A CONFORMAL PROOF OF A JORDAN CURVE PROBLEM

G. Spoar and N.D. Lane

The following theorem appears in [1].
THEOREM. Let R be a closed simply connected region of the inversive plane bounded by a Jordan curve J, and let J be divided into three closed arcs A_{1}, A_{2}, A_{3}. Then there exists a circle contained in R and having points in common with all three arcs.

An elegant metric proof was given by Paul Erdös [1, p. 568]. The theorem, however, belongs to the inversive plane and therefore it may be of interest to indicate how a slight modification of Erdo's' proof avoids the use of metric concepts.

Proof. Let S_{i} be the set of circles lying in R which have a point in common with A_{i}, $i=1,2,3$. We include in S_{i} the point circles of A_{i}. The sets S_{i} are closed and connected. Since $S_{i} \cap S_{j} \neq \phi, S_{1} \cup S_{2}$ is a closed connected set and so is $S=S_{1} \cup S_{2} \cup S_{3}$.

Let P be any fixed point $P \notin R$. Let ϕ be the mapping: $S \rightarrow R$ which takes a non-degenerate circle C of S into that point of R which is the image of P under inversion in the circle C. If C is a point circle of S, take $\phi(C)=C$. The mapping ϕ is a homeomorphism and both ϕ and ϕ^{-1} take closed connected sets into closed connected sets. Also $\phi[S]=R$.

It is well known that the set of points of R is unicoherent (i.e., if R is written as a sum of two closed connected sets R_{1} and R_{2}, then $R_{1} \cap R_{2}$ is also closed and connected). Hence S is also unicoherent.

Suppose that $S_{1} \cap S_{2} \cap S_{3}=\phi$. Then $S_{3} \cap S_{1}$ and $S_{1} \cap S_{2}$ are disjoint. They are also non-empty. Hence $S_{3} \cap\left(S_{1} \cup S_{2}\right)=$ $\left(S_{3} \cap S_{1}\right) \cup\left(S_{3} \cap S_{2}\right)$ consists of two non-empty disjoint closed sets and is therefore not connected. This contradicts the unicoherence of S. Hence there is some circle C in R that has points in common with each of the $\operatorname{arcs} A_{1}, A_{2}, A_{3}$.

REFERENCE

1. S.B. Jackson, Vertices of plane curves. Bull. Amer. Math. Soc. 60 (1944) 564-578.

McMaster University.

