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1. Introduction
Let 5 be a compact semigroup (with jointly continuous multiplication) and

let P(S) denote the probability measures on S, i.e. the positive regular Borel
measures on S with total mass one. Then P(S) is a compact semigroup with
convolution multiplication and the weak* topology. Let U(P(S)) denote the
set of primitive (or minimal) idempotents in P(S). Collins (2) and Pym (5)
respectively have given complete descriptions of TI(P(S)) when S is a group
and when K(S), the kernel of S, is not a group. Choy (1) has given some charac-
terizations of II(P(S)) for the general case. In this paper we present some de-
tailed and intrinsic characterizations of IT(P(5)) for various classes of compact
semigroups that are not covered by the results of Collins and Pym.

In Section 2 we give a detailed survey of the known results on T1(P(S))
together with some preliminary results. We include here some facts about
maximal simple subsemigroups of compact semigroups. In Section 3 we con-
sider the commutative case. We show that the elements of U(P(S)) are then
the Haar measures on certain of the maximal subgroups of S together with
the Haar measures on the maximal closed subgroups of K(S). (Throughout this
paper, Haar measure means normalized Haar measure.) If m is the Haar
measure on K(S), then Ti(P(S))v{m} is a compact idempotent semigroup in
which all distinct products are m and the topology is the one point compacti-
fication of T1(P(S)) with the discrete topology. As an amusing application we
obtain an identification of I1(P(S)) with n(P(P(S))). Similar results obtain
for compact semigroups S such that each idempotent of S is central and K(S)
is commutative. In Section 4 we describe the central primitive idempotents on
an arbitrary compact semigroup S. Under some weak commutativity assump-
tions we describe the elements of TI(P(S)) in terms of the maximal simple
subsemigroups of S. Some of the results in Section 3 could be deduced as special
cases of the results in Section 4, but it seems simpler for the exposition to con-
sider the commutative case first.

Given \i e P(S), we write supp n for the support of fi, i.e. the unique minimal
closed subset of S with ^-mass one. Then for n, v e P(S), we have

supp fxv = supp n supp v

and when // is idempotent, supp \i is a simple subsemigroup of S (see Pym (5)).
When S is a group we have ft2 = fi if and only if supp \i is a group and /x is the
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Haar measure on supp /i. We shall always identify fi with its restriction to any
closed subset of S that contains supp /*. Moreover, given n e P(E), where E is
a closed subset of S we also write fi for the natural extension of n to a probability
measure on S. Given x e S we write 8X for the point mass at x.

2. Preliminary results
Let T be any semigroup and let I{T) denote the set of idempotents of T.

The natural partial order on I(T) is denned by

e 5^/if ef = fe = e.

If T has a zero element 0, then 6 ^ e for each idempotent e. An idempotent e
of T is primitive if it is a minimal non-zero element of (J(T), ^ ) . The set of all
primitive idempotents of T is denoted by U(T). The elementary description
of 11(7") varies according as T has a zero element or not. The following lemma
is elementary.

Lemma 1. Let T be a semigroup and let e e I(T).

(i) If T has no zero element, then e e Tl(T) if and only if I(eTe) = {e}.

(ii) If T has zero element 9, then e e II(T) if and only ifI(eTe) = {e, 9}.

In studying the primitive idempotent measures on a compact semigroup
Pym (5) modified the definition somewhat. Given a semigroup T, let Te be
the semigroup obtained by adjoining a zero element 6 to T (whether or not T
itself has a zero element). Given e e I(T), we say that e e II*(r) if e e Tl(Te).
(This is Pym's definition of primitive idempotent when T = P(S).) Since
eTge = eTe\j{6), it follows from Lemma 1 that e e U*(J) if and only if

I{eTe) = {e}.

Thus if T has no zero element then II*(r) = II(r). On the other hand if T
has a zero element, say m, then U*(T) = {m}. Now let T = P(S), where S
is a compact semigroup. Then T has a zero element if and only if K(S) is a
group, in which case the zero element is the Haar measure on K(S). When
K(ST) is not a group, Pym (5) gives a complete description of

Theorem 2. (Pym) Let S be a compact semigroup whose kernel K(S) is not
a group. Then

(i) Tl(P(S)) = K(P(S)),

(ii) each fi eH(P(S)) is supported in K(S); and if ExGxF is a canonical
decomposition of K(S), then

where ^ e P{E), fi2 e P(F) and m is the Haar measure on G.

Suppose now that S is a compact semigroup such that K(S) is a group.
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Then H*(P(S)) = {m}, where m is the Haar measure on K(S), and Pym's
result gives no information about H(P(S)). When S is a compact group (and
so K(S) = 5), Collins (2) gives a complete description of n(f(S)).

Theorem 3. (Collins). Let S be a compact group. Then U(P(S)) consists
of the Haar measures on maximal closed proper subgroups of S.

For the general case, Choy (1) has shown that the members of II(.P(S))
can be characterized in terms of the behaviour of the simple subsemigroups of
S. In particular the measures in H(P(S)) can be characterized in terms of their
supports. The following theorem together with Theorem 3 gives a complete
description of those fi in T1(P(S)) that are supported in K(S).

Theorem 4. Let S be a compact semigroup whose kernel K is a group. Then

(i) n(P(K))<=n(P(.s)),
( i i ) if/xe n ( P ( 5 ) ) with s u p p finK # 0 , then s u p p ji<=Kand fie Tl(P(K)).

Proof, (i) Let n e TI(P(K)), v e P(S). Then

supp /iv/i = supp p. supp v supp H<=LK

and so nP(S)n<=P(K). It follows that fiP(S)n = fiP(K)/x and therefore

li e n(P(S))
by Lemma 1.

(ii) Let n e U(P(S)), T = supp \i, and suppose H = TnK # 0 . Then
TH<=TnK = H, and similarly HTczH, so that H is an ideal of T. Since 71

is simple, we have H = T, TcK. Since fiP(K)ncfj.P(S)fi, it follows from
Lemma 1 that n e n(P(^)).

Let e be the identity of the group K and let 5e be the point mass at e. Choy
(1) shows that 5e is central in P(S), i.e. 5cn = /z<5e for each \i e i'(S), and the
mapping 3>: P(S)^P(AT) defined by

is a continuous homomorphism that maps 11(^(5)) onto U(P(K))Kj{m}. We
have of course <&(ji) = \i for each \i e .P(/0. The result below shows that
<b(ji) = m for each \i e II(P(S)) that is supported outside ̂ T.

Proposition 5. Let n e II(P(5')) w/7A supp finK = 0 . 7%en be\i — m and
e supp fi = K.

Proof. Let T = supp n, so that Tis simple and hence is a union of subgroups
of S. Since e is central in S, it follows that e^ is a closed subgroup of K. Let v
be the Haar measure on eT. Since be\i is an idempotent measure supported on
eT we have 5en = v. Hence v^ = 5en

2 = <5e/i = v and similarly /xv = v. We
have v # pi since TnAT = 0 , and since /i e n(/'(S')) it follows that v = m,
eT= K.

The primitive idempotent measures on a compact group are described in
terms of the maximal closed proper subgroups. Given any compact semigroup

E.M.S.—G
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S, we recall that each subgroup of S is contained in a maximal subgroup of S,
and the maximal subgroups of S are closed and pairwise disjoint (see e.g. (4),
Theorem 1.1.3). Let'S denote the family of maximal subgroups of S, and for
each e e 7(5) let G(e) denote the unique maximal subgroup of S that contains e.
In the final section we shall require some results about the maximal simple
subsemigroups of S. We recall that each simple subsemigroup of S is contained
in a maximal simple subsemigroup of 5, and the maximal simple subsemigroups
are closed, but need not be pairwise disjoint (see (4), p. 42). Let Jt denote
the family of maximal simple subsemigroups of S. The next result shows that
each M e Jt is the (pairwise disjoint) union of members of ^ .

Proposition 6. Let S be a compact semigroup, let M eJt and let e e I(S)nM.
Then G(e)czM.

Proof. Write G = G(e). Since eMe is a group with identity e, we have
eMe<=-G. Let T be the subsemigroup of S generated by M and G. Since
GMG = GeMeG = G, it follows that

T = MVJGUMGKJGMKJMGM.

It is easily checked that, for each xeT, TxT=>G and so

TxTzzT(TxT)T=>MeM = M

since M is simple. Therefore TxT = T for each x e T and so T is simple.
By maximality T = M, and therefore G(e) <=. M.

Proposition 7. Let S be a compact semigroup and suppose the idempotents
from distinct members of J{ commute with each other. Then the members of Jt
are pairwise disjoint.

Proof. Let M,N eJt with MnN ^ 0 , and suppose that M ^ N. Let
e e I(MnN) and l e t / e I{eM). Since e e N,fe M we have

f=ef = fe = efe.
Then efe is an idempotent in eMe and so e = efe = / . Thus I(eM) = {e} and
similarly I(Me) = {e}. Since M is simple, it follows that M = G(e), and
similarly N — G(e). This contradiction completes the proof.

Another sufficient condition for the members of Jl to be pairwise disjoint
is that each M e J{ should be left simple, i.e. Me = M for each e e I(M) (see
(4), Theorem 1.3.13); or that each M e Jt should be right simple.

3. The commutative case
Throughout this section S denotes a compact commutative semigroup. Thus

each simple subsemigroup of S is a group, and in particular the kernel K of S
is a group. Let e denote the identity of K and m the Haar measure on K.
Then I(S) is a compact semigroup with zero e, and P(S) is a compact semigroup
with zero m. The idempotent measures on S are precisely the Haar measures
on compact subgroups of S.
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Theorem 8. Let fieI(P(S)), let T = supp n with TnK = 0, and let f be
the identity ofT. Then the following statements are equivalent.

(ii) Te9,Te = K,f

Proof. (i)=*(ii). Let n e U(P(S)). Then Te = K by Proposition 5. Let
Tc 6 e ? and let v be the Haar measure on G. Since v is the zero of P(G),
we have /xv = v, v ^ m. Since \i e H(P(S)), it follows that n = v and T = G.
Let 7 e I(fI(S)f) with _/ # e. Then _#" = ./ and j<? is a subgroup of 5 so that
jGc:G(j). Let p be the Haar measure on jG. Since Sjfi is idempotent with
support jG, we have Sjfi = p and so pn = ^. Since ^ e JJ(P(S)), it follows
that n = p and so ; = / Therefore / e n(/(5)).

(ii)=>(i). Let condition (ii) hold. Let v e I(P(S)) with /iv = v and let
//=suppv. Suppose first that Hr\K?0. Then eeHnK and H= TH=>Te = K.
Since Keif, we have H = K,v = m. Suppose now that HnK = 0 , and that
y is the identity of H. Since fj is an idempotent and TH = //, we have j = />'
and so jeI(fI(S)f). Since/e 11(7(5)), it follows that y" = / , H^T. But then
(iv = \i and so v = \i. Therefore /i e n(P(SJ).

Corollary 9. If S has a zero, then K = {e} and there is a one-one correspon-
dence between IT(/(.S)) andTl(P(S)) in which j e 11(7(5)) corresponds to the Haar
measure on G(J).

We remark that it is easy to show by examples that the three conditions (i)
T 6 <3 (ii) Te = K (iii)/e 11(7(5)) are independent of each other.

Theorem 8 together with Theorems 5 and 3 gives a complete intrinsic
characterization of the elements of II(P(S)). The next result describes the
structure of II(P(5)). The simple proof below was suggested by the referee.

Theorem 10. II(i>(5))u{/n} is a compact idempotent semigroup with /zv = m
(jx # v) and with discrete topology on U(P(S)).

Proof. Il(/)(5))u{/w} is a closed subset of ^ ( 5 ) by (1), Lemma 2.2. Let
H, v E II(7J(5)) with n # v. Then pv is idempotent, and /xv = n{p.v)fi e {n, m)
as fx is primitive. Similarly, fiv e {v, m}. Hence p.v = m. That IT(7J(5)) now
has the discrete topology is shown in (1), Lemma 2.3.

Given any (commutative) compact semigroup 5, 7(5) is a compact idem-
potent semigroup and its kernel is a single point, i.e. 7(5) always has a zero
element, whereas 5 need not have a zero element.

Proposition 11. If S has a zero element, then 11(5) = 11(7(5)).

Proof. Note that 5 and 7(5) have the same zero element. Let ye7(5).
It is clearly sufficient to show that I(jS) = 7(_/7(5)). Let fel(jS). Then
/ = jfe I(jI(S)). The other inclusion is trivial and so the proof is complete.

https://doi.org/10.1017/S001309150000924X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150000924X


100 J. DUNCAN

Corollary 12. If S has a zero element, there is a one-one correspondence
between 11(5) and n(/'(5)), n(S)«->IT(P(S)). In particular,

Proof. Apply Corollary 9 and Proposition 11. For the final statement,
recall that P(S) has zero element m.

We can add a little to Corollary 12 by describing the maximal subgroups
of P(S) that support a primitive idempotent measure. Glicksberg (3) has shown
that an arbitrary closed subgroup r of P(S) consists of the G-translates of
Haar measure on H, where G is a closed subgroup of S and H a closed subgroup
of G. It is clear that T is maximal if and only if G is maximal. Given fi e TI(P(S)
with supp finK = 0, it is then clear that G(^) = {n}. Given neU(P(S))
with suppficK, we see that G(n) consists of the AT-translates of fi and also
G(ji) may be identified with AT/supp p.

Remarks. (1) Theorem 8 remains true (with identical proof) under the
weaker hypothesis that <S is a compact semigroup in which each idempotent
is central, and so, in particular, Theorem 8 holds for compact inverse semi-
groups. Theorem 10 also remains true if the idempotents of S are central and
K(S) is commutative. Note from (1), Example 2.8 (iii) that if S is the symmetric
group of order 3 then U(P(S))u{m} is not a subsemigroup of P(5). Hence
for an extension of Theorem 10 we need some restriction on K(S).

(2) Suppose now that 5 is a compact semigroup in which all the idempotents
of 5 commute with each other. Then again every simple subsemigroup of 5
is a group and the idempotents of P(S) are Haar measures on compact sub-
groups of S. In Theorem 8 we have (ii)=>(i), but (i)=>(ii) is false as the following
example shows. Let S be the 2x2 matrix semigroup consisting of the four
matrix units, the zero matrix, the identity matrix and the matrix

/0 1
\i o

It is readily verified that S is a semigroup with zero in which 7(5) is commutative
and

- (C !)•
However it is not difficult to check that the Haar measure ft on the subgroup

is a primitive idempotent measure. In fact II(P(5)) consists of n and the point
masses on n(/(S')). Note that n ^ S ^ u l m } fails to be a subsemigroup of
P(S).
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4. Some non-commutative cases
Let 5 be an arbitrary compact semigroup and let CT1(P(S)) denote the set

of central primitive idempotent measures on S. If the kernel K of S is not a
group, we easily deduce from Theorem 2 that CTI(P(S)) = 0 . For the rest
of this section we suppose that S is a compact semigroup whose kernel K is a
group. Recall that a subset E of S is normal if xE = Ex for each x e S. Choy
(1), Theorem 3.2 shows that the central idempotent measures on S are precisely
the Haar measures on compact normal subgroups of S. The theorem below
shows that the description of CI I^S) ) is closely related to the commutative
case. We need first a simple lemma.

Lemma 13. Let G be a normal subgroup of S and let j e I(S). Then jG is a
subgroup of S.

Proof. We note that j is central in G. In fact given x e G, there is y e G
withyx = yj and then/x = jxj and similarly xj = jxj. Let/be the identity of
G. Then jf is an idempotent. Since jG = Gj we have^C = jGj and so

JGjG = JGGj = jGj = jG.

Thus jG is a semigroup with identity^. Given x e G, we have x~lj ejG and

jxx~1j=jfj =jf.

This completes the proof.

Theorem 14. Let n e I(P(S)), let T = supp n with TnK = 0, and let f be
the identity of T. Then the following statements are equivalent.

(i) ft e Cn(P(S));

(ii) Tef, T is normal, Te = K, I(fSf) = {/, e).

Proof. Argue as in Theorem 8. For the proof of (i)=>(ii) we need to use
Lemma 13 above, together with the fact that if j is central in rthen 8jH = nbj
and so Sjfi is idempotent.

Theorem 14 describes the elements of CYl(P(S)) that are supported outside
the kernel K. The elements of CT1(P(S)) that are supported in the kernel are
precisely the Haar measures on the maximal closed subgroups of K that are
normal in S.

Theorem 15. CII(/'(5))u{w} is a compact idempotent semigroup with
fiv = m (n # v) and with discrete topology on H(P(S)).

Proof. Argue as in Theorem 10.

Now let S be a compact semigroup (whose kernel K is a group) such that

M, N 6.//, M # N,je 7(M)=>yW = Nj. (*)
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Note that j is then central in N, and, by Proposition 7, the members of M are
pairwise disjoint. Thus each simple subsemigroup of S is contained in a unique
maximal simple subsemigroup. In particular, the support of any idempotent

*--' measure on S is contained in a unique maximal simple subsemigroup of 5.
When M e M is a group with Mr\K = 0 we make a convenient abuse of nota-
tion by writing TI(P(M)) for the set consisting of the Haar measure on M.

Theorem 16. Let S satisfy (*), let (i e I(P(S)) and let T = supp n with
TczM e Ji, TnK = 0. Then the following statements are equivalent.

(i) n e n(P(S));

(ii) n e n(P(M)), Te = K, l(JSj) = {j, e} for eachj e /(T).

Proof. (i)=>(ii). Let /i e n(P(5)). Then n e IT^M)), and, by Proposition
5, Te = K. Let y 6 / ( r ) , / e I(JSj) and suppose/ # e, / # M. Then/is central
in T and so fidj- = 5ffi. Let p = fidf and then p2 = p, fxp = pfi = p. There-
fore / = y / e supp p. But fj. e nXi^S)) gives p = m or p = //. This contra-
diction shows that I(jSj)cM<j{e}. If feM, then/ = jfjejMj = <J(j) and so
f = j-

(ii)=>(i). Let condition (ii) hold, let v e I(P(S)) with fiv = v/* = v and let
7? = supp v. Then R is simple and there is N eJ/ with R^N. If N = K,
then

R = TR=>Te = K

and so v = m. If N = M, then v = \i since \i e II(P(Af)). Suppose finally that
NnMnK = 0 . Lety e /(T). Theny is central in R, and since RT = TR = R,
it follows that there is an idempotent in RnjSj. This contradiction completes
the proof.

As an illustration of Theorem 16, let R be the disjoint union of a family
{Sx: X e A} of compact simple semigroups and let the union of the topologies
on the Sx be a base for a topology on R. Then R is locally compact. Now let
S = Ru{9} with the topology of the one point compactification of R. Extend
the multiplications on the Sx to a multiplication on S by defining all new
products to be 0. It is now easily checked that S is a compact semigroup. A
simple application of Theorem 16 gives

U(P(S)) = u{n(P(5J): A e A} = u{#(/>(.!?,)): Ae A}.

The results of this paper indicate that the size of IT(P(S)) reflects the degree
of non-commutativity of S. As the extreme example, let S be a compact space
with multiplication

xy = x (x,ye S).
Then S is a compact simple semigroup and P(S) has multiplication

Therefore n(Z>(S)) = />(S).
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