ℓ} is obtained by reflection across the diagonal. We can
assume that ℓ ≤ 𝑚, for otherwise the probability in (4.7) vanishes. Let 0 < 𝑟 < 1 be a constant that will
be set small enough in the proof. Let

𝜆 = 𝜌 + 𝑟ℓ

𝑁
.

We take 𝑟 = 𝑟 (𝜀, 𝜅) at least small enough that 𝑟𝑚/𝑁 < 1
2 (1 − 𝜌) for 𝑚 ≤ 𝑁 (1 − 𝜌)2 + 𝜅 and 𝑁 ≥ 1.

This guarantees that 𝜆 ∈ (𝜌, 1+𝜌
2 ) is also a legitimate parameter for an increment-stationary CGM.

Couple the boundary weights so that 𝐼𝜆𝑖𝑒1
≥ 𝐼

𝜌
𝑖𝑒1

. In the first inequality below, use 𝑆𝜆𝑘 +𝐺 (𝑘,1) , (𝑚,𝑛) ≤
𝐺𝜆

0, (𝑚,𝑛) . The second equality follows from 𝐼𝜆𝑖𝑒1
≥ 𝐼

𝜌
𝑖𝑒1

. Recall that 𝑋 = 𝑋 − E𝑋 .

P{𝑍𝜌0, (𝑚,𝑛) ≥ ℓ} = P{ ∃𝑘 ≥ ℓ : 𝑆𝜌𝑘 + 𝐺 (𝑘,1) , (𝑚,𝑛) = 𝐺
𝜌
0, (𝑚,𝑛) }

≤ P{ ∃𝑘 ≥ ℓ : 𝑆𝜆𝑘 − 𝑆
𝜌
𝑘 ≤ 𝐺𝜆

0, (𝑚,𝑛) − 𝐺
𝜌
0, (𝑚,𝑛) }

= P{ 𝑆𝜆ℓ − 𝑆
𝜌
ℓ ≤ 𝐺𝜆

0, (𝑚,𝑛) − 𝐺
𝜌
0, (𝑚,𝑛) }

= P
{
𝑆𝜆ℓ − 𝑆

𝜌
ℓ ≤ 𝐺𝜆

0, (𝑚,𝑛) − 𝐺
𝜌
0, (𝑚,𝑛) −

(
E[𝑆𝜆ℓ − 𝑆

𝜌
ℓ ] − E[𝐺

𝜆
0, (𝑚,𝑛) − 𝐺

𝜌
0, (𝑚,𝑛) ]

) }
. (4.8)

Compute and bound the means in the last probability above.

E[𝑆𝜆ℓ − 𝑆
𝜌
ℓ ] = ℓ

( 1
1 − 𝜆 − 1

1 − 𝜌

)
=

ℓ

(1 − 𝜆) (1 − 𝜌) (𝜆 − 𝜌) = 1
(1 − 𝜆) (1 − 𝜌) ·

𝑟ℓ2

𝑁
(4.9)
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Introduce the quantities 𝜅1
𝑁 = 𝑚 − 𝑁𝜉1(𝜌) and 𝜅2

𝑁 = 𝑛 − 𝑁𝜉2 (𝜌) that satisfy |𝜅1
𝑁 | + |𝜅2

𝑁 | ≤ 𝜅. Then for
the means of the LPP values,

E[𝐺𝜆
0, (𝑚,𝑛) − 𝐺

𝜌
0, (𝑚,𝑛) ] = 𝑚

( 1
1 − 𝜆 − 1

1 − 𝜌

)
+ 𝑛

( 1
𝜆
− 1
𝜌

)
=
( 𝑚

(1 − 𝜆) (1 − 𝜌) −
𝑛

𝜆𝜌

)
(𝜆 − 𝜌)

= 𝛼[𝜌]𝑁
( 1 − 𝜌

1 − 𝜆 − 𝜌

𝜆

)
(𝜆 − 𝜌) +

( 𝜅1
𝑁

(1 − 𝜆) (1 − 𝜌) −
𝜅2
𝑁

𝜆𝜌

)
(𝜆 − 𝜌)

=
𝛼[𝜌]𝑁
𝜆(1 − 𝜆) (𝜆 − 𝜌)2 +

( 𝜅1
𝑁

(1 − 𝜆) (1 − 𝜌) −
𝜅2
𝑁

𝜆𝜌

)
(𝜆 − 𝜌)

=
𝛼[𝜌]𝑟2ℓ2

𝜆(1 − 𝜆)𝑁 +
( 𝜅1

𝑁

(1 − 𝜆) (1 − 𝜌) −
𝜅2
𝑁

𝜆𝜌

) 𝑟ℓ
𝑁

≤ 𝛼[𝜌]𝑟2ℓ2

𝜆(1 − 𝜆)𝑁 + 𝐶1 (𝜀, 𝜅)
𝑟ℓ

𝑁
.

(4.10)

Comparison of (4.9) and (4.10) shows that if we choose 𝑟 and 𝑐3 small enough as functions of (𝜀, 𝜅),
then there is a constant ℓ0(𝜀, 𝜅) ≥ 1 such that for ℓ ≥ ℓ0(𝜀, 𝜅) and 𝜌 ∈ [𝜀, 1 − 𝜀], we have

E[𝑆𝜆ℓ − 𝑆
𝜌
ℓ ] > E[𝐺

𝜆
0, (𝑚,𝑛) − 𝐺

𝜌
0, (𝑚,𝑛) ] + 𝑐3

𝑟ℓ2

𝑁
. (4.11)

We continue the bound on P{𝑍𝜌0, (𝑚,𝑛) ≥ ℓ} from line (4.8) and apply (4.11). Below, we pack the
(𝜀, 𝜅)-dependent factors into a constant 𝐶 = 𝐶 (𝜀, 𝜅).

P{𝑍𝜌0, (𝑚,𝑛) ≥ ℓ} ≤ P
{
𝑆𝜆ℓ − 𝑆

𝜌
ℓ ≤ 𝐺𝜆

0, (𝑚,𝑛) − 𝐺
𝜌
0, (𝑚,𝑛) − 𝑐3

𝑟ℓ2

𝑁

}
≤ P

{
𝑆𝜆ℓ − 𝑆

𝜌
ℓ ≤ −𝑐3

𝑟ℓ2

2𝑁

}
+ P

{
𝐺𝜆

0, (𝑚,𝑛) − 𝐺
𝜌
0, (𝑚,𝑛) ≥ 𝑐3

𝑟ℓ2

2𝑁

}
≤ 𝐶𝑁2

ℓ4 Var[𝑆𝜆ℓ − 𝑆
𝜌
ℓ ] +

𝐶𝑁2

ℓ4 Var[𝐺𝜆
0, (𝑚,𝑛) − 𝐺

𝜌
0, (𝑚,𝑛) ]

≤ 𝐶𝑁2

ℓ3 + 𝐶𝑁2

ℓ4
(
Var[𝐺𝜆

0, (𝑚,𝑛) ] + Var[𝐺𝜌
0, (𝑚,𝑛) ]

)
≤ 𝐶𝑁2

ℓ3 + 𝐶𝑁2

ℓ4
(
Var[𝐺𝜌

0, (𝑚,𝑛) ] + 𝑚(𝜆 − 𝜌)
)

=
𝐶𝑁2

ℓ3 + 𝐶𝑁2

ℓ4

(
− 𝑚

(1 − 𝜌)2 + 𝑛

𝜌2 + 2
1 − 𝜌

E[𝑆𝜌
𝑍

𝜌
0, (𝑚,𝑛)

] + ((1 − 𝜌)2𝑁 + 𝜅) · 𝑟ℓ
𝑁

)
≤ 𝐶𝑁2

ℓ3 + 𝐶𝑁2

ℓ4
(
E[𝑍𝜌0, (𝑚,𝑛) ] + ℓ

)
≤ 𝐶𝑁2

ℓ3 + 𝐶𝑁2

ℓ4 E[𝑍
𝜌
0, (𝑚,𝑛) ] . (4.12)

Along the way, we used the following two inequalities. For 𝜀 ≤ 𝜌 ≤ 𝜆 ≤ 1 − 𝜀/2,

Var[𝐺𝜆
0, (𝑚,𝑛) ] ≤ Var[𝐺𝜌

0, (𝑚,𝑛) ] + 𝐶𝑚(𝜆 − 𝜌)

holds by the variance formula (4.4) [35, Lemma 5.7]. Next, even though the i.i.d. terms 𝐼𝜌𝑖𝑒1
are positively

correlated with 𝑍𝜌0, (𝑚,𝑛) , we have the bound

E[𝑆𝜌(𝑍𝜌
0, (𝑚,𝑛) )

+ ] ≤ 𝐶
(
E[(𝑍𝜌0, (𝑚,𝑛) )

+] + 1
)

because the terms 𝐼𝜌𝑖𝑒1
have high moments [35, Lemma 5.8].
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Define a constant 𝑏 = ℓ0 + 𝐶, with ℓ0(𝜀, 𝜅) determined above (4.11), and 𝐶 (𝜀, 𝜅) from line (4.12)
above. Then

E[𝑍𝜌0, (𝑚,𝑛) ] =
∫ 𝑚

0
P(𝑍𝜌0, (𝑚,𝑛) ≥ 𝑠) 𝑑𝑠 ≤ 𝑏𝑁2/3 + 𝐶

∫ ∞

𝑏𝑁 2/3

(𝑁2

𝑠3 + 𝑁2

𝑠4 E[𝑍
𝜌
0, (𝑚,𝑛) ]

)
𝑑𝑠

= 𝑏𝑁2/3 + 𝐶𝑁2/3

2𝑏2 + 𝐶

3𝑏3E[𝑍
𝜌
0, (𝑚,𝑛) ] ≤ 𝑏𝑁2/3 + 1

2𝑁
2/3 + 1

3E[𝑍
𝜌
0, (𝑚,𝑛) ] .

From this, we obtain the bound E[𝑍𝜌0, (𝑚,𝑛) ] ≤ 𝐶1 (𝜀, 𝜅)𝑁2/3. Substituting this back into line (4.12) gives
the conclusion (4.7) for ℓ ≥ ℓ0(𝜀, 𝜅). By increasing the constant 𝐵(𝜀, 𝜅), we can cover all ℓ ≥ 1. �

We state a corollary that quantifies the effect of deviating the endpoint from the characteristic
direction.

Corollary 4.3. For 0 < 𝜀 < 1
2 and 𝜅 > 0, there exists a finite constant 𝐶 (𝜀, 𝜅) such that for 𝑚, 𝑛, 𝑁 ,

𝑏 ≥ 1,

P
{
𝑍
𝜌

0, (𝑚, 𝑛+	𝑏𝑁 2/3 
) ≥ 1
}
≤ 𝐶 (𝜀, 𝜅)𝑏−3 (4.13)

and

P
{
𝑍
𝜌

0, (𝑚, 𝑛−	𝑏𝑁 2/3 
) ≤ −1
}
≤ 𝐶 (𝜀, 𝜅)𝑏−3 (4.14)

whenever these conditions hold: 𝜌 ∈ [𝜀, 1 − 𝜀], | (𝑚, 𝑛) − 𝑁𝜉 (𝜌) |1 ≤ 𝜅, and, in the case of (4.14), also
𝑛 − 	𝑏𝑁2/3
 ≥ 1.

Proof. For (4.13), introduce another scaling parameter 𝑀 and a constant 𝑑 via

𝑀𝜉2 (𝜌) = 𝑛 + 𝑏𝑁2/3 and 𝑑 = 𝑏
( 1−𝜌

𝜌

)2 ≥ 𝑏𝜀2.

Then 	𝑀𝜉2 (𝜌)
 = 𝑛 + 	𝑏𝑁2/3
 while

𝑀𝜉1 (𝜌) =
𝑛(1 − 𝜌)2

𝜌2 + 𝑑𝑁2/3 = 𝑚 + 𝑑𝑁2/3 + 𝑛(1 − 𝜌)2 − 𝑚𝜌2

𝜌2 ,

from which follows

	𝑀𝜉1 (𝜌)
 ≥ 𝑚 + 	𝑏𝜀2𝑁2/3
 − 𝜅𝜀−2.

By the shifting Lemma B.4 in Appendix B,

P{𝑍𝜌0, (𝑚, 𝑛+	𝑏𝑁 2/3 
) ≥ 1} ≤ P
{
𝑍
𝜌
0, ( 	𝑀 𝜉1 (𝜌) 
 , 	𝑀 𝜉2 (𝜌) 
) ≥ 𝑏𝜀2𝑁2/3 − 𝜅𝜀−2}

≤ P
{
𝑍
𝜌
0, ( 	𝑀 𝜉1 (𝜌) 
 , 	𝑀 𝜉2 (𝜌) 
) ≥

1
2𝑏𝜀

2𝑁2/3} ≤ 𝐶 (𝜀)𝑏−3.

In the second-last inequality we assumed 𝑏 ≥ 2𝜅𝜀−4 which entails no loss of generality because we can
adjust 𝐶 (𝜀, 𝜅). The last inequality is from the upper bound (4.6).

For bound (4.14) apply again Lemma B.4 in Appendix B and then the upper bound (4.6):

P{𝑍𝜌0, (𝑚, 𝑛−	𝑏𝑁 2/3 
) ≤ −1} ≤ P{𝑍𝜌0, (𝑚,𝑛) ≤ −𝑏𝑁2/3} ≤ 𝐶 (𝜀, 𝜅)𝑏−3. �

For directions 𝜉 = (𝜉1, 𝜉2) ∈ ]𝑒2, 𝑒1 [, 𝑥-coordinates 𝑚 ∈ Z, and 𝑟 > 0, define

C
𝜉
𝑚,𝑟 = {𝑚} ×

{
𝑦 ∈ Z : |𝑚𝜉2/𝜉1 − 𝑦 | ≤ 𝑟𝑁

2
3
}
.
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Figure 4.1. Illustration of the proof of Lemma 4.4. On the event {𝑍𝜌★0, 𝑝 < 0, 𝑍𝜌
★

0, 𝑝 > 0}, geodesic 𝜈★
exits off the 𝑦-axis and 𝜈★ off the 𝑥-axis. Dashed straight lines: [0, 𝑝] is the ray in direction 𝜉, [0, 𝑜]
in direction 𝜉★. With high probability, the geodesics 𝜈★ and 𝜈★ sandwich the geodesic 𝜋0, 𝑝 , while not
wandering too far from the 𝜉-directed ray.

C
𝜉
𝑚,𝑟 is the vertical line segment of length 2𝑟𝑁2/3 centered on the 𝜉-directed ray at point (𝑚, 𝑚𝜉2/𝜉1).

Recall that 𝜋0, 𝑝 denotes the unique geodesic of 𝐺0, 𝑝 that uses i.i.d. Exp(1) weights. The next lemma
shows that for large 𝑟 , the geodesic 𝜋0, 	𝜉 𝑁 
 is very likely to intersect C𝜉

𝑚,𝑟 .

Lemma 4.4. For 0 < 𝛿, 𝜀 < 1
3 , there exists a finite constant 𝐶 = 𝐶 (𝛿, 𝜀) such that the following

holds for all 𝑁 ≥ 1 and 1 ≤ 𝑟 <
√
𝜀

2(1+
√
𝜀) 𝑁

1/3: for any direction 𝜉 = (𝜉1, 1 − 𝜉1) ∈ ]𝑒2, 𝑒1 [ such that
𝜉1 ∈

[
𝜀

1+𝜀 ,
1

1+𝜀
]

and any 𝑖 ∈ �𝛿𝑁𝜉1, (1 − 𝛿)𝑁𝜉1�,

P
(
𝜋0, 	𝑁 𝜉 
 ∩ C

𝜉
𝑖,𝑟 = ∅

)
≤ 𝐶𝑟−3. (4.15)

Proof. Abbreviate 𝑝 = (𝑝1, 𝑝2) = 	𝜉𝑁
. The proof shows that with high probability, 𝜋0, 𝑝 is captured
between two geodesics of stationary LPP processes and then controls the probability that these geodesics
deviate from the 𝜉-ray. Figure 4.1 illustrates the proof.

Take 𝜌★ = 𝜌(𝜉) + 𝑟𝑁− 1
3 and 𝜌★ = 𝜌(𝜉) − 𝑟𝑁− 1

3 with characteristic directions 𝜉★ = 𝜉 (𝜌★) and
𝜉★ = 𝜉 (𝜌★). The upper bound on 𝑟 guarantees that 𝜌★, 𝜌★ ∈ [𝜀′, 1 − 𝜀′]. Let 𝜈★ be the geodesic of
𝐺
𝜌★

0, 𝑝 and 𝜈★ the geodesic of 𝐺𝜌★
0, 𝑝 . We couple the weights of the three LPP processes as follows. The

bulk weights {𝜔𝑥}𝑥 ∈ Z2
>0

are the same for each LPP process. On the axes, we couple so that, for 𝑖, 𝑗 ≥ 1,

𝜔𝑖𝑒1 ≤ 𝐼
𝜌★
𝑖𝑒1

∧ 𝐼
𝜌★

𝑖𝑒1
and 𝜔 𝑗𝑒2 ≤ 𝐽

𝜌★
𝑗𝑒2

∧ 𝐽
𝜌★

𝑗𝑒2
. (4.16)

We can use here the coupling of Theorem 3.1(iii). However, the present proof does not need the
joint stationarity of the LPP processes with parameters 𝜌★ and 𝜌★, and hence a simpler coupling is
adequate. In this simpler coupling, we take all the triples (𝜔𝑖𝑒1 , 𝐼

𝜌★
𝑖𝑒1
, 𝐼

𝜌★

𝑖𝑒1
) and (𝜔 𝑗𝑒2 , 𝐽

𝜌★
𝑗𝑒2
, 𝐽

𝜌★

𝑗𝑒2
) mutually

independent across the indices 𝑖, 𝑗 and then couple within each triple to have the inequalities (4.16) and
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the right marginal distributions

𝜔𝑥 ∼ Exp(1), 𝐼𝛼𝑖𝑒1
∼ Exp(1 − 𝛼), and 𝐽𝛼𝑗𝑒2

∼ Exp(𝛼).

We develop estimates to control the location of 𝜈★. Similar reasoning applies to 𝜈★. The mean value
theorem applied to the function 𝜉2/𝜉1 = ( 𝜌

1−𝜌 )
2 shows that there exist constants 𝐶1 (𝜀, 𝛿), 𝐶2 (𝜀, 𝛿) > 0

such that

𝐶1𝑟𝑁
2
3 ≤

(
𝜉2
𝜉1

− 𝜉★2
𝜉★1

)
𝑖 ≤ 𝐶2𝑟𝑁

2
3 for 𝑖 ∈ �𝛿𝑁, 𝑁�. (4.17)

Given 𝛼 ∈ [𝛿𝜉1, (1 − 𝛿)𝜉1], define the point 𝑜 = ( 	𝛼𝑁
 , 	𝛼𝑁𝜉★2/𝜉★1
 ) on the 𝜉★-ray. Let 𝐺𝜌★, [0]
𝑜, 𝑝

be the stationary LPP process on the rectangle 𝑅 = �𝑜, 𝑝� with boundary weights on the south and west
sides given for 𝑖, 𝑗 ≥ 1 by

𝐼
𝜌★, [0]
𝑜+𝑖𝑒1

= 𝐺𝜌★
0,𝑜+𝑖𝑒1

− 𝐺𝜌★
0,𝑜+(𝑖−1)𝑒1

and 𝐽
𝜌★, [0]
𝑜+ 𝑗𝑒2

= 𝐺𝜌★
0,𝑜+ 𝑗𝑒2

− 𝐺𝜌★
0,𝑜+( 𝑗−1)𝑒2

.

Superscript [0] indicates that the boundary weights come from 𝐺
𝜌★
0,•. By Lemma B.3, the crossing point

of the geodesic 𝜈★ through the south and west boundary of 𝑅 is the exit point of the geodesic of 𝐺𝜌★, [0]
𝑜, 𝑝

from that boundary. By (4.17){
𝜈★ ∩ C

𝜉
	𝛼𝑁 
, 2𝐶2𝑟

= ∅
}
⊂
{
𝜈★ ∩ �𝑜, 𝑜 + 2𝐶2𝑟𝑁

2
3 𝑒2� = ∅

}
⊂
{
𝑍
𝜌★, [0]
𝑜,𝑝

∉ �−2𝐶2𝑟𝑁
2
3 , 0�

}
.

From this,

P
(
𝜈★ ∩ C

𝜉
	𝛼𝑁 
, 2𝐶2𝑟

= ∅
)
≤ P

(
𝑍
𝜌★
𝑜,𝑝

∉ �−2𝐶2𝑟𝑁
2
3 , 0�

)
= P

(
𝑍
𝜌★
𝑜,𝑝

> 0
)
+ P

(
𝑍
𝜌★
𝑜,𝑝

< −2𝐶2𝑟𝑁
2
3
)
.

(4.18)

(The superscript [0] can be dropped from 𝑍
𝜌★, [0]
𝑜,𝑝

in probability statements because it makes no
difference to the distribution.) We show that the last two probabilities are small. Let

𝑦 = 𝑝2 −
𝜉★2
𝜉★1

𝑁𝜉1

be the vertical distance between the rays 𝜉 and 𝜉★ along the east boundary of 𝑅. By (4.17),

𝐶1𝑟𝑁
2
3 ≤ 𝑦 ≤ 𝐶2𝑟𝑁

2
3 .

Since 𝑝 − 𝑦𝑒2 − 𝑜 points in the characteristic direction of 𝜌★, the bounds below follow from (4.13) and
(4.6) for a constant 𝐶 = 𝐶 (𝜀, 𝛿), uniformly for 𝜉1 ∈

[
𝜀

1+𝜀 ,
1

1+𝜀
]

and 𝛼 ∈ [𝛿𝜉1, (1 − 𝛿)𝜉1]:

P(𝑍𝜌★
𝑜,𝑝

> 0) ≤ 𝐶𝑟−3

and (with first an application of Lemma B.4)

P(𝑍𝜌★
𝑜,𝑝

< −2𝐶2𝑟𝑁
2
3 ) = P

(
𝑍
𝜌★
𝑜,𝑝−	𝑦
𝑒2

< −2𝐶2𝑟𝑁
2
3 + 	𝑦


)
≤ P(𝑍𝜌★

𝑜,𝑝−	𝑦
𝑒2
< −𝐶2𝑟𝑁

2
3 ) ≤ 𝐶𝑟−3.
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Substituting this into (4.18) gives a constant 𝐶 (𝜀, 𝛿) independent of 𝜉, 𝛼 such that

P(𝜈★ ∩ C
𝜉
	𝛼𝑁 
, 2𝐶2𝑟

= ∅) ≤ 𝐶𝑟−3.

Similarly, one shows that

P(𝜈★ ∩ C
𝜉
	𝛼𝑁 
, 2𝐶2𝑟

= ∅) ≤ 𝐶𝑟−3.

Combining the bounds above with Corollary 4.3 gives the next estimate, still with a constant 𝐶 (𝜀, 𝛿)
independent of 𝜉, 𝛼:

P
{
𝑍
𝜌★
0, 𝑝 < 0, 𝑍𝜌

★

0, 𝑝 > 0, 𝜈★ ∩ C
𝜉
	𝛼𝑁 
, 2𝐶2𝑟

≠ ∅, 𝜈★ ∩ C
𝜉
	𝛼𝑁 
, 2𝐶2𝑟

≠ ∅
}
≥ 1 − 𝐶𝑟−3.

The proof of the lemma is complete once we show that the event above implies the complement of
(4.15): namely, that{

𝑍
𝜌★
0, 𝑝 < 0, 𝑍𝜌

★

0, 𝑝 > 0, 𝜈★ ∩ C
𝜉
	𝛼𝑁 
, 2𝐶2𝑟

≠ ∅, 𝜈★ ∩ C
𝜉
	𝛼𝑁 
, 2𝐶2𝑟

≠ ∅
}

⊂
{
𝜋0, 𝑝 ∩ C

𝜉
𝛼𝑁 , 2𝐶2𝑟

≠ ∅
}
.

(4.19)

The inclusion (4.19) holds because conditions 𝑍𝜌★0, 𝑝 < 0, 𝑍𝜌
★

0, 𝑝 > 0 imply that the geodesic 𝜋0, 𝑝 runs
between geodesics 𝜈★ and 𝜈★, with 𝜈★ above 𝜋0, 𝑝 and 𝜈★ below and to the right of 𝜋0, 𝑝 . This is where
the coupling (4.16) comes in. We argue one of the two cases: namely,

𝑍
𝜌★

0, 𝑝 > 0 implies that 𝜋0, 𝑝 never goes strictly to the right of 𝜈★. (4.20)

Let 𝑛 = |𝑝 |1 so that the geodesics end at 𝜋0, 𝑝
𝑛 = 𝜈★𝑛 = 𝑝. Suppose claim (4.20) fails, so that at some index

𝑘 , 𝜋0, 𝑝
𝑘 = 𝜈★𝑘 = 𝑧 but 𝜈★𝑘+1 = 𝑧 + 𝑒2 while 𝜋0, 𝑝

𝑘+1 = 𝑧 + 𝑒1. 𝑍𝜌
★

0, 𝑝 > 0 implies that 𝑘 ≥ 1 and 𝑧 + 𝑒2 lies in
the bulk Z>0. Since 𝜋 [𝑘+1,𝑛] did not follow the bulk path 𝜈★[𝑘+1,𝑛] , the weight of 𝜋 [𝑘+1,𝑛] must be strictly
larger than that of 𝜈★[𝑘+1,𝑛] . But now the first inequality of (4.16) guarantees that path segment 𝜈★[𝑘+1,𝑛]

is also inferior to 𝜋 [𝑘+1,𝑛] for the stationary LPP value 𝐺𝜌★

0, 𝑝 . Thus the separation did not happen. �

5. No bi-infinite geodesic away from the axes

This section proves Theorem 2.1. Recall the southwest boundary part 𝜕𝑁 = ({−𝑁} × �−𝑁,−𝜀𝑁� ) ∪
(�−𝑁,−𝜀𝑁� × {−𝑁}) from (2.1). The parameter 𝜀 > 0 now stays fixed and hence will be suppressed
from some notation. As in (4.2), a point 𝑜 = (𝑜1, 𝑜2) ∈ 𝜕𝑁 is associated with its direction vector
𝜉 (𝑜) = (𝜉1 (𝑜), 1 − 𝜉1(𝑜)) ∈ ]𝑒2, 𝑒1 [ and rate parameter 𝜌(𝑜) ∈ (0, 1) through the relations

𝜉 (𝑜) =
(

𝑜1
𝑜1 + 𝑜2

,
𝑜2

𝑜1 + 𝑜2

)
=

(
(1 − 𝜌(𝑜))2

(1 − 𝜌(𝑜))2 + 𝜌(𝑜)2 ,
𝜌(𝑜)2

(1 − 𝜌(𝑜))2 + 𝜌(𝑜)2

)
(5.1)

and

𝜌(𝑜) =
√
|𝑜2 |√

|𝑜1 | +
√
|𝑜2 |

=

√
1 − 𝜉1(𝑜)√

𝜉1(𝑜) +
√

1 − 𝜉1 (𝑜)
. (5.2)

For all 𝑜 ∈ 𝜕𝑁 , we have the bounds

𝜉 (𝑜) ∈
[( 𝜀

1 + 𝜀 ,
1

1 + 𝜀

)
,
( 1
1 + 𝜀 ,

𝜀

1 + 𝜀

)]
and

√
𝜀

1 +
√
𝜀
≤ 𝜌(𝑜) ≤ 1

1 +
√
𝜀
.
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Figure 5.1. Lemma 5.1. For large 𝑟 , the exit point 𝑍𝜌
★ (𝑜)

𝑜, 	𝑁 2/3 
𝑒2
is far to the right from 𝑜 on the scale

𝑁2/3. By the uniqueness of finite geodesics, the same holds for 𝑍𝜌
★ (𝑜)

𝑜,𝑥 for all 𝑥 ∈ I, and similarly for
exit points 𝑍𝜌★ (𝑜)𝑜,𝑥 above 𝑜.

The proof uses LPP values from points of 𝜕𝑁 to the vertical segment I = {0} × �−𝑁 2
3 , 𝑁

2
3 �. This

latter is indexed by 𝐼 = �−𝑁 2
3 , 𝑁

2
3 �. For 𝑜 ∈ 𝜕𝑁 , let

𝜌★(𝑜) = 𝜌(𝑜) − 𝑟𝑁− 1
3 and 𝜌★(𝑜) = 𝜌(𝑜) + 𝑟𝑁− 1

3

and consider the stationary LPP processes 𝐺𝜌★

𝑜,• and 𝐺𝜌★
𝑜,• based at 𝑜. The next lemma shows that a large

enough 𝑟 forces the exit point of 𝐺𝜌★

𝑜,𝑥 to the 𝑥-axis and that of 𝐺𝜌★
𝑜,𝑥 to the 𝑦-axis, arbitrarily far on

the 𝑁2/3 scale, with a probability bound that is uniform over 𝑜 ∈ 𝜕𝑁 and 𝑥 ∈ I. See Figure 5.1 for an
illustration.

Lemma 5.1. For 0 < 𝜀 < 1, there exist finite positive constants 𝐶0 (𝜀), 𝐶1 (𝜀) such that, whenever 𝑑 and
𝑟 satisfy

1 ≤ 𝑑 ≤ 1
2𝜀𝑁

1/3 and 𝐶0 (𝜀)𝑑 ≤ 𝑟 ≤
√
𝜀

2(1 +
√
𝜀 )

𝑁1/3, (5.3)

the following bounds hold for all 𝑁 ≥ 1, 𝑥 ∈ I, and 𝑜 ∈ 𝜕𝑁 :

P
{
𝑍
𝜌★ (𝑜)
𝑜,𝑥 ≥ −𝑑𝑁2/3} ≤ 𝐶1 (𝜀)𝑟−3 (5.4)

and

P
{
𝑍
𝜌★ (𝑜)
𝑜,𝑥 ≤ 𝑑𝑁2/3} ≤ 𝐶1 (𝜀)𝑟−3, (5.5)

where 𝜌★(𝑜) = 𝜌(𝑜) − 𝑟𝑁− 1
3 and 𝜌★(𝑜) = 𝜌(𝑜) + 𝑟𝑁− 1

3 .

Proof. The upper bound 𝑟 ≤
√
𝜀

2(1+
√
𝜀 ) 𝑁

1/3 guarantees that 𝜌★(𝑜), 𝜌★(𝑜) ∈ [𝜀′, 1− 𝜀′] for all 𝜌(𝑜), and
hence the estimates from the increment-stationary CGM apply.

We prove (5.5). (5.4) is similar. Represent 𝑜 ∈ 𝜕𝑁, 𝜀 as 𝑜 = −(𝑎𝑁, 𝑏𝑁), where 𝑎 ∨ 𝑏 = 1 and
𝑎 ∧ 𝑏 ∈ [𝜀, 1]. Abbreviate 𝜌 = 𝜌(𝑜) and 𝜌★ = 𝜌★(𝑜). Then 𝑎/𝑏 = ( 1−𝜌

𝜌 )2.
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Uniqueness of geodesics forces the 𝑜 to 	𝑁2/3
𝑒2 geodesic to stay above the 𝑜 to 𝑥 ∈ I geodesic.
Then apply Lemma B.3 and translate 𝑜 to the origin 0 to deduce:

P
{
𝑍
𝜌★

𝑜,𝑥 ≤ 𝑑𝑁2/3} ≤ P
{
𝑍
𝜌★

𝑜, 	𝑁 2/3 
𝑒2
≤ 𝑑𝑁2/3} = P{𝑍𝜌★

𝑜, 	𝑁 2/3 
𝑒2−	𝑑𝑁 2/3 
𝑒1
≤ −1

}
= P

{
𝑍
𝜌★

0, (𝑎𝑁−	𝑑𝑁 2/3 
, 𝑏𝑁+	𝑁 2/3 
) ≤ −1
}
.

(5.6)

Define a new scaling parameter 𝑀 by

𝑎𝑁 − 𝑑𝑁2/3 = 𝑀𝜉1 (𝜌★).

The assumption 𝑑 ≤ 1
2𝜀𝑁

1/3 ≤ 1
2𝑎𝑁

1/3 guarantees that 𝑀 > 0.
To apply (4.14) to the last probability in (5.6), we bound the deviation of 𝑏𝑁 + 	𝑁2/3
 from the

characteristic point 𝑀𝜉2 (𝜌★).

𝑀𝜉2 (𝜌★) − 𝑏𝑁 − 	𝑁2/3
 ≥ 𝑀𝜉2 (𝜌★) − 𝑏𝑁 − 𝑁2/3

= (𝑎𝑁 − 𝑑𝑁2/3)
(

𝜌★

1 − 𝜌★

)2
− 𝑎𝑁

(
𝜌

1 − 𝜌

)2
− 𝑁2/3

= 𝑁2/3
(
𝑎𝑟

𝜌★ + 𝜌 − 2𝜌𝜌★

(1 − 𝜌★)2(1 − 𝜌)2 − 𝑑
( 𝜌★

1 − 𝜌★

)2
− 1

)
= 𝑀2/3 · 𝛼[𝜌

★]2/3(1 − 𝜌★)4/3

(𝑎 − 𝑑𝑁−1/3)2/3 · 𝑎𝑟 (𝜌
★ + 𝜌 − 2𝜌𝜌★) − 𝑑 (𝜌★)2(1 − 𝜌)2 − (1 − 𝜌★)2(1 − 𝜌)2

(1 − 𝜌★)2(1 − 𝜌)2 .

The above followed from definitions (4.2) and (4.3). Next bound the last line from below. The assumption
𝑟 ≤

√
𝜀

2(1+
√
𝜀 ) 𝑁

1/3 guarantees that

𝜌★ + 𝜌 − 2𝜌𝜌★ ≥ 𝑐6(𝜀)

for a positive constant 𝑐6 (𝜀) whose precise value is immaterial. Use additionally 𝛼[𝜌★] ≥ 1, 𝑎 ≥ 𝜀 and
𝑑 ≥ 1 to get the lower bound

𝑀𝜉2 (𝜌★) − 𝑏𝑁 − 	𝑁2/3
 ≥ 𝑀2/3(𝑐6 (𝜀)𝜀𝑟 − 2𝑑) ≥ 𝑀2/3𝑐7 (𝜀)𝑟

where the last inequality follows from assuming 𝑟 ≥ 4𝑑𝑐6 (𝜀)−1𝜀−1 ≡ 𝐶0 (𝜀)𝑑 and defining 𝑐7(𝜀)
suitably. Returning to (5.6), we have

P
{
𝑍
𝜌★

𝑜,𝑥 ≤ 𝑑𝑁2/3} = P{𝑍𝜌★0, (𝑎𝑁−	𝑑𝑁 2/3 
, 𝑏𝑁+	𝑁 2/3 
) ≤ −1
}

≤ P
{
𝑍
𝜌★

0, ( 	𝑀 𝜉1 (𝜌★) 
, 	𝑀 𝜉2 (𝜌★) 
−	𝑀 2/3𝑟 𝑐7 (𝜀) 
 )
≤ −1

}
≤ 𝐶1 (𝜀)𝑟−3.

The last inequality comes from (4.14). The constant 𝜅 in (4.14) can be fixed at 2 and ignored. �

We introduce a pair of parameters 𝑑 = (𝑑1, 𝑑2) ∈ Z2
≥1 that control coarse graining on the scale 𝑁2/3,

𝑑1 on the southwest portion of the boundary of the square �−𝑁, 𝑁�2 and 𝑑2 on the northeast part. For
𝑜 ∈ 𝜕𝑁 , let

I𝑜,𝑑 = {𝑢 ∈ 𝜕𝑁 : |𝑢 − 𝑜 |1 ≤ 1
2𝑑1𝑁

2
3 }

and
𝑜𝑐 = the unique minimal point of I𝑜,𝑑 in the coordinatewise partial order on Z2. (5.7)

For an illustration of 𝑜, 𝑜𝑐 and I𝑜,𝑑 , see Figure 5.2.
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For a given point 𝑜 ∈ 𝜕𝑁 , we compare the LPP processes 𝐺𝑢,• from initial points 𝑢 ∈ I𝑜,𝑑 with
increment-stationary LPP processes 𝐺𝜌★

𝑜𝑐 ,• and 𝐺𝜌★

𝑜𝑐 ,• with base point 𝑜𝑐 and parameters

𝜌★ = 𝜌(𝑜𝑐) − 𝑟𝑁− 1
3 and 𝜌★ = 𝜌(𝑜𝑐) + 𝑟𝑁− 1

3 ,

assumed to satisfy 𝜌★, 𝜌★ ∈ (0, 1). The weights on the boundaries with corner at 𝑜𝑐 are coupled as in
Theorem 3.1(iii): for 𝑖, 𝑗 ≥ 1,

𝜔𝑜𝑐+𝑖𝑒1 ≤ 𝐼
𝜌★
𝑜𝑐+𝑖𝑒1

≤ 𝐼
𝜌★

𝑜𝑐+𝑖𝑒1
and 𝜔𝑜𝑐+ 𝑗𝑒2 ≤ 𝐽

𝜌★

𝑜𝑐+ 𝑗𝑒2
≤ 𝐽

𝜌★
𝑜𝑐+ 𝑗𝑒2

.

Associated with these LPP processes are vertical increment variables on the 𝑦-axis. We are concerned
now only with the range 𝑗 ∈ 𝐼, so the increment variables below are well-defined once −𝜀𝑁 < −𝑁2/3.
For 𝑢 ∈ I𝑜,𝑑 and 𝜌 ∈ {𝜌★, 𝜌★}, let

𝐽𝑢𝑗 = 𝐺𝑢, 𝑗𝑒2 − 𝐺𝑢, ( 𝑗−1)𝑒2 and 𝐽
𝜌
𝑗 = 𝐺

𝜌
𝑜𝑐 , 𝑗𝑒2

− 𝐺𝜌
𝑜𝑐 , ( 𝑗−1)𝑒2

, 𝑗 ∈ 𝐼 .

Define the event
𝐴𝑜,𝑑 =

{
𝑍
𝜌★
𝑜𝑐 ,−�𝑁 2/3 �𝑒2

< −𝑑1𝑁
2
3 , 𝑍

𝜌★

𝑜𝑐 , �𝑁 2/3 �𝑒2
> 𝑑1𝑁

2
3

}
. (5.8)

Lemma 5.2. Let 𝑁 ≥ 𝑁0 (𝜀) so that the increment variables are well-defined for 𝑗 ∈ 𝐼. On the event
𝐴𝑜,𝑑 , we have the inequalities

𝐽
𝜌★

𝑗 ≤ 𝐽𝑢𝑗 ≤ 𝐽
𝜌★
𝑗 ∀ 𝑗 ∈ 𝐼, 𝑢 ∈ I𝑜,𝑑 . (5.9)

There exist constants 𝐶0 (𝜀), 𝐶1 (𝜀) such that, whenever (𝑑1, 𝑟) satisfy (5.3), then

P
(
𝐴𝑐𝑜,𝑑

)
≤ 𝐶1 (𝜀)𝑟−3 for all 𝑜 ∈ 𝜕𝑁 . (5.10)

Proof. We prove the second inequality of (5.9). The first one comes analogously.
Let𝐺𝑥,𝑦 be the LPP process on the quadrant 𝑜𝑐+Z2

≥0 that uses weights𝜔 defined by𝜔𝑜𝑐+ 𝑗𝑒2 = 𝐽
𝜌★
𝑜𝑐+ 𝑗𝑒2

for 𝑗 ≥ 1, 𝜔𝑜𝑐 = 0, and 𝜔𝑜𝑐+𝑥 = 𝜔𝑜𝑐+𝑥 for 𝑥 · 𝑒1 > 0.
Suppose first that 𝑢 = 𝑜𝑐 + ℓ𝑒2 for some ℓ ≥ 0. The uniqueness of finite geodesics together with the

first inequality of the event 𝐴𝑜,𝑑 in (5.8) implies that 𝑍𝜌★𝑜𝑐 ,𝑥 < −𝑑1𝑁
2
3 for all 𝑥 ∈ I. Hence both 𝑢 and

𝑢 + 𝑒2 lie on the geodesic of 𝐺𝜌★
𝑜𝑐 ,𝑥 for all 𝑥 ∈ I. Consequently,

𝐺
𝜌★
𝑜𝑐 ,𝑥+𝑒2 − 𝐺

𝜌★
𝑜𝑐 ,𝑥 = 𝐺𝑢,𝑥+𝑒2 − 𝐺𝑢,𝑥 .

Lemma B.1 gives the inequality

𝐺𝑢,𝑥+𝑒2 − 𝐺𝑢,𝑥 ≥ 𝐺𝑢,𝑥+𝑒2 − 𝐺𝑢,𝑥 .

The other case is that 𝑢 = 𝑜𝑐 + 𝑘𝑒1 for some 𝑘 ≥ 1. Then 𝐺𝜌★
𝑜𝑐 ,𝑥 = 𝐺𝑜𝑐 ,𝑥 and 𝐺𝑢,𝑥 = 𝐺𝑢,𝑥 . This

time, the conclusion follows from Lemma B.2.
Bound (5.10) comes from Lemma 5.1. �

Next we perform the analogous construction in the northeast quadrant. As in (2.2), 𝜕𝑁 = {𝑁} ×
�𝜀𝑁, 𝑁� ∪ �𝜀𝑁, 𝑁� × {𝑁}. A point 𝑜 = (𝑜1, 𝑜2) ∈ 𝜕𝑁 is associated with a density 𝜌(𝑜) ∈ (0, 1) and
a direction 𝜉 (𝑜) ∈ ]𝑒2, 𝑒1 [ through the relations (5.1)–(5.2). For 𝑥, 𝑦 ∈ Z2 such that 𝑥 ≤ 𝑦, define a
reversed last-passage process 𝐺𝑦,𝑥 = 𝐺𝑥,𝑦 in terms of the i.i.d. Exp(1) 𝜔-weights.

For each parameter value 𝜌 ∈ (0, 1), analogously with (3.1)–(3.2), we define stationary last-passage
percolation processes 𝐺𝜌

𝑜,•
on the southwest quadrant 𝑜 + Z2

≤0. Let { 𝐼̂𝜌
𝑜−𝑖𝑒1

}𝑖∈Z>0 and {𝐽𝜌
𝑜− 𝑗𝑒2

} 𝑗∈Z>0 be
mutually independent boundary weights on the north and east, with marginal distributions 𝐼̂𝜌

𝑜−𝑖𝑒1
∼
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Exp(1 − 𝜌) and 𝐽𝜌
𝑜− 𝑗𝑒2

∼ Exp(𝜌), independent of the boundary variables 𝐼𝜌𝑜+𝑖𝑒1
, 𝐽

𝜌
𝑜+ 𝑗𝑒2

in the southwest
quadrant. Put 𝐺𝜌

𝑜, 𝑜
= 0 and on the boundaries

𝐺
𝜌

𝑜, 𝑜−𝑘𝑒1
=

𝑘∑
𝑖=1

𝐼̂
𝜌

𝑜−𝑖𝑒1
and 𝐺

𝜌

𝑜, 𝑜−𝑙𝑒2
=

𝑙∑
𝑗=1

𝐽
𝜌

𝑜− 𝑗𝑒2
. (5.11)

Then in the bulk for 𝑥 = (𝑥1, 𝑥2) ∈ 𝑜 + Z2
<0,

𝐺
𝜌

𝑜, 𝑥
= max

1≤𝑘≤𝑜1−𝑥1

{
𝑘∑
𝑖=1

𝐼̂
𝜌

𝑜−𝑖𝑒1
+ 𝐺 𝑜−𝑘𝑒1−𝑒2 , 𝑥

}∨
max

1≤ℓ≤𝑜2−𝑥2

⎧⎪⎨⎪⎩
ℓ∑
𝑗=1

𝐽
𝜌

𝑜− 𝑗𝑒2
+ 𝐺 𝑜−ℓ𝑒2−𝑒1 , 𝑥

⎫⎪⎬⎪⎭ . (5.12)

For a southwest endpoint 𝑝 ∈ 𝑜 + Z2
<0, let 𝑍𝜌

𝑜,𝑝
be the signed exit point of the geodesic 𝜋̂𝜌,𝑜, 𝑝• of 𝐺𝜌

𝑜,𝑝

from the north and east boundaries of 𝑜 + Z2
≤0. Precisely,

𝑍
𝜌

𝑜, 𝑥
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
arg max

𝑘≥1

{ ∑𝑘
𝑖=1 𝐼̂

𝜌

𝑜−𝑖𝑒1
+ 𝐺 𝑜−𝑘𝑒1−𝑒2 , 𝑥

}
, if 𝜋̂𝜌,𝑜, 𝑥1 = 𝑜 − 𝑒1,

−arg max
ℓ≥1

{ ∑ℓ
𝑗=1 𝐽

𝜌

𝑜− 𝑗𝑒2
+ 𝐺 𝑜−ℓ𝑒2−𝑒1 , 𝑥

}
, if 𝜋̂𝜌,𝑜, 𝑥1 = 𝑜 − 𝑒2.

For 𝑜 ∈ 𝜕𝑁 , let

Î𝑜,𝑑 =
{
𝑣 ∈ 𝜕𝑁 : |𝑣 − 𝑜 |1 ≤ 1

2𝑑2𝑁
2/3}

and (with an illustration in Figure 5.2),

𝑜𝑐 = the unique maximal point of Î𝑜,𝑑 in the coordinatewise partial order on Z2. (5.13)

Define again parameters

𝜌★ = 𝜌(𝑜𝑐) − 𝑟𝑁− 1
3 and 𝜌★ = 𝜌(𝑜𝑐) + 𝑟𝑁− 1

3 .

The weights on the boundaries with corner at 𝑜𝑐 are coupled as in Theorem 3.1(iii): for 𝑖, 𝑗 ≥ 1,

𝜔𝑜𝑐−𝑖𝑒1 ≤ 𝐼̂
𝜌★
𝑜𝑐−𝑖𝑒1

≤ 𝐼̂
𝜌★

𝑜𝑐−𝑖𝑒1
and 𝜔𝑜𝑐− 𝑗𝑒2 ≤ 𝐽

𝜌★

𝑜𝑐− 𝑗𝑒2
≤ 𝐽

𝜌★
𝑜𝑐− 𝑗𝑒2

.

Define increment variables on the vertical edges {(𝑥 + 𝑒1, 𝑥 + 𝑒1 + 𝑒2) : 𝑥 ∈ I} shifted by 𝑒1 from I. For
𝑣 ∈ Î𝑜,𝑑 , 𝑗 ∈ 𝐼, and 𝜌 ∈ {𝜌★, 𝜌★}, let

𝐽𝑣𝑗 = 𝐺𝑣,𝑒1+( 𝑗−1)𝑒2 − 𝐺𝑣,𝑒1+ 𝑗𝑒2 and 𝐽
𝜌
𝑗 = 𝐺

𝜌

𝑜𝑐 , 𝑒1+( 𝑗−1)𝑒2
− 𝐺𝜌

𝑜𝑐 , 𝑒1+ 𝑗𝑒2
.

Define the event

𝐵𝑜,𝑑 =
{
𝑍
𝜌★
𝑜𝑐 , �𝑁 2/3 �𝑒2+𝑒1

< −𝑑2𝑁
2
3 , 𝑍

𝜌★

𝑜𝑐 ,−�𝑁 2/3 �𝑒2+𝑒1
> 𝑑2𝑁

2
3

}
. (5.14)

We have this analogue of Lemma 5.2.

Lemma 5.3. Let 𝑁 ≥ 𝑁0 (𝜀) so that the increment variables are well-defined for 𝑗 ∈ 𝐼. On the event
𝐵𝑜,𝑑 , we have the inequalities

𝐽
𝜌★

𝑗 ≤ 𝐽𝑣𝑗 ≤ 𝐽
𝜌★
𝑗 ∀ 𝑗 ∈ 𝐼, 𝑣 ∈ Î𝑜,𝑑 . (5.15)
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There exist constants 𝐶0 (𝜀), 𝐶1 (𝜀) such that, whenever (𝑑2, 𝑟) satisfy (5.3), then

P
(
𝐵𝑐𝑜,𝑑

)
≤ 𝐶1 (𝜀)𝑟−3 for all 𝑜 ∈ 𝜕𝑁 . (5.16)

Let 𝑜 ∈ 𝜕𝑁 , 𝑜 ∈ 𝜕𝑁 and consider LPP from points 𝑢 ∈ I𝑜,𝑑 to the interval I on the 𝑦-axis and
reverse LPP from points 𝑣 ∈ Î𝑜,𝑑 to the shifted interval 𝑒1 + I. Abbreviate 𝜆★ = 𝜌★(𝑜𝑐), 𝜆★ = 𝜌★(𝑜𝑐)
and 𝜌★ = 𝜌★(𝑜𝑐) , 𝜌★ = 𝜌★(𝑜𝑐).

A given sequence of steps {𝑋 𝑗 } defines a two-sided walk 𝑆(𝑋) by

𝑆𝑛 (𝑋) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑𝑛

𝑗=1 𝑋 𝑗 𝑛 ≥ 1
0 𝑛 = 0
−
∑0

𝑗=𝑛+1 𝑋 𝑗 𝑛 < 0.

Use this notation to define three random walks indexed by the edges {((0, 𝑗), (1, 𝑗)) : 𝑗 ∈ 𝐼} that run
along the 𝑦-axis. The steps are defined by

𝑋𝑢,𝑣
𝑗 = 𝐽𝑢𝑗 − 𝐽𝑣𝑗 , 𝑌 ′

𝑗 = 𝐽
𝜌★
𝑗 − 𝐽𝜆★𝑗 , and 𝑌 𝑗 = 𝐽

𝜌★

𝑗 − 𝐽𝜆★𝑗 .

The corresponding walks are denoted by

𝑆𝑢,𝑣 = 𝑆(𝑋𝑢,𝑣 ), 𝑆
′
= 𝑆(𝑌 ′), and 𝑆 = 𝑆(𝑌 ).

Recall the events defined in (5.8) and (5.14).

Lemma 5.4. The processes

{𝑆′
𝑚 : 𝑚 ∈ �−𝑁2/3,−1� } and {𝑆𝑛 : 𝑛 ∈ �1, 𝑁2/3� } are independent.

On the event 𝐴𝑜,𝑑 ∩ 𝐵𝑜,𝑑 , for all 𝑢 ∈ I𝑜,𝑑 and 𝑣 ∈ Î𝑜,𝑑 ,

𝑆𝑛 ≤ 𝑆𝑢,𝑣𝑛 ≤ 𝑆
′
𝑛 for 𝑛 ∈ �1, 𝑁2/3�

and 𝑆
′
𝑛 ≤ 𝑆𝑢,𝑣𝑛 ≤ 𝑆𝑛 for 𝑛 ∈ �−𝑁2/3,−1�.

(5.17)

Proof. The independence of the stationary LPP processes defined on the southwest and northeast
quadrants implies that the processes {𝐽𝜌★𝑗 , 𝐽

𝜌★

𝑗 } 𝑗∈𝐼 and {𝐽𝜆★𝑗 , 𝐽𝜆
★

𝑗 } 𝑗∈𝐼 are independent of each other.

Theorem 3.1(i) implies that within these processes, {𝐽𝜌★𝑗 } 𝑗≤0 and {𝐽𝜌
★

𝑗 } 𝑗≥1 are independent, as are
{𝐽𝜆★𝑗 } 𝑗≥1 and {𝐽𝜆★𝑗 } 𝑗≤0. (Note the switch in the direction of indexing: since the geodesics of 𝐺𝜌

𝑜𝑐 ,•
proceed southwest instead of northeast, application of Theorem 3.1 requires reversal of lattice directions.)

Inequalities (5.17) come from the inequalities (5.9) and (5.15). �

Next observe that the walk 𝑆𝑢,𝑣 controls the edge along which the geodesic 𝜋𝑢,𝑣 steps away from the
𝑦-axis.

𝐺𝑢,𝑣 = sup
𝑢2≤𝑛≤𝑣2

{
𝐺𝑢, (0,𝑛) + 𝐺𝑣, (1,𝑛)

}
= sup

𝑢2≤𝑛≤𝑣2

{
𝐺𝑢, (0,0) + [𝐺𝑢, (0,𝑛) − 𝐺𝑢, (0,0) ] + 𝐺𝑣, (1,0) − [𝐺𝑣, (1,0) − 𝐺𝑣, (1,𝑛) ]

}
= sup

𝑢2≤𝑛≤𝑣2

{𝐺𝑢, (0,0) + 𝐺𝑣, (1,0) + 𝑆𝑢,𝑣𝑛 }.
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In consequence,

for 𝑢 ∈ I𝑜,𝑑 and 𝑣 ∈ Î𝑜,𝑑 , the geodesic 𝜋𝑢,𝑣 goes along the edge ((0, 𝑗), (1, 𝑗))
if and only if 𝑗 = arg max

𝑢2≤𝑛≤𝑣2

{𝑆𝑢,𝑣𝑛 } : (5.18)

that is, if and only if the almost surely unique maximum of 𝑆𝑢,𝑣𝑛 is taken at 𝑛 = 𝑗 .
Let 𝑜 ∈ 𝜕𝑁 and 𝑜 = −𝑜 ∈ 𝜕𝑁 , as in Figure 5.2. Let 𝑜𝑐 ∈ I𝑜,𝑑 be defined by (5.7) and 𝑜𝑐 ∈ Î𝑜,𝑑 by

(5.13). We will take 𝑑1 ≠ 𝑑2, so 𝑜𝑐 ≠ −𝑜𝑐 is possible. For 𝑢 ∈ I𝑜,𝑑 and 𝑣 ∈ Î𝑜,𝑑 , define the event

𝑈𝑢,𝑣 = {geodesic 𝜋𝑢,𝑣 uses edge ((0, 0), (1, 0))}. (5.19)

Lemma 5.5. Let 𝑟 = 𝑁
2
15 and 𝑑 = (1, 𝑁 1

8 ). There exist constants 𝐶 (𝜀), 𝑁0 (𝜀) such that for all 𝑜 ∈ 𝜕𝑁
and 𝑁 ≥ 𝑁0 (𝜀),

P

( ⋃
𝑢 ∈ I𝑜,𝑑 , 𝑣 ∈ Î𝑜,𝑑

𝑈𝑢,𝑣

)
≤ 𝐶 (𝜀)𝑁−2/5.

Proof. Fix 𝑜 ∈ 𝜕𝑁 . For any 𝑢 ∈ I𝑜,𝑑 , 𝑣 ∈ Î𝑜,𝑑 , by (5.18),

𝑈𝑢,𝑣 ⊆
{

sup
0<𝑙≤𝑁 2/3

𝑆𝑢,𝑣𝑙 < 0
}
∩
{

sup
−𝑁 2/3≤𝑙<0

𝑆𝑢,𝑣𝑙 < 0
}
.

By Lemma 5.4, on the event 𝐴𝑜,𝑑 ∩ 𝐵𝑜,𝑑 ,⋃
𝑢 ∈ I𝑜,𝑑 , 𝑣 ∈ Î𝑜,𝑑

{
sup

0<𝑙≤𝑁 2/3
𝑆𝑢,𝑣𝑙 < 0

}
⊆
{

sup
0<𝑙≤𝑁 2/3

𝑆𝑙 < 0
}

and
⋃

𝑢 ∈ I𝑜,𝑑 , 𝑣 ∈ Î𝑜,𝑑

{
sup

−𝑁 2/3≤𝑙<0
𝑆𝑢,𝑣𝑙 < 0

}
⊆
{

sup
−𝑁 2/3≤𝑙<0

𝑆
′

𝑙 < 0
}
.

Thus on the event 𝐴𝑜,𝑑 ∩ 𝐵𝑜,𝑑 ,⋃
𝑢 ∈ I𝑜,𝑑 , 𝑣 ∈ Î𝑜,𝑑

𝑈𝑢,𝑣 ⊆
{

sup
0<𝑙≤𝑁 2/3

𝑆𝑙 < 0
}
∩
{

sup
−𝑁 2/3≤𝑙<0

𝑆
′

𝑙 < 0
}
.

By the independence claim of Lemma 5.4,

P

( ⋃
𝑢 ∈ I𝑜,𝑑 , 𝑣 ∈ Î𝑜,𝑑

𝑈𝑢,𝑣
)
≤ P

(
sup

0<𝑙≤𝑁 2/3
𝑆𝑙 < 0

)
P

(
sup

−𝑁 2/3≤𝑙<0
𝑆
′

𝑙 < 0
)
+ P

(
𝐴𝑐𝑜,𝑑 ∪ 𝐵𝑐

𝑜,𝑑

)
. (5.20)

Let 𝜌 = 𝜌(𝑜𝑐) and 𝜆 = 𝜌(𝑜𝑐). Since 𝜌(𝑜) = 𝜌(𝑜), there is a constant 𝐶 (𝜀) such that, for 𝑁 ≥ 1,

|𝜌 − 𝜆 | ≤ 𝐶 (𝜀) (𝑑2 + 𝑑1)𝑁− 1
3 ≤ 𝐶 (𝜀)𝑁−5/24. (5.21)

Each step of the random walk 𝑆 on �1, 𝑁 2
3 � is the difference of independent exponential random

variables with parameters 𝜌★ = 𝜌 + 𝑟𝑁− 1
3 and 𝜆★ = 𝜆 − 𝑟𝑁− 1

3 . Similarly, each step of the random
walk 𝑆′ on �−𝑁2/3,−1� is the difference of independent exponential random variables with parameters
𝜌★ = 𝜌 − 𝑟𝑁− 1

3 and 𝜆★ = 𝜆 + 𝑟𝑁− 1
3 . Take 𝑟 = 𝑁

2
15 . Then for 𝑁 ≥ 𝑁0 (𝜀), we have 𝜌★ > 𝜆★. (By (5.21),
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Figure 5.2. The square �−𝑁, 𝑁�2 with two possible arrangements of the segments I𝑜,𝑑 , Î𝑜,𝑑 and
F̂𝑜,𝑑 = F̂1

𝑜,𝑑
∪ F̂2

𝑜,𝑑
on the boundary of the square. In both cases, 𝑜 = −𝑜.

we can take 𝑁0 (𝜀) = 𝐶 (𝜀)120.) Inequality (C.1) with 𝛼 = 𝜌★ and 𝛽 = 𝜆★ gives the bound

P

(
sup

0<𝑙≤𝑁 2/3
𝑆𝑙 < 0

)
≤ 𝐶

𝑁
1
3

(
1 −

(
𝜌 − 𝜆 + 2𝑟𝑁− 1

3

𝜌 + 𝜆

)2 )𝑁 2/3

+ 𝜌 − 𝜆 + 2𝑟𝑁− 1
3

𝜌 + 𝑟𝑁− 1
3

≤ 𝐶

𝑁
1
3

(
1 −

(
𝜌 − 𝜆 + 2𝑟𝑁− 1

3

𝜌 + 𝜆

)2 )𝑁 2/3

+ 𝐶 (𝑑1 + 𝑑2 + 𝑟)𝑁− 1
3 .

With 𝑟 = 𝑁
2
15 and 𝑑 = (𝑑1, 𝑑2) = (1, 𝑁 1

8 ), the last line is dominated by the last term. Thus there is a
constant 𝐶3 (𝜀) > 0 not depending on 𝑜, such that

P

(
sup

0<𝑙≤𝑁 2/3
𝑆𝑙 < 0

)
≤ 𝐶3𝑁

− 1
5 . (5.22)

Similarly, one shows that

P

(
sup

−𝑁 2/3≤𝑙<0
𝑆
′

𝑙 < 0
)
≤ 𝐶3𝑁

− 1
5 . (5.23)

With 𝑟 = 𝑁
2
15 , (5.10) and (5.16) give for 𝑁 ≥ 𝑁0 (𝜀)

P
(
𝐴𝑐𝑜,𝑑 ∪ 𝐵𝑐𝑜,𝑑

)
≤ 𝐶𝑟−3 = 𝐶𝑁− 2

5 . (5.24)

To complete the proof, substitute (5.22), (5.23), and (5.24) into (5.20). �

Remark 5.6. In the proof above, we can observe where the optimal estimate is lost. Namely, if the
probability P

(
𝐴𝑐𝑜,𝑑 ∪ 𝐵𝑐

𝑜,𝑑

)
could be ignored in (5.20), we could take 𝑟 and 𝑑2 to be constants. This

would result in the bound𝐶3𝑁
−1/3 in (5.22) and (5.23). The end result would be an upper bound of order

𝑁−2/3 on the probability that two opposite blocks of size 𝑁2/3 are connected by a geodesic through the
origin. Since geodesics fluctuate on the scale 𝑁2/3, this is the expected order.

Let 𝑜 ∈ 𝜕𝑁 and 𝑜 = −𝑜 be as before above Lemma 5.5. For 𝑑 = (𝑑1, 𝑑2), set

F̂𝑜,𝑑 = {𝑣 ∈ 𝜕𝑁 : |𝑜 − 𝑣 |1 > 1
2𝑑2𝑁

2
3 }.
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Lemma 5.7. Let 𝑑 = (1, 𝑁 1
8 ). There are finite constants 𝐶 (𝜀) and 𝑁0 (𝜀) such that, for any 𝑁 ≥ 𝑁0 (𝜀)

and 𝑜 ∈ 𝜕𝑁 ,

P

( ⋃
𝑢 ∈ I𝑜,𝑑 , 𝑣 ∈ F̂𝑜,𝑑

𝑈𝑢,𝑣
)
≤ 𝐶 (𝜀)𝑁− 3

8 (5.25)

Proof. Define the sets of boundary points

𝜕F̂𝑜,𝑑 = {𝑣 ∈ F̂𝑜,𝑑 : ∃𝑢 ∈ Î𝑜,𝑑 such that 𝑣 ∼ 𝑢}
𝜕I𝑜,𝑑 = {𝑣 ∈ I𝑜,𝑑 : ∃𝑢 ∈ 𝜕𝑁 \ I𝑜,𝑑 such that 𝑣 ∼ 𝑢},

where 𝑣 ∼ 𝑢 means that 𝑣 and 𝑢 are adjacent in the graph Z2. Their cardinalities satisfy 1 ≤ |𝜕F̂𝑜,𝑑 | ≤
|𝜕I𝑜,𝑑 | ≤ 2. (For example, 𝜕F̂𝑜,𝑑 is a singleton if Î𝑜,𝑑 contains one of the endpoints (𝑁, 	𝜀𝑁
) or
(	𝜀𝑁
, 𝑁) of 𝜕𝑁 .) We denote the points of 𝜕F̂𝑜,𝑑 by 𝑞1, 𝑞2 and those of 𝜕I𝑜,𝑑 by ℎ1, ℎ2, labeled so that
these inequalities are satisfied:

𝑞1
1 ≤ 𝑜1 ≤ 𝑞2

1, 𝑞1
2 ≥ 𝑜2 ≥ 𝑞2

2

ℎ1
1 ≥ 𝑜1 ≥ ℎ2

1, ℎ1
2 ≤ 𝑜2 ≤ ℎ2

2.

Geometrically, starting from the north pole (0, 𝑁) and traversing the boundary of the square �−𝑁, 𝑁�2

clockwise, we meet the points (those that exist) in this order: 𝑞1 → 𝑜 → 𝑞2 → ℎ1 → 𝑜 → ℎ2 (Figure
5.3).

For points 𝑢 ∈ 𝜕𝑁 , 𝑣 ∈ 𝜕𝑁 let

P𝑢,𝑣
𝑚 = 𝜋𝑢,𝑣 ∩

{
𝑥 ∈ Z2 : 𝑥1 = 𝑚

}
be the intersection of the geodesic 𝜋𝑢,𝑣 with the vertical line at 𝑥1 = 𝑚. For 𝑡 > 0, let

𝐷𝑢,𝑣
𝑚,𝑡 =

{
inf

𝑝=(𝑝1 , 𝑝2) ∈P𝑢,𝑣
𝑚

���𝑢2 +
𝑣2 − 𝑢2
𝑣1 − 𝑢1

(𝑚 − 𝑢1) − 𝑝2

��� > 𝑡
}

(5.26)

be the event that along this vertical line, the geodesic 𝜋𝑢,𝑣 deviates by distance at least 𝑡 from the straight
line segment from 𝑢 to 𝑣. We now show that the event in (5.25) implies that one of the geodesics 𝜋 ℎ𝑖, 𝑞𝑖

deviates by at least order 𝑑2𝑁
2/3 from the straight line segment [ℎ𝑖 , 𝑞𝑖].

For 𝑜 ∈ 𝜕𝑁 , 𝑢 ∈ 𝜕I𝑜,𝑑 and 𝑣 ∈ 𝜕F̂𝑜,𝑑 decompose as 𝑢 = 𝑜 + 𝑒𝑢 and 𝑣 = 𝑜 + 𝑒𝑣 . These vectors satisfy

|𝑒𝑢 |1 ≤ 1
2𝑑1𝑁

2
3 , |𝑒𝑣 |1 ≥ 1

2𝑑2𝑁
2
3 , |𝑒𝑣1 | ∨ |𝑒𝑣2 | ≤ 2(1 − 𝜀)𝑁, and 𝑒𝑣1 𝑒

𝑣
2 ≤ 0. (5.27)

F̂𝑜,𝑑 is the union of two disjoint pieces separated by Î𝑜,𝑑 , one of which can be empty. F̂1
𝑜,𝑑

is to the
left and above Î𝑜,𝑑 , separated from Î𝑜,𝑑 by the point 𝑞1. F̂2

𝑜,𝑑
is to the right and below Î𝑜,𝑑 , separated

from Î𝑜,𝑑 by the point 𝑞2. They can be expressed as follows:

F̂1
𝑜,𝑑 = {𝑣 ∈ F̂𝑜,𝑑 : 𝑒𝑣1 ≤ 0 ≤ 𝑒𝑣2 } and F̂2

𝑜,𝑑 = {𝑣 ∈ F̂𝑜,𝑑 : 𝑒𝑣2 ≤ 0 ≤ 𝑒𝑣1 }.

Decompose the point appearing in (5.26) suitably, using 𝑣𝑖−𝑢𝑖 = 𝑜𝑖 +𝑒𝑣𝑖 − (𝑜𝑖 +𝑒𝑢𝑖 ) = −2𝑜𝑖 +𝑒𝑣𝑖 −𝑒
𝑢
𝑖 .

𝑢2 +
𝑣2 − 𝑢2
𝑣1 − 𝑢1

(𝑚 − 𝑢1) = 𝑜2 −
𝑣2 − 𝑢2
𝑣1 − 𝑢1

𝑜1 + 𝑒𝑢2 + 𝑣2 − 𝑢2
𝑣1 − 𝑢1

(𝑚 − 𝑒𝑢1 )

=
𝑜2𝑒

𝑣
1 − 𝑜1𝑒

𝑣
2

𝑣1 − 𝑢1
−
𝑜2𝑒

𝑢
1 − 𝑜1𝑒

𝑢
2

𝑣1 − 𝑢1
+ 𝑒𝑢2 + 𝑣2 − 𝑢2

𝑣1 − 𝑢1
(𝑚 − 𝑒𝑢1 ). (5.28)
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The first term on the last line is of order Θ(𝑑2𝑁
2/3) because there is no cancellation in the numerator.

It is positive if 𝑣 ∈ F̂1
𝑜,𝑑

and negative if 𝑣 ∈ F̂2
𝑜,𝑑

. This term dominates because 𝑑2 >> 𝑑1.
From the calculation above, we bound signed vertical distances from the 𝑥-axis to the line segment

[𝑢, 𝑣]. In addition to (5.27), we utilize −𝑁 ≤ 𝑜𝑖 ≤ −𝜀𝑁 , 2𝑁𝜀 ≤ 𝑣𝑖 − 𝑢𝑖 ≤ 2𝑁 , and the slope bound
𝜀 ≤ 𝑣2−𝑢2

𝑣1−𝑢1
≤ 𝜀−1.

First, for 𝑢 ∈ I𝑜,𝑑 and 𝑣 ∈ F̂1
𝑜,𝑑

, we bound below the positive distance from the origin to [𝑢, 𝑣], so
we take 𝑚 = 0. The 𝑒𝑢-terms on line (5.28) are collected together into a single error term.

𝑢2 +
𝑣2 − 𝑢2
𝑣1 − 𝑢1

(−𝑢1) ≥
𝜀𝑁 |𝑒𝑣 |1

2𝑁
−
( 𝑁

2𝑁𝜀
+ 1 + 𝜀−1

)
|𝑒𝑢 |1

≥ 1
4𝜀𝑑2𝑁

2
3 − 2𝜀−1𝑑1𝑁

2
3 ≥ 1

8𝜀𝑑2𝑁
2
3 .

(5.29)

In the last inequality, we used (𝑑1, 𝑑2) = (1, 𝑁1/8) and took 𝑁 ≥ (16𝜀−2)8.
For 𝑢 ∈ I𝑜,𝑑 and 𝑣 ∈ F̂2

𝑜,𝑑
, we bound above the negative distance from the point (1, 0) to [𝑢, 𝑣] and

hence take 𝑚 = 1:

𝑢2 +
𝑣2 − 𝑢2
𝑣1 − 𝑢1

(1 − 𝑢1) ≤ − 𝜀𝑁 |𝑒𝑣 |1
2𝑁

+
( 𝑁

2𝑁𝜀
+ 1 + 𝜀−1

)
|𝑒𝑢 |1 + 𝜀−1

≤ − 1
4𝜀𝑑2𝑁

2
3 + 3𝜀−1𝑑1𝑁

2
3 ≤ − 1

8𝜀𝑑2𝑁
2
3 .

(5.30)

Now suppose that for some 𝑢 ∈ I𝑜,𝑑 and 𝑣 ∈ F̂𝑜,𝑑 , the geodesic 𝜋𝑢,𝑣 goes through the edge
((0, 0), (1, 0)). We have two cases:

(i) If 𝑣 ∈ F̂1
𝑜,𝑑

, then the geodesic 𝜋 ℎ1, 𝑞1 stays below and to the right of 𝜋𝑢,𝑣 because both its endpoints
are below and to the right of the endpoints of 𝜋𝑢,𝑣 . Then (5.29) with 𝑢 = ℎ1 and 𝑣 = 𝑞1 shows that
at 𝑥-coordinate 𝑥 = 0, the geodesic 𝜋 ℎ1, 𝑞1 deviates from the straight line segment [ℎ1, 𝑞1] by at
least 1

8𝜀𝑑2𝑁
2
3 . This case is illustrated in Figure 5.3.

(ii) If 𝑣 ∈ F̂2
𝑜,𝑑

, then the geodesic 𝜋 ℎ2, 𝑞2 stays above and to the left of 𝜋𝑢,𝑣 . Now (5.30) with 𝑢 = ℎ2

and 𝑣 = 𝑞2 shows that at 𝑥-coordinate 𝑥 = 1, the geodesic 𝜋 ℎ2, 𝑞2 deviates from the straight line
segment [ℎ2, 𝑞2] by at least 1

8𝜀𝑑2𝑁
2
3 .

Put cases (i) and (ii) together, and apply Lemma 4.4:

P

( ⋃
𝑢 ∈ I𝑜,𝑑 , 𝑣 ∈ F̂𝑜,𝑑

𝑈𝑢,𝑣

)
≤ P

(
𝐷ℎ1, 𝑞1

0, 𝐶1 (𝜀)𝑑2𝑁 2/3 ∪ 𝐷ℎ2, 𝑞2

1, 𝐶1 (𝜀)𝑑2𝑁 2/3

)
≤ 𝐶 (𝜀)𝑑−3

2 = 𝐶 (𝜀)𝑁− 3
8 .

The proof is complete. �

Lemma 5.8. There is a constant 𝐶 (𝜀) such that for any 𝑜 ∈ 𝜕𝑁 ,

P

( ⋃
𝑢 ∈ I𝑜,𝑑 , 𝑣 ∈ 𝜕𝑁

𝑈𝑢,𝑣
)
≤ 𝐶 (𝜀)𝑁− 3

8

Proof. Since 𝜕𝑁 = Î𝑜,𝑑 ∪ F̂𝑜,𝑑 ,

P

( ⋃
𝑢 ∈ I𝑜,𝑑 , 𝑣 ∈ 𝜕𝑁

𝑈𝑢,𝑣
)
≤ P

( ⋃
𝑢 ∈ I𝑜,𝑑 , 𝑣 ∈ F̂𝑜,𝑑

𝑈𝑢,𝑣
)
+ P

( ⋃
𝑢 ∈ I𝑜,𝑑 , 𝑣 ∈ Î𝑜,𝑑

𝑈𝑢,𝑣
)

and Lemmas 5.5 and 5.7 give the claimed bound. �
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Figure 5.3. Case (i) in the proof of Lemma 5.7. The geodesic 𝜋𝑢,𝑣 connects I𝑜,𝑑 and F̂1
𝑜,𝑑

through the
edge ((0, 0), (1, 0)). The geodesic 𝜋 ℎ1, 𝑞1 lies below 𝜋𝑢,𝑣 and hence well below the [ℎ1, 𝑞1] line segment
(dashed line).

We come to the final step of the proof that geodesics that connect 𝜕𝑁 and 𝜕𝑁 through the origin are
rare. Recall the event 𝑊𝑁, 𝜀 defined in (2.3).

Proof of Theorem 2.1. A geodesic through the origin takes after that either an 𝑒1 or an 𝑒2 step. By
symmetry, it suffices to control only one case. We prove

P

( ⋃
𝑢 ∈ 𝜕𝑁 , 𝑣 ∈ 𝜕𝑁

𝑈𝑢,𝑣
)
≤ 𝐶 (𝜀)𝑁− 1

24 (5.31)

for the event 𝑈𝑢,𝑣 defined in (5.19). As before, 𝑑 = (1, 𝑁 1
8 ). To coarse grain 𝜕𝑁 let

O𝑁 = 𝜕𝑁 ∩
({
(−𝑁 + 𝑖𝑑1	𝑁

2
3 
 ,−𝑁)

}
𝑖∈Z≥0

⋃ {
(−𝑁,−𝑁 + 𝑗 𝑑1	𝑁

2
3 
)

}
𝑗∈Z≥0

)
.

Then decompose ⋃
𝑢 ∈ 𝜕𝑁 , 𝑣 ∈ 𝜕𝑁

𝑈𝑢,𝑣 ⊆
⋃

𝑜 ∈O𝑁

⋃
𝑢 ∈ I𝑜,𝑑 , 𝑣 ∈ 𝜕𝑁

𝑈𝑢,𝑣 .

As |O𝑁 | ≤ 𝐶 (𝜀)𝑑−1
1 𝑁1− 2

3 = 𝐶 (𝜀)𝑁 1
3 , a union bound and Lemma 5.8 give (5.31):

P

( ⋃
𝑢 ∈ 𝜕𝑁 , 𝑣 ∈ 𝜕𝑁

𝑈𝑢,𝑣
)
≤

∑
𝑜 ∈O𝑁

P

( ⋃
𝑢 ∈ I𝑜,𝑑 , 𝑣 ∈ 𝜕𝑁

𝑈𝑢,𝑣
)
≤ 𝐶 (𝜀)𝑁

1
3 𝑁− 3

8 = 𝐶 (𝜀)𝑁− 1
24 . �

6. No nontrivial axis-directed geodesic

First we complete the proof of Theorem 2.2 with the lemma below and then prove the lemma.

Lemma 6.1. Let 𝜂𝑘 = (𝜂𝑘,1, 1 − 𝜂𝑘,1) ∈ ]𝑒2, 𝑒1 [ be a monotone sequence of directions such that
𝜂1,1 < 𝜂2,1 < · · · < 𝜂𝑘,1 < · · · and lim𝑘→∞ 𝜂𝑘 = 𝑒1. Let 𝑤𝑛,𝑘 = 𝑤(𝑛, 𝑘) = (	𝑛𝜂𝑘,1
, 𝑛− 	𝑛𝜂𝑘,1
) ∈ Z2

>0
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be lattice points such that lim𝑛→∞ 𝑛
−1𝑤𝑛,𝑘 = 𝜂𝑘 for each 𝑘 . Then

lim
𝑘→∞

lim
𝑛→∞

[
𝐺0,𝑤 (𝑛,𝑘) − 𝐺𝑒2 ,𝑤 (𝑛,𝑘)

]
= ∞ P-almost surely. (6.1)

Proof of Theorem 2.2. It is enough to prove the case 𝑒1 for 𝑥 = 0.
Fix 𝜂𝑘 and 𝑤𝑛,𝑘 as in Lemma 6.1, and let Ω0 be the event of full probability on which (6.1) holds.

Fix 𝜔 ∈ Ω0, and suppose that at this 𝜔, there is a semi-infinite geodesic 𝜋 = {𝜋𝑛}𝑛∈Z≥0 such that 𝜋0 = 0,
𝜋ℓ = (ℓ − 1, 1) for some ℓ ≥ 1, and lim𝑛→∞ 𝑛

−1𝜋𝑛 · 𝑒2 = 0. We derive a contradiction.
By connecting 𝑒2 = (0, 1) to the point 𝜋ℓ = (ℓ − 1, 1) (now fixed) with a horizontal path, we get the

lower bound

𝐺𝑒2 , 𝜋𝑛 ≥
ℓ−1∑
𝑖=0

𝜔 (𝑖,1) + 𝐺 𝜋ℓ+1 , 𝜋𝑛 for 𝑛 > ℓ.

That 𝜋 is a geodesic from 𝜋0 = 0 implies 𝐺0, 𝜋𝑛 = 𝐺0, 𝜋ℓ + 𝐺 𝜋ℓ+1 , 𝜋𝑛 for 𝑛 > ℓ. Thus

𝐺0, 𝜋𝑛 − 𝐺𝑒2 , 𝜋𝑛 ≤ 𝐺0, 𝜋ℓ −
ℓ−1∑
𝑖=0

𝜔 (𝑖,1) for all 𝑛 > ℓ. (6.2)

By the assumptions lim 𝑛−1𝜋𝑛 · 𝑒2 = 0 and 𝜂𝑘 ∈ ]𝑒2, 𝑒1 [, and by the crossing lemma, for each 𝑘 there
are infinitely many indices 𝑛 such that

𝐺0, 𝜋𝑛 − 𝐺𝑒2 , 𝜋𝑛 ≥ 𝐺0,𝑤𝑛,𝑘 − 𝐺𝑒2 ,𝑤𝑛,𝑘 .

Hence, for each 𝑘 ,
lim
𝑛→∞

[𝐺0, 𝜋𝑛 − 𝐺𝑒2 , 𝜋𝑛 ] ≥ lim
𝑛→∞

[𝐺0,𝑤𝑛,𝑘 − 𝐺𝑒2 ,𝑤𝑛,𝑘 ] .

Limit (6.1) now contradicts (6.2) because the right-hand side of (6.2) is fixed and finite. �

Proof of Lemma 6.1. Let 𝑟 < ∞, and begin by bounding as follows:

P
{

lim
𝑘→∞

lim
𝑛→∞

[
𝐺0,𝑤 (𝑛,𝑘) − 𝐺𝑒2 ,𝑤 (𝑛,𝑘)

]
≥ 𝑟

}
≥ lim

𝑘→∞
P
{

lim
𝑛→∞

[
𝐺0,𝑤 (𝑛,𝑘) − 𝐺𝑒2 ,𝑤 (𝑛,𝑘)

]
> 𝑟

}
.

(6.3)
We show that the last probability converges to one as 𝑘 → ∞.

Choose parameters 𝜆𝑘 so that

1 > 𝜆𝑘 > 𝜌(𝜂𝑘 ) =
√

1 − 𝜂𝑘,1√
1 − 𝜂𝑘,1 +

√
𝜂𝑘,1

. (6.4)

Define the reverse stationary LPP processes 𝐺 𝜆𝑘

𝑤 (𝑛,𝑘) ,𝑥 for 𝑥 ∈ 𝑤𝑛,𝑘 + Z2
<0 as in (5.11)–(5.12), with

parameter 𝜆𝑘 and northeast base point 𝑤𝑛,𝑘 . As before, for 𝑥 ∈ 𝑤𝑛,𝑘 + Z2
<0, let

𝐽𝜆𝑘

𝑤 (𝑛,𝑘) ,𝑥 = 𝐺 𝜆𝑘

𝑤 (𝑛,𝑘) ,𝑥 − 𝐺
𝜆𝑘

𝑤 (𝑛,𝑘) ,𝑥+𝑒2

denote vertical increment variables with distribution 𝐽𝜆𝑘

𝑤 (𝑛,𝑘) ,𝑥 ∼ Exp(𝜆𝑘 ). Similarly to the argument
in Lemma 5.3, when the geodesic of 𝐺 𝜆𝑘

𝑤 (𝑛,𝑘) ,0 takes a −𝑒1 step from 𝑤𝑛,𝑘 , that is, 𝑍𝜆𝑘

𝑤 (𝑛,𝑘) ,0 > 0, the
increments satisfy

𝐽𝜆𝑘

𝑤 (𝑛,𝑘) ,0 ≤ 𝐺𝑤 (𝑛,𝑘) ,0 − 𝐺𝑤 (𝑛,𝑘) ,𝑒2 = 𝐺0,𝑤 (𝑛,𝑘) − 𝐺𝑒2 ,𝑤 (𝑛,𝑘) . (6.5)

The inequality follows from a combination of Lemmas B.1 and B.2.
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Figure 6.1. When the geodesic is forced to go downward from the northeast corner, the geodesic chooses
the distance 𝑠 on the east side to maximize the sum of Exp(𝜆𝑘 ) weights on the east side and the bulk
LPP value between the origin and the point (𝜂𝑘,1, 1 − 𝜂𝑘,1 − 𝑠).

To take advantage of this, we record the limiting shape functions. The stationary LPP process almost
surely satisfies

lim
𝑛→∞

𝑛−1𝐺 𝜆𝑘

𝑤 (𝑛,𝑘) ,0 =
𝜂𝑘,1

1 − 𝜆𝑘
+

1 − 𝜂𝑘,1
𝜆𝑘

. (6.6)

Let 𝐺 𝜆𝑘

𝑤 (𝑛,𝑘) ,0
[
𝑍𝜆𝑘

𝑤 (𝑛,𝑘) ,0 < 0
]

denote the last-passage value computed by maximizing over only those
paths that satisfy the condition 𝑍𝜆𝑘

𝑤 (𝑛,𝑘) ,0 < 0 or, equivalently, take first a −𝑒2 step from 𝑤𝑛,𝑘 . The limit
can be calculated from a macroscopic variational formula (see Figure 6.1 for justification):

lim
𝑛→∞

𝑛−1𝐺 𝜆𝑘

𝑤 (𝑛,𝑘) ,0
[
𝑍𝜆𝑘

𝑤 (𝑛,𝑘) ,0 < 0
]
= sup

0≤𝑠≤1−𝜂𝑘,1

{ 𝑠
𝜆𝑘

+ 𝑔(𝜂𝑘,1, 1 − 𝜂𝑘,1 − 𝑠)
}

= 𝑔(𝜂𝑘,1, 1 − 𝜂𝑘,1).
(6.7)

That the supremum is achieved at 𝑠 = 0 is a consequence of (6.4). Increasing 𝜆𝑘 strictly above the
characteristic value 𝜌(𝜂𝑘 ) as in (6.4) has the effect that the geodesic of 𝐺 𝜆𝑘

𝑤 (𝑛,𝑘) ,0 spends a macroscopic
distance on the horizontal boundary 𝑤𝑛,𝑘 + Z<0𝑒1. Hence, forcing the −𝑒2 step from the corner 𝑤𝑛,𝑘 is
suboptimal, and it can be checked directly that

𝜂𝑘,1
1 − 𝜆𝑘

+
1 − 𝜂𝑘,1
𝜆𝑘

> 𝑔(𝜂𝑘,1, 1 − 𝜂𝑘,1). (6.8)

We deduce a probability bound from (6.5).

P
(
𝐺0,𝑤 (𝑛,𝑘) − 𝐺𝑒2 ,𝑤 (𝑛,𝑘) ≤ 𝑟

)
≤ P

(
𝑍𝜆𝑘

𝑤 (𝑛,𝑘) ,0 < 0
)
+ P(𝐽𝜆𝑘

𝑤 (𝑛,𝑘) ,0 ≤ 𝑟)

= P
{
𝐺 𝜆𝑘

𝑤 (𝑛,𝑘) ,0 = 𝐺 𝜆𝑘

𝑤 (𝑛,𝑘) ,0 [𝑍
𝜆𝑘

𝑤 (𝑛,𝑘) ,0 < 0]
}
+ 1 − 𝑒−𝜆𝑘𝑟 .

By (6.6), (6.7), and (6.8), the first probability on the last line vanishes as 𝑛 → ∞. Switch to complements
to get

lim
𝑛→∞
P
(
𝐺0,𝑤 (𝑛,𝑘) − 𝐺𝑒2 ,𝑤 (𝑛,𝑘) > 𝑟

)
≥ 𝑒−𝜆𝑘𝑟 .

From this, upon replacing 𝑟 by 𝑟 + 𝜀 for 𝜀 > 0,

P
{

lim
𝑛→∞

[
𝐺0,𝑤 (𝑛,𝑘) − 𝐺𝑒2 ,𝑤 (𝑛,𝑘)

]
> 𝑟

}
≥ P

{
𝐺0,𝑤 (𝑛,𝑘) − 𝐺𝑒2 ,𝑤 (𝑛,𝑘) > 𝑟 + 𝜀 for infinitely many 𝑛

}
≥ 𝑒−𝜆𝑘𝑟−𝜆𝑘 𝜀 .

By assumption, 𝜂𝑘,1 → 1. Hence we can satisfy (6.4) while also having 𝜆𝑘 → 0. Thus the lower
bound in (6.3) equals one. �
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Appendix A. Queues

We formulate last-passage percolation over a bi-infinite strip as a queueing operator. The inputs are
two bi-infinite sequences: the inter-arrival process a = (𝑎 𝑗 ) 𝑗∈Z and the service process s = (𝑠 𝑗 ) 𝑗∈Z.
The queueing interpretation is that 𝑎 𝑗 is the time between the arrivals of customers 𝑗 − 1 and 𝑗 , and
𝑠 𝑗 is the service time of customer 𝑗 . The operations below are well-defined as long as lim𝑚→−∞

∑0
𝑖=𝑚

(𝑠𝑖 − 𝑎𝑖+1) = −∞.
From inputs (a, s), three output sequences

d = 𝐷 (a, s), t = 𝑆(a, s), and s∧

= 𝑅(a, s) (A.1)

are constructed through explicit mappings: the inter-departure process d = (𝑑 𝑗 ) 𝑗∈Z, the sojourn
process t = (𝑡 𝑗 ) 𝑗∈Z, and the dual service times s∧

= (𝑠∧𝑗 ) 𝑗∈Z.
The formulas are as follows. Choose a sequence 𝐺 = (𝐺 𝑗 ) 𝑗∈Z that satisfies 𝑎 𝑗 = 𝐺 𝑗 − 𝐺 𝑗−1. Define

the sequence 𝐺 = (𝐺 𝑗 ) 𝑗∈Z by

𝐺 𝑗 = sup
𝑘: 𝑘≤ 𝑗

{
𝐺𝑘 +

𝑗∑
𝑖=𝑘

𝑠𝑖

}
. (A.2)

The supremum above is taken at some finite 𝑘 . Then set

𝑑 𝑗 = 𝐺 𝑗 − 𝐺 𝑗−1, 𝑡 𝑗 = 𝐺 𝑗 − 𝐺 𝑗 , and 𝑠

∧

𝑗 = 𝑎 𝑗 ∧ 𝑡 𝑗−1. (A.3)

The outputs (A.3) do not depend on the choice of 𝐺 as long as 𝑎 𝑗 = 𝐺 𝑗 − 𝐺 𝑗−1. Letting 𝑘 be a
maximizer for 𝐺 𝑗−1 in (A.2), we obtain the inequality

𝑑 𝑗 = 𝐺 𝑗 − 𝐺 𝑗−1 ≥
(
𝐺𝑘 +

𝑗∑
𝑖=𝑘

𝑠𝑖

)
−
(
𝐺𝑘 +

𝑗−1∑
𝑖=𝑘

𝑠𝑖

)
= 𝑠 𝑗 . (A.4)

If we start with two coordinatewise ordered inter-arrival processes 𝑎 𝑗 ≤ 𝑎′𝑗 (for all 𝑗) and use the same
service process s to compute sojourn processes t = 𝑆(a, s) and t′ = 𝑆(a′, s), the inequality is reversed:

𝑡 ′𝑗 = 𝐺
′
𝑗 − 𝐺 ′

𝑗 = sup
𝑘: 𝑘≤ 𝑗

{
𝐺 ′
𝑘 − 𝐺

′
𝑗 +

𝑗∑
𝑖=𝑘

𝑠𝑖

}
≤ sup

𝑘: 𝑘≤ 𝑗

{
𝐺𝑘 − 𝐺 𝑗 +

𝑗∑
𝑖=𝑘

𝑠𝑖

}
= 𝑡 𝑗 . (A.5)

Note that to compute {𝑑 𝑗 , 𝑡 𝑗 , 𝑠∧𝑗 : 𝑗 ≤ 𝑚}, only inputs {𝑎 𝑗 , 𝑠 𝑗 : 𝑗 ≤ 𝑚} are needed.
The next lemma is a deterministic property of the mappings.

Lemma A.1. The identity 𝐷
(
𝐷 (b, a), s

)
= 𝐷

(
𝐷 (b, 𝑅(a, s)), 𝐷 (a, s)

)
holds whenever the sequences

a, b, s are such that the operations are well-defined.

Proof. Choose (𝐴 𝑗 ) and (𝐵 𝑗 ) so that 𝐴 𝑗 − 𝐴 𝑗−1 = 𝑎 𝑗 and 𝐵 𝑗 − 𝐵 𝑗−1 = 𝑏 𝑗 . Then the output of 𝐷 (b, a)
is the increment sequence of

𝐵ℓ = sup
𝑘≤ℓ

{
𝐵𝑘 +

ℓ∑
𝑖=𝑘

𝑎𝑖

}
.

Next, the output of 𝐷 (𝐷 (b, a), s) is the increment sequence of

𝐻𝑚 = sup
ℓ≤𝑚

{
𝐵ℓ +

𝑚∑
𝑗=ℓ

𝑠 𝑗

}
= sup

𝑘≤𝑚

{
𝐵𝑘 + max

ℓ: 𝑘≤ℓ≤𝑚

[ ℓ∑
𝑖=𝑘

𝑎𝑖 +
𝑚∑
𝑗=ℓ

𝑠 𝑗

]}
.
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Similarly, define first

𝐴 𝑗 = sup
𝑘: 𝑘≤ 𝑗

{
𝐴𝑘 +

𝑗∑
𝑖=𝑘

𝑠𝑖

}
and 𝐵

∧

ℓ = sup
𝑘≤ℓ

{
𝐵𝑘 +

ℓ∑
𝑖=𝑘

𝑠

∧

𝑖

}
.

Then the output of 𝐷
(
𝐷 (b, 𝑅(a, s)), 𝐷 (a, s)

)
is the increment sequence of

𝐻𝑚 = sup
ℓ≤𝑚

{
𝐵

∧

ℓ +
𝑚∑
𝑗=ℓ

𝑎̃ 𝑗

}
= sup

𝑘≤𝑚

{
𝐵𝑘 + max

ℓ: 𝑘≤ℓ≤𝑚

[ ℓ∑
𝑖=𝑘

𝑠

∧

𝑖 +
𝑚∑
𝑗=ℓ

𝑎̃ 𝑗

]}
.

It remains to check that

max
ℓ: 𝑘≤ℓ≤𝑚

[ ℓ∑
𝑖=𝑘

𝑠

∧

𝑖 +
𝑚∑
𝑗=ℓ

𝑎 𝑗

]
= max

ℓ: 𝑘≤ℓ≤𝑚

[ ℓ∑
𝑖=𝑘

𝑎𝑖 +
𝑚∑
𝑗=ℓ

𝑠 𝑗

]
.

This can be verified with a case-by-case analysis. See Lemma 4.3 in [15]. �

Specialize to stationary M/M/1 queues. Let 𝜎 be a service rate and 𝛼1, 𝛼2 arrival rates. Assume
𝜎 > 𝛼1 > 𝛼2 > 0. Let b1, b2, s be mutually independent i.i.d. sequences with marginals 𝑏𝑘𝑗 ∼ Exp(𝛼𝑘 )
for 𝑘 ∈ {1, 2} and 𝑠 𝑗 ∼ Exp(𝜎). Define a jointly distributed pair of arrival sequences by (a1, a2) =(
b1, 𝐷 (b2, b1)

)
. From these and services s, define jointly distributed output variables:

d𝑘 = 𝐷 (a𝑘 , s), t𝑘 = 𝑆(a𝑘 , s), and s∧𝑘 = 𝑅(a𝑘 , s) for 𝑘 ∈ {1, 2}.

Lemma A.2. We have the following properties.

(i) Marginally a2 is a sequence of i.i.d. Exp(𝛼2) variables.
(ii) For fixed 𝑘 ∈ {1, 2} and 𝑚 ∈ Z, the random variables {𝑑𝑘𝑗 } 𝑗≤𝑚, 𝑡𝑘𝑚, and {𝑠∧𝑘𝑗 } 𝑗≤𝑚 are mutually

independent with marginal distributions 𝑑𝑘𝑗 ∼ Exp(𝛼𝑘 ), 𝑡𝑘𝑚 ∼ Exp(𝜎 − 𝛼𝑘 ), and 𝑠∧𝑘𝑗 ∼ Exp(𝜎).
(iii) For a fixed 𝑘 ∈ {1, 2}, sequences d𝑘 and s∧𝑘 are mutually independent sequences of i.i.d. random

variables with marginal distributions 𝑑𝑘𝑗 ∼ Exp(𝛼𝑘 ) and 𝑠∧𝑘𝑗 ∼ Exp(𝜎).

(iv) (d1, d2) 𝑑
= (a1, a2): in other words, we have a distributional fixed point for this joint queueing

operator.
(v) For any 𝑚 ∈ Z, the random variables {𝑎2

𝑖 }𝑖≤𝑚 and {𝑎1
𝑗 } 𝑗≥𝑚+1 are mutually independent.

Proof. Parts (i)–(iii) are basic M/M/1 queueing theory. Proofs can be found, for example, in Lemma
B.2 in Appendix B of [15].

For part (iv), the marginal distributions of d1 and d2 are the correct ones by Lemma A.2(iii). To
establish the correct joint distribution, the definition of (a1, a2) points us to find an i.i.d. Exp(𝛼2) random
sequence z that is independent of d1 and satisfies d2 = 𝐷 (z, d1). From the definitions and Lemma A.1,

d2 = 𝐷 (a2, s) = 𝐷
(
𝐷 (b2, a1), s

)
= 𝐷

(
𝐷 (b2, 𝑅(a1, s)), 𝐷 (a1, s)

)
= 𝐷

(
𝐷 (b2, s∧1), d1) .

By assumption, b2, a1, s are independent. Hence, by Lemma A.2(iii), b2, s∧1
, d1 are independent. So we

take z = 𝐷 (b2, s∧1), which is an i.i.d. Exp(𝛼2) sequence by Lemma A.2(iii). This proves part (iv).
We know that marginally a1 and a2 are i.i.d. sequences. In queueing language, observation (v)

becomes obvious. Namely, since a2 = 𝐷 (b2, a1), the statement is that past inter-departure times {𝑎2
𝑖 }𝑖≤𝑚

are independent of future inter-arrival times {𝑎1
𝑗 } 𝑗≥𝑚+1. Rigorously, (A.2) and (A.3) show that variables

{𝑎2
𝑖 }𝑖≤𝑚 are functions of ({𝑏2

𝑖 }𝑖≤𝑚 , {𝑎1
𝑖 }𝑖≤𝑚), which are independent of {𝑎1

𝑗 } 𝑗≥𝑚+1. �

https://doi.org/10.1017/fms.2020.31 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.31


Forum of Mathematics, Sigma 31

Appendix B. Coupling and monotonicity in last-passage percolation

In this section,𝜔 = (𝜔𝑥)𝑥∈Z2 is a fixed assignment of real weights.𝐺𝑥,𝑦 is the last-passage value defined
by (1.1). No probability is involved.

Lemma B.1. Suppose weights 𝜔 and 𝜔 satisfy 𝜔𝑜+𝑖𝑒1 ≥ 𝜔𝑜+𝑖𝑒1 , 𝜔𝑜+ 𝑗𝑒2 ≤ 𝜔𝑜+ 𝑗𝑒2 , and 𝜔𝑥 = 𝜔𝑥 for
𝑖, 𝑗 ≥ 1 and 𝑥 ∈ 𝑜 + Z2

>0. As in (1.1), define LPP processes

𝐺𝑜,𝑦 = max
𝑥• ∈Π𝑜,𝑦

|𝑦−𝑜 |1∑
𝑘=0

𝜔𝑥𝑘 and 𝐺𝑜,𝑦 = max
𝑥• ∈Π𝑜,𝑦

|𝑦−𝑜 |1∑
𝑘=0

𝜔𝑥𝑘 for 𝑦 ∈ 𝑜 + Z2
≥0.

Then for all 𝑦 ∈ 𝑜 + Z2
≥0, the increments over nearest-neighbor edges satisfy

𝐺𝑜,𝑦+𝑒1 − 𝐺𝑜,𝑦 ≥ 𝐺𝑜,𝑦+𝑒1 − 𝐺𝑜,𝑦 and 𝐺𝑜,𝑦+𝑒2 − 𝐺𝑜,𝑦 ≤ 𝐺𝑜,𝑦+𝑒2 − 𝐺𝑜,𝑦 .

Proof. The statements are true by construction for edges (𝑦, 𝑦 + 𝑒𝑖) that lie on the axes 𝑜 + Z≥0𝑒𝑖 .
Proceed by induction: assuming the inequalities hold for the edges (𝑦, 𝑦 + 𝑒2) and (𝑦, 𝑦 + 𝑒1), deduce
them for the edges (𝑦 + 𝑒2, 𝑦 + 𝑒1 + 𝑒2) and (𝑦 + 𝑒1, 𝑦 + 𝑒1 + 𝑒2). �

Lemma B.2 (Crossing Lemma). The inequalities below are valid whenever the last-passage values
are defined.

𝐺𝑜+𝑒1 , 𝑥+𝑒2 − 𝐺𝑜+𝑒1 , 𝑥 ≤ 𝐺𝑜, 𝑥+𝑒2 − 𝐺𝑜, 𝑥 ≤ 𝐺𝑜+𝑒2 , 𝑥+𝑒2 − 𝐺𝑜+𝑒2 , 𝑥 (B.1)
𝐺𝑜+𝑒2 , 𝑥+𝑒1 − 𝐺𝑜+𝑒2 , 𝑥 ≤ 𝐺𝑜, 𝑥+𝑒1 − 𝐺𝑜, 𝑥 ≤ 𝐺𝑜+𝑒1 , 𝑥+𝑒1 − 𝐺𝑜+𝑒1 , 𝑥 .

Proof. The proofs of all parts are similar. We prove the second inequality in (B.1): that is,

𝐺𝑜, 𝑥+𝑒2 − 𝐺𝑜, 𝑥 ≤ 𝐺𝑜+𝑒2 , 𝑥+𝑒2 − 𝐺𝑜+𝑒2 , 𝑥 . (B.2)

The geodesics 𝜋𝑜, 𝑥+𝑒2 and 𝜋𝑜+𝑒2 , 𝑥 must cross. Let 𝑢 be the first point where they meet. Note that

𝐺𝑜,𝑢 + 𝐺𝑢, 𝑥 ≤ 𝐺𝑜, 𝑥 and 𝐺𝑜+𝑒2 ,𝑢 + 𝐺𝑢, 𝑥+𝑒2 ≤ 𝐺𝑜+𝑒2 , 𝑥+𝑒2 . (B.3)

Add the two inequalities in (B.3), and rearrange to obtain (B.2).
This inequality can also be proved from Lemma B.1, by writing 𝐺𝑜+𝑒2 , 𝑥+𝑒2 − 𝐺𝑜+𝑒2 , 𝑥 = 𝐺𝑜, 𝑥+𝑒2 −

𝐺𝑜, 𝑥 with environment 𝜔𝑜+𝑦 = 𝜔𝑜+𝑦 when 𝑦2 > 0 and 𝜔𝑜+𝑖𝑒1 = −𝑀 for large enough 𝑀 . �

Fix base points 𝑢 ≤ 𝑣 on Z2. On the quadrant 𝑣+Z2
≥0, put a corner weight 𝜂𝑣 = 0 and define boundary

weights
𝜂𝑣+𝑘𝑒𝑖 = 𝐺𝑢, 𝑣+𝑘𝑒𝑖 − 𝐺𝑢, 𝑣+(𝑘−1)𝑒𝑖 for 𝑘 ∈ Z>0 and 𝑖 ∈ {1, 2}.

In the bulk, use 𝜂𝑥 = 𝜔𝑥 for 𝑥 ∈ 𝑣 + Z2
>0. Denote the LPP process in 𝑣 + Z2

≥0 that uses weights
{𝜂𝑥}𝑥 ∈ 𝑣+Z2

≥0
by

𝐺 [𝑢 ]
𝑣, 𝑥 = max

𝑥• ∈Π𝑣, 𝑥

|𝑥−𝑣 |1∑
𝑖=0

𝜂𝑥𝑖 , 𝑥 ∈ 𝑣 + Z2
≥0.

The superscript [𝑢] indicates that 𝐺 [𝑢 ] uses boundary weights determined by the process 𝐺𝑢,• with
base point 𝑢. Figure B.1 illustrates the next lemma. The proof of the lemma is elementary.

Lemma B.3. Let 𝑢 ≤ 𝑣 ≤ 𝑦 in Z2. Then 𝐺𝑢,𝑦 = 𝐺𝑢,𝑣 +𝐺 [𝑢 ]
𝑣,𝑦 . The restriction of any geodesic of 𝐺𝑢,𝑦 to

𝑣 + Z2
≥0 is part of a geodesic of 𝐺 [𝑢 ]

𝑣,𝑦 . The edges with one endpoint in 𝑣 + Z2
>0 that belong to a geodesic

of 𝐺 [𝑢 ]
𝑣,𝑦 extend to a geodesic of 𝐺𝑢,𝑦 .
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Figure B.1. Illustration of Lemma B.3. Path 𝑢-𝑥-𝑦 is a geodesic of 𝐺𝑢,𝑦 , and path 𝑣-𝑥-𝑦 is a geodesic
of 𝐺 [𝑢 ]

𝑣,𝑦 .

Assume now that the weights are such that geodesics are unique. Define the exit point 𝑍𝑢, 𝑝 as in
(4.1). For 𝑘 ≥ 1, let 𝑍 [𝑢 ]

𝑢+𝑘𝑒1 , 𝑝
be the exit point of the geodesic of 𝐺 [𝑢 ]

𝑢+𝑘𝑒1 , 𝑝
. The lemma below follows

from taking 𝑣 = 𝑢 + 𝑘𝑒1 in Lemma B.3.

Lemma B.4. For positive integers 𝑚, 𝑍𝑢, 𝑝 = 𝑘 + 𝑚 if and only if 𝑍 [𝑢 ]
𝑢+𝑘𝑒1 , 𝑝

= 𝑚.

Appendix C. Random walk bounds

Lemma C.1. Let 𝛼 > 𝛽 > 0, and let 𝑆𝑛 =
∑𝑛

𝑘=1 𝑍𝑘 be a random walk with step distribution 𝑍𝑘 ∼
Exp(𝛼) − Exp(𝛽) (difference of two independent exponentials). Then there is an absolute constant 𝐶
independent of all the parameters such that for 𝑛 ∈ Z>0,

P(𝑆1 > 0, 𝑆2 > 0, . . . , 𝑆𝑛 > 0) ≤ 𝐶
√
𝑛

(
1 − (𝛼 − 𝛽)2

(𝛼 + 𝛽)2

)𝑛
and

P(𝑆1 < 0, 𝑆2 < 0, . . . , 𝑆𝑛 < 0) ≤ 𝐶
√
𝑛

(
1 − (𝛼 − 𝛽)2

(𝛼 + 𝛽)2

)𝑛
+ 𝛼 − 𝛽

𝛼
. (C.1)

Proof. Define the events

𝐴
𝛼,𝛽
𝑛 = {𝑆1 > 0, . . . , 𝑆𝑛 > 0} and 𝐵

𝛼,𝛽
𝑛 = {𝑆1 > 0, . . . , 𝑆𝑛−1 > 0, 𝑆𝑛 < 0}

for 𝑛 ∈ Z>0 and also the decreasing limit 𝐴𝛼,𝛽
∞ =

⋂
𝑛≥1 𝐴

𝛼,𝛽
𝑛 . Then

𝑃(𝐴𝛼,𝛽
𝑛 ) =

∞∑
𝑘=𝑛+1

𝑃(𝐵𝛼,𝛽
𝑘 ) + 𝑃(𝐴𝛼,𝛽

∞ ). (C.2)

Lemma B.3 in Appendix B of [15] calculated

𝑃(𝐵𝛼,𝛽
𝑛 ) = 𝐶𝑛−1

𝛼𝑛𝛽𝑛−1

(𝛼 + 𝛽)2𝑛−1 (C.3)

where 𝐶𝑛 = 1
𝑛+1

(2𝑛
𝑛

)
, 𝑛 ≥ 0, are the Catalan numbers. Note that parameters 𝛼 and 𝛽 are switched around

here compared with Lemma B.3 of [15]. From
(2𝑛
𝑛

)
2−2𝑛 ∼ (𝜋𝑛)−1/2, we can fix a constant 𝑐0 such that

𝐶𝑘−1 ≤ 𝑐04𝑘−1𝑘−3/2.
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The assumption 𝛼 > 𝛽 gives 𝐸𝑍𝑘 = 𝛼−1 − 𝛽−1 < 0, and hence
∑
𝑛≥1 𝑃(𝐵

𝛼,𝛽
𝑛 ) = 1 and 𝑃(𝐴𝛼,𝛽

∞ ) = 0.
Thus (C.2) and (C.3), together with

∑∞
𝑘=𝑛+1 𝑘

−3/2 ≤ 2𝑛−1/2, give

𝑃(𝐴𝛼,𝛽
𝑛 ) = 𝛼

𝛼 + 𝛽

∞∑
𝑘=𝑛+1

𝐶𝑘−1

(
𝛼𝛽

(𝛽 + 𝛼)2

) 𝑘−1
≤ 𝑐0𝛼

𝛼 + 𝛽

∞∑
𝑘=𝑛+1

𝑘−3/2
(
1 − (𝛼 − 𝛽)2

(𝛼 + 𝛽)2

) 𝑘−1

≤ 2𝑐0𝛼

𝛼 + 𝛽 · 1
√
𝑛

(
1 − (𝛼 − 𝛽)2

(𝛼 + 𝛽)2

)𝑛
.

(C.4)

Since −𝑆𝑛 is obtained from 𝑆𝑛 by switching 𝛼 and 𝛽 around,

𝑃
(
𝑆1 < 0, . . . , 𝑆𝑛 < 0

)
= 𝑃(𝐴𝛽,𝛼𝑛 ) =

∞∑
𝑘=𝑛+1

𝑃(𝐵𝛽,𝛼𝑘 ) + 𝑃(𝐴𝛽,𝛼∞ ).

Bound the series above as in (C.4) (with 𝛼 and 𝛽 interchanged), and add 𝑃(𝐴𝛽,𝛼∞ ) = 𝛼−𝛽
𝛼 . This last fact

appears on page 600 of Resnick [32] and in Example VI.8(b) on page 193 of Feller II [16]. �
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