PRIMITIVE IDEMPOTENT MEASURES ON COMPACT SEMIGROUPS

by J. DUNCAN (Received 18th June 1969)

1. Introduction

Let S be a compact semigroup (with jointly continuous multiplication) and let P(S) denote the probability measures on S, i.e. the positive regular Borel measures on S with total mass one. Then P(S) is a compact semigroup with convolution multiplication and the weak* topology. Let $\Pi(P(S))$ denote the set of primitive (or minimal) idempotents in P(S). Collins (2) and Pym (5) respectively have given complete descriptions of $\Pi(P(S))$ when S is a group and when K(S), the kernel of S, is not a group. Choy (1) has given some characterizations of $\Pi(P(S))$ for the general case. In this paper we present some detailed and intrinsic characterizations of $\Pi(P(S))$ for various classes of compact semigroups that are not covered by the results of Collins and Pym.

In Section 2 we give a detailed survey of the known results on $\Pi(P(S))$ together with some preliminary results. We include here some facts about maximal simple subsemigroups of compact semigroups. In Section 3 we consider the commutative case. We show that the elements of $\Pi(P(S))$ are then the Haar measures on certain of the maximal subgroups of S together with the Haar measures on the maximal closed subgroups of K(S). (Throughout this paper, Haar measure means normalized Haar measure.) If m is the Haar measure on K(S), then $\Pi(P(S)) \cup \{m\}$ is a compact idempotent semigroup in which all distinct products are m and the topology is the one point compactification of $\Pi(P(S))$ with the discrete topology. As an amusing application we obtain an identification of $\Pi(P(S))$ with $\Pi(P(P(S)))$. Similar results obtain for compact semigroups S such that each idempotent of S is central and K(S)is commutative. In Section 4 we describe the central primitive idempotents on an arbitrary compact semigroup S. Under some weak commutativity assumptions we describe the elements of $\Pi(P(S))$ in terms of the maximal simple subsemigroups of S. Some of the results in Section 3 could be deduced as special cases of the results in Section 4, but it seems simpler for the exposition to consider the commutative case first.

Given $\mu \in P(S)$, we write supp μ for the support of μ , i.e. the unique minimal closed subset of S with μ -mass one. Then for μ , $\nu \in P(S)$, we have

$\operatorname{supp} \mu v = \operatorname{supp} \mu \operatorname{supp} v$

and when μ is idempotent, supp μ is a simple subsemigroup of S (see Pym (5)). When S is a group we have $\mu^2 = \mu$ if and only if supp μ is a group and μ is the

Haar measure on supp μ . We shall always identify μ with its restriction to any closed subset of S that contains supp μ . Moreover, given $\mu \in P(E)$, where E is a closed subset of S we also write μ for the natural extension of μ to a probability measure on S. Given $x \in S$ we write δ_x for the point mass at x.

2. Preliminary results

Let T be any semigroup and let I(T) denote the set of idempotents of T. The natural partial order on I(T) is defined by

$$e \leq f$$
 if $ef = fe = e$.

If T has a zero element θ , then $\theta \leq e$ for each idempotent e. An idempotent e of T is primitive if it is a minimal non-zero element of $(I(T), \leq)$. The set of all primitive idempotents of T is denoted by $\Pi(T)$. The elementary description of $\Pi(T)$ varies according as T has a zero element or not. The following lemma is elementary.

Lemma 1. Let T be a semigroup and let $e \in I(T)$.

- (i) If T has no zero element, then $e \in \Pi(T)$ if and only if $I(eTe) = \{e\}$.
- (ii) If T has zero element θ , then $e \in \Pi(T)$ if and only if $I(eTe) = \{e, \theta\}$.

In studying the primitive idempotent measures on a compact semigroup Pym (5) modified the definition somewhat. Given a semigroup T, let T_{θ} be the semigroup obtained by adjoining a zero element θ to T (whether or not Titself has a zero element). Given $e \in I(T)$, we say that $e \in \Pi^*(T)$ if $e \in \Pi(T_{\theta})$. (This is Pym's definition of primitive idempotent when T = P(S).) Since $eT_{\theta}e = eTe \cup \{\theta\}$, it follows from Lemma 1 that $e \in \Pi^*(T)$ if and only if

$$I(eTe) = \{e\}.$$

Thus if T has no zero element then $\Pi^*(T) = \Pi(T)$. On the other hand if T has a zero element, say m, then $\Pi^*(T) = \{m\}$. Now let T = P(S), where S is a compact semigroup. Then T has a zero element if and only if K(S) is a group, in which case the zero element is the Haar measure on K(S). When K(S) is not a group, Pym (5) gives a complete description of

$$\Pi(P(S)) = \Pi^*(P(S)).$$

Theorem 2. (Pym) Let S be a compact semigroup whose kernel K(S) is not a group. Then

- (i) $\Pi(P(S)) = K(P(S)),$
- (ii) each $\mu \in \Pi(P(S))$ is supported in K(S); and if $E \times G \times F$ is a canonical decomposition of K(S), then

$$\mu = \mu_1 \times m \times \mu_2$$

where $\mu_1 \in P(E)$, $\mu_2 \in P(F)$ and m is the Haar measure on G.

Suppose now that S is a compact semigroup such that K(S) is a group.

Then $\Pi^{*}(P(S)) = \{m\}$, where *m* is the Haar measure on K(S), and Pym's result gives no information about $\Pi(P(S))$. When S is a compact group (and so K(S) = S), Collins (2) gives a complete description of $\Pi(P(S))$.

Theorem 3. (Collins). Let S be a compact group. Then $\Pi(P(S))$ consists of the Haar measures on maximal closed proper subgroups of S.

For the general case, Choy (1) has shown that the members of $\Pi(P(S))$ can be characterized in terms of the behaviour of the simple subsemigroups of S. In particular the measures in $\Pi(P(S))$ can be characterized in terms of their supports. The following theorem together with Theorem 3 gives a complete description of those μ in $\Pi(P(S))$ that are supported in K(S).

Theorem 4. Let S be a compact semigroup whose kernel K is a group. Then (i) $\Pi(P(K)) \subset \Pi(P(S))$,

(ii) if
$$\mu \in \Pi(P(S))$$
 with supp $\mu \cap K \neq \emptyset$, then supp $\mu \subset K$ and $\mu \in \Pi(P(K))$.

Proof. (i) Let $\mu \in \Pi(P(K))$, $v \in P(S)$. Then

 $\operatorname{supp} \mu v \mu = \operatorname{supp} \mu \operatorname{supp} v \operatorname{supp} \mu \subset K$

and so $\mu P(S)\mu \subset P(K)$. It follows that $\mu P(S)\mu = \mu P(K)\mu$ and therefore

$$\mu\in\Pi(P(S))$$

by Lemma 1.

(ii) Let $\mu \in \Pi(P(S))$, $T = \operatorname{supp} \mu$, and suppose $H = T \cap K \neq \emptyset$. Then $TH \subset T \cap K = H$, and similarly $HT \subset H$, so that H is an ideal of T. Since T is simple, we have H = T, $T \subset K$. Since $\mu P(K)\mu \subset \mu P(S)\mu$, it follows from Lemma 1 that $\mu \in \Pi(P(K))$.

Let *e* be the identity of the group *K* and let δ_e be the point mass at *e*. Choy (1) shows that δ_e is central in P(S), i.e. $\delta_e \mu = \mu \delta_e$ for each $\mu \in P(S)$, and the mapping $\Phi: P(S) \rightarrow P(K)$ defined by

$$\Phi(\mu) = \delta_e \mu$$

is a continuous homomorphism that maps $\Pi(P(S))$ onto $\Pi(P(K)) \cup \{m\}$. We have of course $\Phi(\mu) = \mu$ for each $\mu \in P(K)$. The result below shows that $\Phi(\mu) = m$ for each $\mu \in \Pi(P(S))$ that is supported outside K.

Proposition 5. Let $\mu \in \Pi(P(S))$ with supp $\mu \cap K = \emptyset$. Then $\delta_e \mu = m$ and e supp $\mu = K$.

Proof. Let $T = \sup \mu$, so that T is simple and hence is a union of subgroups of S. Since e is central in S, it follows that eT is a closed subgroup of K. Let v be the Haar measure on eT. Since $\delta_e \mu$ is an idempotent measure supported on eT we have $\delta_e \mu = v$. Hence $v\mu = \delta_e \mu^2 = \delta_e \mu = v$ and similarly $\mu v = v$. We have $v \neq \mu$ since $T \cap K = \emptyset$, and since $\mu \in \Pi(P(S))$ it follows that v = m, eT = K.

The primitive idempotent measures on a compact group are described in terms of the maximal closed proper subgroups. Given any compact semigroup

E.M.S.—G

S, we recall that each subgroup of S is contained in a maximal subgroup of S, and the maximal subgroups of S are closed and pairwise disjoint (see e.g. (4), Theorem 1.1.3). Let \mathscr{G} denote the family of maximal subgroups of S, and for each $e \in I(S)$ let G(e) denote the unique maximal subgroup of S that contains e. In the final section we shall require some results about the maximal simple subsemigroups of S. We recall that each simple subsemigroup of S is contained in a maximal simple subsemigroup of S, and the maximal simple subsemigroups are closed, but need not be pairwise disjoint (see (4), p. 42). Let \mathscr{M} denote the family of maximal simple subsemigroups of S. The next result shows that each $M \in \mathscr{M}$ is the (pairwise disjoint) union of members of \mathscr{G} .

Proposition 6. Let S be a compact semigroup, let $M \in \mathcal{M}$ and let $e \in I(S) \cap M$. Then $G(e) \subset M$.

Proof. Write G = G(e). Since eMe is a group with identity e, we have $eMe \subset G$. Let T be the subsemigroup of S generated by M and G. Since GMG = GeMeG = G, it follows that

$$T = M \cup G \cup MG \cup GM \cup MGM.$$

It is easily checked that, for each $x \in T$, $TxT \supset G$ and so

$$TxT \supset T(TxT)T \supset MeM = M$$

since M is simple. Therefore TxT = T for each $x \in T$ and so T is simple. By maximality T = M, and therefore $G(e) \subset M$.

Proposition 7. Let S be a compact semigroup and suppose the idempotents from distinct members of \mathcal{M} commute with each other. Then the members of \mathcal{M} are pairwise disjoint.

Proof. Let $M, N \in \mathcal{M}$ with $M \cap N \neq \emptyset$, and suppose that $M \neq N$. Let $e \in I(M \cap N)$ and let $f \in I(eM)$. Since $e \in N$, $f \in M$ we have

$$f = ef = fe = efe$$
.

Then efe is an idempotent in eMe and so e = efe = f. Thus $I(eM) = \{e\}$ and similarly $I(Me) = \{e\}$. Since M is simple, it follows that M = G(e), and similarly N = G(e). This contradiction completes the proof.

Another sufficient condition for the members of \mathcal{M} to be pairwise disjoint is that each $M \in \mathcal{M}$ should be left simple, i.e. Me = M for each $e \in I(M)$ (see (4), Theorem 1.3.13); or that each $M \in \mathcal{M}$ should be right simple.

3. The commutative case

98

Throughout this section S denotes a compact commutative semigroup. Thus each simple subsemigroup of S is a group, and in particular the kernel K of S is a group. Let e denote the identity of K and m the Haar measure on K. Then I(S) is a compact semigroup with zero e, and P(S) is a compact semigroup with zero m. The idempotent measures on S are precisely the Haar measures on compact subgroups of S. **Theorem 8.** Let $\mu \in I(P(S))$, let $T = \text{supp } \mu$ with $T \cap K = \emptyset$, and let f be the identity of T. Then the following statements are equivalent.

- (i) $\mu \in \Pi(P(S));$
- (ii) $T \in \mathcal{G}$, Te = K, $f \in \Pi(I(S))$.

Proof. (i) \Rightarrow (ii). Let $\mu \in \Pi(P(S))$. Then Te = K by Proposition 5. Let $T \subset G \in \mathcal{G}$ and let ν be the Haar measure on G. Since ν is the zero of P(G), we have $\mu \nu = \nu, \nu \neq m$. Since $\mu \in \Pi(P(S))$, it follows that $\mu = \nu$ and T = G. Let $j \in I(fI(S)f)$ with $j \neq e$. Then jf = j and jG is a subgroup of S so that $jG \subset G(j)$. Let ρ be the Haar measure on jG. Since $\delta_j\mu$ is idempotent with support jG, we have $\delta_j\mu = \rho$ and so $\rho\mu = \mu$. Since $\mu \in \Pi(P(S))$, it follows that $\mu = \rho$ and so j = f. Therefore $f \in \Pi(I(S))$.

(ii) \Rightarrow (i). Let condition (ii) hold. Let $v \in I(P(S))$ with $\mu v = v$ and let H = supp v. Suppose first that $H \cap K \neq \emptyset$. Then $e \in H \cap K$ and $H = TH \supset Te = K$. Since $K \in \mathscr{G}$, we have H = K, v = m. Suppose now that $H \cap K = \emptyset$, and that j is the identity of H. Since fj is an idempotent and TH = H, we have j = fj and so $j \in I(fI(S)f)$. Since $f \in \Pi(I(S))$, it follows that $j = f, H \subset T$. But then $\mu v = \mu$ and so $v = \mu$. Therefore $\mu \in \Pi(P(S))$.

Corollary 9. If S has a zero, then $K = \{e\}$ and there is a one-one correspondence between $\Pi(I(S))$ and $\Pi(P(S))$ in which $j \in \Pi(I(S))$ corresponds to the Haar measure on G(j).

We remark that it is easy to show by examples that the three conditions (i) $T \in \mathcal{G}$ (ii) Te = K (iii) $f \in \Pi(I(S))$ are independent of each other.

Theorem 8 together with Theorems 5 and 3 gives a complete intrinsic characterization of the elements of $\Pi(P(S))$. The next result describes the structure of $\Pi(P(S))$. The simple proof below was suggested by the referee.

Theorem 10. $\Pi(P(S)) \cup \{m\}$ is a compact idempotent semigroup with $\mu v = m$ $(\mu \neq v)$ and with discrete topology on $\Pi(P(S))$.

Proof. $\Pi(P(S)) \cup \{m\}$ is a closed subset of P(S) by (1), Lemma 2.2. Let $\mu, \nu \in \Pi(P(S))$ with $\mu \neq \nu$. Then $\mu\nu$ is idempotent, and $\mu\nu = \mu(\mu\nu)\mu \in \{\mu, m\}$ as μ is primitive. Similarly, $\mu\nu \in \{\nu, m\}$. Hence $\mu\nu = m$. That $\Pi(P(S))$ now has the discrete topology is shown in (1), Lemma 2.3.

Given any (commutative) compact semigroup S, I(S) is a compact idempotent semigroup and its kernel is a single point, i.e. I(S) always has a zero element, whereas S need not have a zero element.

Proposition 11. If S has a zero element, then $\Pi(S) = \Pi(I(S))$.

Proof. Note that S and I(S) have the same zero element. Let $j \in I(S)$. It is clearly sufficient to show that I(jS) = I(jI(S)). Let $f \in I(jS)$. Then $f = jf \in I(jI(S))$. The other inclusion is trivial and so the proof is complete.

Corollary 12. If S has a zero element, there is a one-one correspondence between $\Pi(S)$ and $\Pi(P(S))$, $\Pi(S) \leftrightarrow \Pi(P(S))$. In particular,

$$\Pi(P(S)) \leftrightarrow \Pi(P(P(S))).$$

Proof. Apply Corollary 9 and Proposition 11. For the final statement, recall that P(S) has zero element m.

We can add a little to Corollary 12 by describing the maximal subgroups of P(S) that support a primitive idempotent measure. Glicksberg (3) has shown that an arbitrary closed subgroup Γ of P(S) consists of the G-translates of Haar measure on H, where G is a closed subgroup of S and H a closed subgroup of G. It is clear that Γ is maximal if and only if G is maximal. Given $\mu \in \Pi(P(S))$ with supp $\mu \cap K = \emptyset$, it is then clear that $G(\mu) = {\mu}$. Given $\mu \in \Pi(P(S))$ with supp $\mu \subset K$, we see that $G(\mu)$ consists of the K-translates of μ and also $G(\mu)$ may be identified with K/supp μ .

Remarks. (1) Theorem 8 remains true (with identical proof) under the weaker hypothesis that S is a compact semigroup in which each idempotent is central, and so, in particular, Theorem 8 holds for compact inverse semigroups. Theorem 10 also remains true if the idempotents of S are central and K(S) is commutative. Note from (1), Example 2.8 (iii) that if S is the symmetric group of order 3 then $\Pi(P(S)) \cup \{m\}$ is not a subsemigroup of P(S). Hence for an extension of Theorem 10 we need some restriction on K(S).

(2) Suppose now that S is a compact semigroup in which all the idempotents of S commute with each other. Then again every simple subsemigroup of S is a group and the idempotents of P(S) are Haar measures on compact subgroups of S. In Theorem 8 we have (ii) \Rightarrow (i), but (i) \Rightarrow (ii) is false as the following example shows. Let S be the 2×2 matrix semigroup consisting of the four matrix units, the zero matrix, the identity matrix and the matrix

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

It is readily verified that S is a semigroup with zero in which I(S) is commutative and

$$\Pi(I(S)) = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}.$$

However it is not difficult to check that the Haar measure μ on the subgroup

$$G = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\}$$

is a primitive idempotent measure. In fact $\Pi(P(S))$ consists of μ and the point masses on $\Pi(I(S))$. Note that $\Pi(P(S)) \cup \{m\}$ fails to be a subsemigroup of P(S).

4. Some non-commutative cases

Let S be an arbitrary compact semigroup and let $C\Pi(P(S))$ denote the set of central primitive idempotent measures on S. If the kernel K of S is not a group, we easily deduce from Theorem 2 that $C\Pi(P(S)) = \emptyset$. For the rest of this section we suppose that S is a compact semigroup whose kernel K is a group. Recall that a subset E of S is normal if xE = Ex for each $x \in S$. Choy (1), Theorem 3.2 shows that the central idempotent measures on S are precisely the Haar measures on compact normal subgroups of S. The theorem below shows that the description of $C\Pi(P(S))$ is closely related to the commutative case. We need first a simple lemma.

Lemma 13. Let G be a normal subgroup of S and let $j \in I(S)$. Then jG is a subgroup of S.

Proof. We note that j is central in G. In fact given $x \in G$, there is $y \in G$ with jx = yj and then jx = jxj and similarly xj = jxj. Let f be the identity of G. Then jf is an idempotent. Since jG = Gj we have jG = jGj and so

$$jGjG = jGGj = jGj = jG$$
.

Thus *jG* is a semigroup with identity *jf*. Given $x \in G$, we have $x^{-1}j \in jG$ and

$$jxx^{-1}j = jfj = jf.$$

This completes the proof.

Theorem 14. Let $\mu \in I(P(S))$, let $T = \text{supp } \mu$ with $T \cap K = \emptyset$, and let f be the identity of T. Then the following statements are equivalent.

- (i) $\mu \in C\Pi(P(S));$
- (ii) $T \in \mathcal{G}$, T is normal, Te = K, $I(f S f) = \{f, e\}$.

Proof. Argue as in Theorem 8. For the proof of (i) \Rightarrow (ii) we need to use Lemma 13 above, together with the fact that if j is central in T then $\delta_j \mu = \mu \delta_j$ and so $\delta_i \mu$ is idempotent.

Theorem 14 describes the elements of $C\Pi(P(S))$ that are supported outside the kernel K. The elements of $C\Pi(P(S))$ that are supported in the kernel are precisely the Haar measures on the maximal closed subgroups of K that are normal in S.

Theorem 15. $C\Pi(P(S)) \cup \{m\}$ is a compact idempotent semigroup with $\mu v = m \ (\mu \neq v)$ and with discrete topology on $\Pi(P(S))$.

Proof. Argue as in Theorem 10,

Now let S be a compact semigroup (whose kernel K is a group) such that

$$M, N \in \mathcal{M}, M \neq N, j \in I(M) \Rightarrow jN = Nj.$$
^(*)

Note that j is then central in N, and, by Proposition 7, the members of \mathcal{M} are pairwise disjoint. Thus each simple subsemigroup of S is contained in a unique maximal simple subsemigroup. In particular, the support of any idempotent measure on S is contained in a unique maximal simple subsemigroup of S. When $M \in \mathcal{M}$ is a group with $M \cap K = \emptyset$ we make a convenient abuse of notation by writing $\Pi(P(\mathcal{M}))$ for the set consisting of the Haar measure on M.

Theorem 16. Let S satisfy (*), let $\mu \in I(P(S))$ and let $T = \text{supp } \mu$ with $T \subset M \in \mathcal{M}, T \cap K = \emptyset$. Then the following statements are equivalent.

- (i) $\mu \in \Pi(P(S));$
- (ii) $\mu \in \Pi(P(M))$, Te = K, $I(jSj) = \{j, e\}$ for each $j \in I(T)$.

Proof. (i) \Rightarrow (ii). Let $\mu \in \Pi(P(S))$. Then $\mu \in \Pi(P(M))$, and, by Proposition 5, Te = K. Let $j \in I(T)$, $f \in I(jSj)$ and suppose $f \neq e, f \notin M$. Then f is central in T and so $\mu \delta_f = \delta_f \mu$. Let $\rho = \mu \delta_f$ and then $\rho^2 = \rho, \mu \rho = \rho \mu = \rho$. Therefore $f = jf \in \text{supp } \rho$. But $\mu \in \Pi(P(S))$ gives $\rho = m$ or $\rho = \mu$. This contradiction shows that $I(jSj) \subset M \cup \{e\}$. If $f \in M$, then $f = jfj \in jMj = G(j)$ and so f = j.

(ii) \Rightarrow (i). Let condition (ii) hold, let $v \in I(P(S))$ with $\mu v = v\mu = v$ and let R = supp v. Then R is simple and there is $N \in \mathcal{M}$ with $R \subset N$. If N = K, then

$$R = TR \supset Te = K$$

and so v = m. If N = M, then $v = \mu$ since $\mu \in \Pi(P(M))$. Suppose finally that $N \cap M \cap K = \emptyset$. Let $j \in I(T)$. Then j is central in R, and since RT = TR = R, it follows that there is an idempotent in $R \cap jSj$. This contradiction completes the proof.

As an illustration of Theorem 16, let R be the disjoint union of a family $\{S_{\lambda}: \lambda \in \Lambda\}$ of compact simple semigroups and let the union of the topologies on the S_{λ} be a base for a topology on R. Then R is locally compact. Now let $S = R \cup \{\theta\}$ with the topology of the one point compactification of R. Extend the multiplications on the S_{λ} to a multiplication on S by defining all new products to be θ . It is now easily checked that S is a compact semigroup. A simple application of Theorem 16 gives

$$\Pi(P(S)) = \bigcup \{ \Pi(P(S_{\lambda})) \colon \lambda \in \Lambda \} = \bigcup \{ K(P(S_{\lambda})) \colon \lambda \in \Lambda \}.$$

The results of this paper indicate that the size of $\Pi(P(S))$ reflects the degree of non-commutativity of S. As the extreme example, let S be a compact space with multiplication

$$xy = x \quad (x, y \in S).$$

Then S is a compact simple semigroup and P(S) has multiplication

$$\mu v = \mu \quad (\mu, v \in P(S)).$$

Therefore $\Pi(P(S)) = P(S)$.

REFERENCES

(1) S. T. L. CHOY, Idempotent measures on compact semigroups, *Proc. London Math. Soc.*, to appear.

(2) H. S. COLLINS, Primitive idempotents in the semigroup of measures, *Duke Math. J.* 27 (1960), 397-400.

(3) I. GLICKSBERG, Convolution semigroups of measures, Pacific J. Math. 9 (1959), 51-67.

(4) A. B. PAALMAN DE MIRANDA, *Topological semigroups*, Math. Centrum, Amsterdam (1964).

(5) J. S. PYM, Idempotent measures on semigroups, *Pacific J. Math.* 12 (1962), 685-698.

KING'S COLLEGE UNIVERSITY OF ABERDEEN