REMARKS TO THE UNIQUENESS PROBLEM OF MEROMORPHIC MAPS INTO $P^{N}(C)$, I

HIROTAKA FUJIMOTO

§ 1. Introduction

As generalizations of the results in [5] and [4], the author gave some uniqueness theorems of meromorphic maps into $P^{N}(C)$ in previous papers [2] and [3]. He studied two meromorphic maps f and g of C^{n} into $P^{N}(C)$ such that $\nu\left(f, H_{i}\right)=\nu\left(g, H_{i}\right)$ for q hyperplanes H_{i} located in general position in $P^{N}(C)$, where $\nu\left(f, H_{i}\right)$ and $\nu\left(g, H_{i}\right)$ denote the pullbacks of divisors (H_{i}) on $P^{N}(C)$ by f and g respectively. In [2], he showed that, if $q \geqq 3 N+2$ and either f or g is non-degenerate, then $f \equiv g$. And, in [3] (p. 140), he gave the following

Theorem. If $q \geqq 2 N+3$ and either f or g is algebraically nondegenerate, i.e., the image is not included in any proper subvariety of $P^{N}(\boldsymbol{C})$, then $f \equiv g$.

Unfortunately, a gap was found in the proof of Lemma 6.5 in [3] which is essentially used to prove the above theorem.

The purposes of this paper are to give a complete proof of the above theorem and, simultaneously, to give some remarks to the uniqueness problem of meromorphic maps of C^{n} into $P^{N}(C)$. Theorem 6.9 in [3] will be improved and the results in the last section of [3] will be generalized to the higher dimensional case.

§ 2. Main results

We recall some notations and terminologies given in [3]. Let f be a meromorphic map of C^{n} into the N-dimensional complex projective space $P^{N}(C)$ and H a hyperplane in $P^{N}(C)$ such that $f\left(\boldsymbol{C}^{n}\right) \nsucceq H$. For an arbitrarily fixed homogeneous coordinates $w_{1}: w_{2}: \cdots: w_{N+1}$ on $P^{N}(C)$, we can take a representation $f=f_{1}: f_{2}: \cdots: f_{N+1}$ with holomorphic func-

[^0]tions $f_{1}, f_{2}, \cdots, f_{N+1}$ on C^{n} satisfying the condition
$$
\operatorname{codim}\left\{z \in \boldsymbol{C}^{n} ; f_{1}(z)=f_{2}(z)=\cdots=f_{N+1}(z)=0\right\} \geqq 2,
$$
which we call an admissible representation of f. Let H be given as
$$
H: a^{1} w_{1}+a^{2} w_{2}+\cdots+a^{N+1} w_{N+1}=0
$$
and define a holomorphic function
\[

$$
\begin{equation*}
F_{f}^{H}:=a^{1} f_{1}+a^{2} f_{2}+\cdots+a^{N+1} f_{N+1} . \tag{2.1}
\end{equation*}
$$

\]

For each point z in C^{n}, we denote by $\nu(f, H)(z)$ the zero multiplicity of F_{f}^{H} at z. The integer-valued function $\nu(f, H)$ may be considered to be the pull-back of the divisor (H) by f.

Let us consider two meromorphic maps f, g of C^{n} into $P^{N}(C)$ and assume that there are $2 N+2$ hyperplanes $H_{i}(1 \leqq i \leqq 2 N+2)$ located in general position in $P^{N}(C)$ such that $f\left(\boldsymbol{C}^{n}\right) \nsucceq H_{i}, g\left(\boldsymbol{C}^{n}\right) \nsucceq H_{i}$ and $\nu\left(f, H_{i}\right)=\nu\left(g, H_{i}\right)$ for any i. Then,

$$
\begin{equation*}
h_{i}:=F_{f}^{H_{i}} / F_{g}^{H_{i}} \quad(1 \leqq i \leqq 2 N+2) \tag{2.2}
\end{equation*}
$$

are nowhere zero holomorphic functions on C^{n} and the ratios h_{i} / h_{j} $(1 \leqq i, j \leqq 2 N+2)$ are uniquely determined independently of any choices of homogeneous coordinates and admissible representations of f and g.

In this situation, we shall prove
Theorem I. If either f or g is algebraically non-degenerate, then after a suitable change of indices i of H_{i} the functions h_{i} are represented as one of the following two types;
(α) $h_{1}: h_{2}: \cdots h_{2 N+2}$

$$
=\eta_{1}: \eta_{1}^{-1}: \eta_{2}: \eta_{2}^{-1}: \cdots: \eta_{N}: \eta_{N}^{-1}: 1:(-1)^{N}
$$

(β) $N+1$ is prime and

$$
\begin{aligned}
h_{1}: h_{2}: & \cdots: h_{2 N+2} \\
& =\eta_{1}: \eta_{2}: \cdots: \eta_{N}:\left(\eta_{1} \eta_{2} \cdots \eta_{N}\right)^{-1}: 1: \zeta: \cdots: \zeta^{N},
\end{aligned}
$$

where $\eta_{1}, \eta_{2}, \cdots, \eta_{N}$ are algebraically independent nowhere zero holomorphic functions on C^{n} and ζ denotes a primitive $(N+1)$-th root of unity.

This is an improvement of Proposition 6.3 in [3], which is proved without using Lemma 6.5 in it. Thus, we can prove the theorem stated
in § 1 correctly by the same argument as in [3], p. 141.
We shall give also the following theorem, which is an improvement of Theorem 6.9 in [3].

Theorem II. If f or g is algebraically non-degenerate, then they are reduced by a suitable change of indices to one of the following two cases;
$(\alpha)^{\prime}$ there are relations between f and g such that

$$
\begin{aligned}
& F_{f}^{H_{2 i-1}} F_{f}^{H_{2 i}}=F_{g}^{H_{2 i-1}} F_{g}^{H_{2 i}} \quad 1 \leqq i \leqq N \\
& F_{f}^{H_{2 N+1}}=F_{g}^{H_{2 N+1}}, \quad F_{f}^{H_{2 N+2}}=(-1)^{N} F_{g}^{H_{2 N+2}},
\end{aligned}
$$

$(\beta)^{\prime} \quad N+1$ is prime and f and g are related as $L \cdot g=f$ with a projective linear transformation $L: P^{N}(C) \rightarrow P^{N}(C)$ which fixes hyperplanes H_{1}, H_{2}, \cdots, H_{N+1} and maps $H_{N+2}, H_{N+3}, \cdots, H_{2 N+2}$ onto $H_{2 N+2}, H_{N+2}, \cdots, H_{2 N+1}$ respectively.

These theorems will be proved in $\S 5$ completely after giving some preparations in $\S 3$ and $\S 4$.

§3. Some known results

Let f, g and $H_{i}(1 \leqq i \leqq 2 N+2)$ satisfy the conditions stated in the previous section and assume that g is algebraically non-degenerate.

As in [3], we consider the multiplicative group H^{*} of all nowhere zero holomorphic functions on C^{n} and the factor group $G:=H^{*} / C^{*}$, where $C^{*}:=\boldsymbol{C}-\{0\}$. For an element $h \in \boldsymbol{H}^{*}$, we denote by [h] the class in G containing h and, for the functions $h_{1}, \cdots, h_{2 N+2}$ defined as (2.2), by $t\left(\left[h_{1}\right], \cdots,\left[h_{2 N+2}\right]\right)$ the rank of the subgroup of G generated by [h_{1}], $\cdots,\left[h_{2 N+2}\right]$. We shall restate here Proposition 6.3 in [3] revised as follows.

Proposition 3.1. There exist elements $\beta_{1}, \cdots, \beta_{t}$ in $\boldsymbol{H}^{*} / \boldsymbol{C}^{*}$ such that, after a suitable change of indices,

$$
\begin{align*}
& {\left[h_{1}\right]:\left[h_{2}\right]: \cdots:\left[h_{2 N+2}\right]} \\
& \quad=\beta_{1}: \beta_{2}: \cdots: \beta_{t}:\left(\beta_{1} \cdots \beta_{a_{1}}\right)^{-1}: \cdots:\left(\beta_{a_{k-1}+1} \cdots \beta_{a_{k}}\right)^{-1}: 1: 1: \cdots: 1, \tag{3.2}
\end{align*}
$$

where $t=t\left(\left[h_{1}\right], \cdots,\left[h_{2 N+2}\right]\right), 1$ appears $2 N-k-t+2$ times repeatedly and $a_{k}-a_{k-1} \leqq t-k+1$ (let $a_{0}=0$).

For the proof, see [3], pp. 138-140. In that place, Lemma 6.5 in
[3] whose proof contains a gap is used only to prove the assertion a_{k} $=t$ in Proposition 6.3 in [3] which is missed in the above Proposition 3.1.

We shall recall here another result in [3]. To state it, we choose $2 s(1 \leqq s \leqq N+1)$ hyperplanes among $H_{1}, H_{2}, \cdots, H_{2 N+2}$ arbitrarily and change indices so that they are $H_{1}, \cdots, H_{s}, H_{N+2}, \cdots, H_{N+s+1}$. We can take homogeneous coordinates $w_{1}: w_{2}: \cdots: w_{N+1}$ such that

$$
\begin{array}{ll}
H_{i}: w_{i}=0 & 1 \leqq i \leqq N+1 \tag{3.3}\\
H_{N+j+1}: a_{j}^{1} w_{1}+\cdots+a_{j}^{N+1} w_{N+1}=0 & 1 \leqq j \leqq N+1,
\end{array}
$$

where $\left(a_{j}^{i}\right)$ is a square matrix of order $N+1$ whose minors do not vanish.

Proposition 3.4. If $s>t:=t\left(\left[h_{1}\right], \cdots,\left[h_{2 N+2}\right]\right)$, then

$$
\operatorname{det}\left(a_{j}^{i}\left(h_{i}-h_{N+j+1}\right) ; 1 \leqq i, j \leqq s\right) \equiv 0 .
$$

Proof. This is essentially the same as Corollary 5.4 in [3] and proved by the same argument as in its proof. In fact, if

$$
\operatorname{det}\left(a_{j}^{i}\left(h_{i}-h_{N+j+1}\right) ; 1 \leqq i, j \leqq s\right) \not \equiv 0,
$$

we have obviously

$$
\operatorname{det}\left(a_{j}^{i}\left(H_{i}(u)-H_{N+j+1}(u)\right) ; 1 \leqq i, j \leqq s\right) \not \equiv 0
$$

where $H_{i}(u)$ are rational functions of $u=\left(u_{1}, \cdots, u_{t}\right)$ defined as

$$
H_{i}(u)=c_{i} u_{1}^{u_{1}} u_{2}^{e_{i 2}} \cdots u_{t}^{\varepsilon_{i t}} u_{t+1}^{e_{t+1}} \quad 1 \leqq i \leqq 2 N+2
$$

when h_{i} has representations

$$
h_{i}=c_{i} \eta_{1}^{\varepsilon_{1}} \eta_{2}^{\varepsilon_{2 i}} \cdots \eta_{t}^{\varepsilon_{i t}}
$$

with algebraically independent $\eta_{1}, \cdots, \eta_{t} \in \boldsymbol{H}^{*}$ and $\ell_{i t+1}=-\left(\ell_{i 1}+\ell_{i 2}\right.$ $\left.+\cdots+\ell_{i t}\right)$. Let $V_{f, g}$ be the smallest algebraic set in $P^{N}(C) \times P^{N}(C)$ which includes the set $(f \times g)\left(C^{n}\right)$. This implies that

$$
\operatorname{dim} V_{f, g} \leqq N-s+t<N
$$

as in the proof of Theorem 5.3 in [3]. On the other hand, $V_{f, g}$ is of dimension N by (6.2) in [3]. This is a contradiction and gives Proposition 3.4.

Now, we change indices i of $H_{i}(1 \leqq i \leqq 2 N+2)$ so that (3.2) is rewritten as

$$
\begin{align*}
& {\left[h_{1}\right]:\left[h_{2}\right]: \cdots:\left[h_{N+1}\right]:\left[h_{N+2}\right]: \cdots:\left[h_{2 N+2}\right] } \\
&=\left(\beta_{1} \cdots \beta_{a_{1}}\right)^{-1}: \cdots:\left(\beta_{a_{k-1+1}} \cdots \beta_{a_{k}}\right)^{-1}: \tag{3.5}\\
& \underbrace{1: \cdots: 1: \beta_{1}: \cdots: \beta_{t}: \underbrace{1: \cdots}_{N+1-t \text { times }}: 1 .}_{N+1-k \text { times }}
\end{align*}
$$

And, we choose homogeneous coordinates $w_{1}: w_{2}: \cdots: w_{N+1}$ so that H_{i} 's with this arrangement are represented as in (3.3). We put anew η_{i} : $=h_{i}$ for each $i(1 \leqq i \leqq t)$. By a suitable choice of an admissible representation of f, we may assume $h_{N+t+2} \equiv 1$. For convenience' sake, we put $\eta_{t+1}=h_{N+t+2}(\equiv 1$). The relation (3.5) can be written as

$$
\begin{align*}
& h_{i}=x_{i}\left(\eta_{a_{i-1}+1} \cdots \eta_{a_{i}}\right)^{-1} \quad 1 \leqq i \leqq k \\
& h_{i}=x_{i} \quad k+1 \leqq i \leqq N+1 \quad \text { or } \quad N+t+3 \leqq i \leqq 2 N+2 \tag{3.6}\\
& h_{N+1+j}=\eta_{j} \quad 1 \leqq j \leqq t+1,
\end{align*}
$$

where x_{i} are some constants. Then, by Proposition 3.4,

$$
\begin{equation*}
\operatorname{det}\left(a_{j}^{i}\left(\tilde{\eta}_{i} \eta_{j}-x_{i}\right) ; 1 \leqq i, j \leqq t+1\right) \equiv 0, \tag{3.7}
\end{equation*}
$$

where $\tilde{\eta}_{i}=\eta_{a_{i-1}+1} \cdots \eta_{a_{i}}(1 \leqq i \leqq k)$ and $\tilde{\eta}_{i} \equiv 1(k+1 \leqq i \leqq t+1)$. Since $\eta_{1}, \cdots, \eta_{t}$ are algebraically independent, i.e., have no non-trivial algebraic relation by (2.9) in [3], this is regarded as an identity of polynomials with indeterminates $\eta_{1}, \cdots, \eta_{t}$.

§4. An algebraic lemma

For the proof of Theorems I and II, we have to investigate the relation (3.7) more precisely. We shall give the following.

Lemma 4.1. Let (a_{j}^{i}) be a square matrix of order $t+1$ whose minors do not vanish and (3.7) holds as an identity of polynomials with indeterminates $\eta_{1}, \cdots, \eta_{t}$ and η_{t+1}. Then, after a suitable change of indices, one of the following two cases occurs;

$$
(\alpha)^{\prime \prime} \quad k=t, a_{\kappa}-a_{\kappa-1}=1 \quad \text { for any } \kappa(1 \leqq \kappa \leqq k)
$$

and $x_{1}=x_{2}=\cdots=x_{t}=1, x_{t+1}=(-1)^{t}$.

$$
(\beta)^{\prime \prime} \quad k=1, a_{1}=t \text { and } x_{1}=1, x_{2}=\zeta, x_{3}=\zeta^{2}, \cdots, x_{t+1}=\zeta^{t},
$$

where ζ denotes a primitive $(t+1)$-th root of unity.

Proof. Changing indices if necessary, we may assume

$$
\begin{aligned}
& x_{1}=x_{2}=\cdots=x_{\ell}=1, \quad x_{\ell+1} \neq 1, \cdots, x_{k} \neq 1 \\
& x_{k+1}=x_{k+2}=\cdots=x_{k+m}=1, \quad x_{k+m+1} \neq 1, \cdots, x_{t+1} \neq 1,
\end{aligned}
$$

where $0 \leqq \ell \leqq k$ and $0 \leqq m \leqq t-k+1$. We divide the proof of Lemma 4.1 into several steps.
$\left.1^{\circ}\right) \quad \ell \geqq m+1$.
We note first $m \leqq t-1$. In fact, if $m=t$, we have easily an absurd identity

$$
a_{t+1}^{1} \operatorname{det}\left(a_{j}^{i} ; 1 \leqq i, j \leqq t\right)\left(\tilde{\eta}_{1}-x_{1}\right)\left(\eta_{1}-1\right)\left(\eta_{2}-1\right) \cdots\left(\eta_{t}-1\right) \equiv 0 .
$$

Assume that $\ell \leqq m$. Then, we can choose $t-m \eta_{\tau}$'s, say, $\eta_{\tau_{1}}, \eta_{\tau_{2}}, \cdots, \eta_{\tau t-m}$, in the set $\left\{\eta_{1}, \cdots, \eta_{t}\right\}-\left\{\eta_{a_{1}}, \eta_{a_{2}}, \cdots, \eta_{a_{\ell}}\right\}$. Substitute $\eta_{\tau_{1}}=\eta_{\tau_{2}}=\cdots=\eta_{\tau_{t-m}}$ $=1$ in (3.7). We see $\tilde{\eta}_{i} \eta_{j}-x_{i}=0$ when and only when $i=k+1, \cdots$, $k+m$ and $j=\tau_{1}, \tau_{2}, \cdots, \tau_{t-m}, t+1$. So, (3.7) is in this case reduced to

$$
\begin{gathered}
\operatorname{det}\left(a_{j}^{i} ; \begin{array}{l}
i \neq k+1, \cdots, k+m \\
j=\tau_{1}, \cdots, \tau_{t-m}, t+1
\end{array}\right) \operatorname{det}\left(a_{j}^{i} ; \begin{array}{l}
i=k+1, \cdots, k+m \\
j \neq \tau_{1}, \cdots, \tau_{t-m}, t+1
\end{array}\right) \\
\times \prod_{i \neq k+1, \cdots, k+m}\left(\eta_{i}^{*}-x_{i}\right) \times \prod_{j \neq \tau_{1}, \ldots, \tau_{t-m}, t+1}\left(\eta_{j}-1\right) \equiv 0,
\end{gathered}
$$

where $\eta_{i}^{*}\left(\not \equiv x_{i}\right)$ are quantities obtained from $\tilde{\eta}_{i}$ by substitutions of $\eta_{\tau_{1}}$ $=\eta_{\tau_{2}}=\cdots=\eta_{t t-m}=1$. This is a contradiction. We conclude $\ell \geqq m+1$.
$\left.2^{\circ}\right)$ Put $r:=[(\ell-m+1) / 2](\geqq 1)$, where $[a]$ denotes the largest integer not larger than a real number a. And, assume

$$
\alpha_{1} \leqq \alpha_{2} \leqq \cdots \leqq \alpha_{\ell}
$$

for $\alpha_{\kappa}:=a_{\kappa}-a_{\kappa-1}(1 \leqq \kappa \leqq \ell)$ by a suitable change of indices, where we put $a_{0}=0$. We have then one of the followings;
(i) $a_{r}+m+r \leqq t$,
(ii) $\ell=t$,
(iii) $m=0$ and $r=1$.

To see this, we assume $a_{r}+m+r>t$. Then, for any chosen i_{1}, $i_{2}, \cdots, i_{r}\left(1 \leqq i_{1}<i_{2}<\cdots<i_{r} \leqq \ell\right)$,

$$
\alpha_{i_{1}}+\alpha_{i_{2}}+\cdots+\alpha_{i_{r}} \geqq t-m-r+1
$$

Therefore,

$$
\begin{aligned}
\sum_{1 \leq i_{1}<\cdots<i_{r} \leq \ell}\left(\alpha_{i_{1}}+\cdots+\alpha_{i_{r}}\right) & =\left(\alpha_{1}+\cdots+\alpha_{\ell}\right) \frac{(\ell-1)!}{(r-1)!(\ell-r)!} \\
& \geqq(t-m-r+1) \frac{\ell!}{r!(\ell-r)!}
\end{aligned}
$$

and so

$$
r t \geqq r a_{\ell}=r\left(\alpha_{1}+\cdots+\alpha_{\ell}\right) \geqq \ell(t-m-r+1)
$$

Since $\ell-m+1 \geqq 2 r$ in any case, we have

$$
\ell(m+r-1) \geqq t(\ell-r) \geqq t(m+r-1) .
$$

If $m+r-1>0$, then $t \leqq \ell$ and so the case (ii) occurs. If $m+r-1$ $=0$, then we have the case (iii).
3°) The case (i) of 2°) is impossible.
In fact, if it occurs, we can choose distinct indices $\sigma_{1}, \cdots, \sigma_{t-(m+r)}$ such that $\left\{1,2, \cdots, a_{r}\right\} \subset\left\{\sigma_{1}, \sigma_{2}, \cdots, \sigma_{t-(m+r)}\right\}$ and $\left\{\sigma_{1}, \sigma_{2}, \cdots, \sigma_{t-(m+r)}\right\}$ $\cap\left\{a_{r+1}, a_{r+2}, \cdots, a_{\ell}\right\}=\varnothing$, because

$$
a_{r} \leqq t-m-r \leqq t-(\ell-r)
$$

Substitute $\eta_{\sigma_{1}}=\cdots=\eta_{\sigma_{-(m+r)}}=1$ in (3.7). Then, $\tilde{\eta}_{i} \eta_{j}-x_{i}=0$ when and only when $i=1,2, \cdots, r, k+1, \cdots, k+m$ and $j=\sigma_{1}, \sigma_{2}, \cdots, \sigma_{t-(m+r)}$, $t+1$. And, as is easily seen, the relation (3.7) contradicts the assumption that any minor of (a_{j}^{i}) does not vanish. Therefore the case (i) of 2°) does not occur.
4°) The case (ii) of 2°) is reduced to the case $(\alpha)^{\prime \prime}$ of Lemma 4.1.
Let $\ell=t$. We see easily $k=t$ and $a_{\kappa}-a_{\kappa-1}=1(1 \leqq \kappa \leqq t)$. The identity (3.7) can be rewritten as

$$
\operatorname{det}\left(a_{i}^{1}\left(\eta_{i} \eta_{1}-1\right), \cdots, a_{i}^{t}\left(\eta_{i} \eta_{t}-1\right), a_{i}^{t+1}\left(\eta_{i}-x_{t+1}\right) ; 1 \leqq i \leqq t+1\right) \equiv 0
$$

where $\eta_{t+1}=1$. Put $s=[(t+1) / 2]$. And, substitute $\eta_{1}=\eta_{2}=\cdots=\eta_{s}$ $=(-1)^{t}$. We can conclude easily $x_{t+1}=(-1)^{t}$. This gives the case $(\alpha)^{\prime \prime}$.
5°) The case (iii) of 2°) is reduced to the case $(\beta)^{\prime \prime}$.
Assume that $m=0$ and $r=1$. If $a_{1} \leqq t-1$, we substitute $\eta_{1}=\eta_{2}$ $=\cdots=\eta_{t-\ell}=1$ in (3.7), where $\ell=1$ or $=2$. This leads to a contradiction. Let $a_{1}=t$. We have then $\ell=1$ and

$$
\left.\operatorname{det}\left(a_{i}^{1}\left(\eta_{1} \cdots \eta_{t}\right) \eta_{i}-1\right), a_{i}^{2}\left(\eta_{i}-x_{2}\right), \cdots, a_{i}^{t+1}\left(\eta_{i}-x_{t+1}\right) ; 1 \leqq i \leqq t+1\right) \equiv 0
$$

For each $u(1 \leqq u \leqq t)$, substitute $\eta_{1}=\eta_{2}=\cdots=\eta_{t}=\zeta^{u}$, where ζ denotes a primitive $(t+1)$-th root of unity. Since $\zeta^{s t} \neq 1$ for any $s(1 \leqq s \leqq t)$, some $x_{i}(2 \leqq i \leqq t+1)$ is equal to ζ^{u}. By a suitable change of indices, we have

$$
x_{2}=\zeta, \quad x_{3}=\zeta^{2}, \cdots, x_{t+1}=\zeta^{t}
$$

because $\zeta, \zeta^{2}, \cdots, \zeta^{t}$ are mutually distinct. This is the case $(\beta)^{\prime \prime}$ of Lemma 4.1. Lemma 4.1 is completely proved.

§ 5. Proofs of Theorems I and II

We shall prove first Theorem I. By the results in § 3 and Lemma 4.1, we may put

$$
\begin{align*}
& \left(h_{1}, h_{2}, \cdots, h_{2 N+2}\right) \tag{5.1}\\
& \quad=\left(\eta_{1}, \cdots, \eta_{t}, \eta_{1}^{-1}, \cdots, \eta_{t}^{-1}, 1,(-1)^{t}, c_{2 t+3}, \cdots, c_{2 N+2}\right)
\end{align*}
$$

or

$$
\begin{align*}
& \left(h_{1}, h_{2}, \cdots, h_{2 N+2}\right) \tag{5.2}\\
& \quad=\left(\eta_{1}, \cdots, \eta_{t},\left(\eta_{1} \cdots \eta_{t}\right)^{-1}, 1, \zeta, \cdots, \zeta^{t}, c_{2 t+3}, \cdots, c_{2 N+2}\right)
\end{align*}
$$

after a suitable change of indices, where $t=t\left(\left[h_{1}\right], \cdots,\left[h_{2 N+2}\right]\right)$ and c_{i} are some constants. In this place, we shall show $t=N$. Since Proposition 3.4 remains valid even if the indices of H_{i} 's are changed in any given order, it is easily seen that any chosen $2 t+2$ elements $h_{i_{1}}, h_{i_{2}}$, $\cdots, h_{i_{2 t+2}}$ among $h_{1}, h_{2}, \cdots, h_{2 N+2}$ ought to be of the type similar to h_{1}, h_{2}, $\cdots, h_{2 t+2}$ in (5.1) or (5.2) up to changes of the order and multiplication of a common factor. If $t<N$, for example, $h_{2}, h_{3}, \cdots, h_{2 t+3}$ cannot be of such types, because there exist three distinct indices i, j, k among 2 , $3, \cdots, 2 t+3$ (let $i=2 t+1, j=2 t+2, k=2 t+3$) such that h_{i} / h_{j} and h_{i} / h_{k} are both constants, but not for $h_{1}, \cdots, h_{2 t+2}$ in (5.1) and (5.2). This concludes $t=N$.

To complete the proof of Theorem I, we have only to prove that $N+1$ is prime for the case $t=N$ of $(\beta)^{\prime \prime}$ of Lemma 4.1. For convenience' sake, we change again indices of H_{i} so that

$$
\left(h_{1}, h_{2}, \cdots, h_{2 N+2}\right)=\left(\zeta, \zeta^{2}, \cdots, \zeta^{N}, 1, \eta_{1}, \cdots, \eta_{N},\left(\eta_{1} \cdots \eta_{N}\right)^{-1}\right)
$$

and let H_{i} 's with these labels be given as (3.3), where ζ denotes a primitive $(N+1)$-th root of unity. For admissible representations $f=f_{1}: f_{2}: \cdots: f_{N+1}$ and $g=g_{1}: g_{2}: \cdots: g_{N+1}$, we have

$$
\begin{equation*}
f_{i}=\zeta^{i} g_{i} \quad 1 \leqq i \leqq N+1 \tag{5.3}
\end{equation*}
$$

and

$$
\begin{gather*}
\sum_{i=1}^{N+1} a_{j}^{i} f_{i}=\eta_{j}\left(\sum_{i=1}^{N+1} a_{j}^{i} g_{i}\right) \quad 1 \leqq j \leqq N \tag{5.4}\\
\sum_{i=1}^{N+1} a_{N+1}^{i} f_{i}=\left(\eta_{1} \eta_{2} \cdots \eta_{N}\right)^{-1}\left(\sum_{i=1}^{N+1} a_{N+1}^{i} g_{i}\right) .
\end{gather*}
$$

Substitute (5.3) into (5.4) and multiply all relations in (5.4) together. We get a relation

$$
\begin{equation*}
\prod_{j=1}^{N+1}\left(\sum_{i=1}^{N+1} a_{j}^{i} \zeta^{i} g_{i}\right)=\prod_{j=1}^{N+1}\left(\sum_{i=1}^{N+1} a_{j}^{i} g_{i}\right) . \tag{5.5}
\end{equation*}
$$

Since g is algebraically non-degenerate by the assumption, this is regarded as an identity of polynomials with indeterminates $g_{1}, g_{2}, \cdots, g_{N+1}$. By the unique factorization theorem for polynomials, each factor in one side of (5.5) coincides with a factor in the other up to a constant multiplication. We may assume here $a_{j}^{i}=1$ if $i=N+1$ or $j=N+1$. Under this condition, we can conclude easily $a_{j}^{i}=\zeta^{i j}(1 \leqq i, j \leqq N+1)$ by a suitable change of indices. If $N+1$ is not prime and so $N+1$ $=k \ell$ for some $k, \ell(1 \leqq k \leqq \ell \leqq N)$, then

$$
\left|\begin{array}{ll}
a_{\ell}^{k} & a_{\ell}^{N+1} \\
a_{N+1}^{k} & a_{N+1}^{N+1}
\end{array}\right|=0
$$

which contradicts the assumption that any minor of (a_{j}^{i}) does not vanish. Therefore, $N+1$ is prime.

We shall prove next Theorem II. We know that the case (α) or (β) of Theorem I occurs. It is obvious that the case (α) implies the case $(\alpha)^{\prime}$ of Theorem II. Assume that the case (β) occurs. We choose homogeneous coordinates satisfying the above conditions. Meromorphic maps f and g are related as (5.3) and (5.4). The relation (5.3) is rewritten as $L \cdot g=f$ if we take a projective linear transformation

$$
L: w_{i}^{\prime}=\zeta^{i} w_{i} \quad 1 \leqq i \leqq N+1
$$

We have shown in the above that $a_{j}^{i}=\zeta^{i j}$. It follows that L fixes H_{1}, \cdots, H_{N+1} and maps $H_{N+2}, H_{N+3}, \cdots, H_{2 N+2}$ onto $H_{2 N+2}, H_{N+2}, \cdots, H_{2 N+1}$ respectively. Thus, Theorem II is completely proved.

§6. An additional remark

In the previous paper [3], pp. 141-142, the author gave an example of mutually distinct algebraically non-degenerate meromorphic maps f and g of C^{n} into $P^{N}(C)$ such that $\nu\left(f, H_{i}\right)=\nu\left(g, H_{i}\right)$ for $2 N+2$ hyperplanes H_{i} in general position. This is a special case of $(\alpha)^{\prime}$ of Theorem II and the case that f and g are related as $L \cdot g=f$ with a projective linear transformation $L: P^{N}(C) \rightarrow P^{N}(C)$ which maps $H_{1}, H_{2}, \cdots, N_{N}$ onto $H_{N+2}, H_{N+3}, \cdots, H_{2 N+1}$ respectively and fixes H_{N+1} and $H_{2 N+2}$ after a suitable change of indices. As is shown in [3], we have always a relation of this type between f and g for the case $N=1$ or $=2$ of ($\alpha)^{\prime}$ of Theorem II, but not for the case $N \geqq 3$. We shall remark here the following fact, which implies that the case ($\beta)^{\prime}$ occurs actually.

Proposition 6.1. Let $A=\left(\zeta^{i j} ; 1 \leqq i, j \leqq N+1\right)$, where ζ denotes a primitive $(N+1)$-th root of unity. If $N+1$ is prime, then any minor of A does not vanish.

For the proof, we give
Lemma 6.2. Let $F(x)$ be a polynomial with integral coefficients. If $F(\zeta)=0$, then $F(1) \equiv 0(\bmod N+1)$.

Proof. We can find easily a polynomial $g(x)$ with integral coefficients such that

$$
F(x)=\left(1+x+x^{2}+\cdots+x^{N}\right) g(x)
$$

Therefore,

$$
F(1)=(N+1) g(1) \equiv 0 \quad(\bmod N+1)
$$

Lemma 6.3. Let $f_{1}(x), \cdots, f_{r}(x)$ be polynomials and define a polynomial $\Psi\left(\zeta_{1}, \cdots, \zeta_{r}\right)$ with indeterminates $\zeta_{1}, \cdots, \zeta_{r}$ so that it satisfies the condition

$$
\operatorname{det}\left(f_{j}\left(\zeta_{i}\right) ; 1 \leqq i, j \leqq r\right)=\Psi\left(\zeta_{1}, \cdots, \zeta_{r}\right) \prod_{i>j}\left(\zeta_{i}-\zeta_{j}\right)
$$

Then,

$$
\begin{equation*}
\Psi(1,1, \cdots, 1)=\operatorname{det}\left(\frac{f_{i}^{(j-1)}(1)}{(j-1)!} ; 1 \leqq i, j \leqq r\right) \tag{6.4}
\end{equation*}
$$

where $f_{i}^{(j-1)}$ denotes the $(j-1)$-th derivative of f_{i}.

Proof. We expand each $f_{i}(x)$ as

$$
f_{i}(x)=\sum_{\nu} \alpha_{\nu}^{i}(x-1)^{\nu}
$$

with constants α_{ν}^{i} and put

$$
g_{j, i}(x)=\sum_{\nu \geq j-1} \alpha_{\nu}^{i}(x-1)^{\nu-j+1}
$$

Then,

$$
g_{j, i}(x)-g_{j, i}(1)=(x-1) g_{j+1, i}(x)
$$

As is easily seen by the induction on k, it holds that

$$
\begin{aligned}
& \Psi\left(1, \cdots, 1, \zeta_{k+1}, \cdots, \zeta_{r}\right) \prod_{k<j<i \leqq r}\left(\zeta_{i}-\zeta_{j}\right) \\
& \quad=\operatorname{det}\left(g_{1, i}(1), \cdots, g_{k, i}(1), g_{k+1, i}\left(\zeta_{k+1}\right), \cdots, g_{k+1, i}\left(\zeta_{r}\right) ; 1 \leqq i \leqq r\right)
\end{aligned}
$$

For the case $k=r$, we get (6.4) because

$$
g_{j, i}(1)=f_{i}^{(j-1)}(1) /(j-1)!.
$$

Proof of Proposition 6.1. Obviously, a minor of A of degree $N+1$ does not equal to zero. Take a minor

$$
\Delta=\operatorname{det}\left(\zeta^{k_{i} \ell_{j}}: 1 \leqq i, j \leqq r\right)
$$

of A arbitrarily, where $1 \leqq k_{1}<\cdots<k_{r} \leqq N+1$ and $1 \leqq \ell_{1}<\ell_{2} \ldots$ $<\ell_{r} \leqq N+1(1 \leqq r \leqq N)$. Apply Lemma 6.3 to the polynomials $f_{1}(x)$ $=x^{\ell_{1}}, \cdots, f_{r}(x)=x^{\ell_{r}}$. For the polynomial $\Psi\left(\zeta_{1}, \cdots, \zeta_{r}\right)$ as in Lemma 6.3, putting $\zeta_{1}=\zeta^{k_{1}}, \cdots, \zeta_{r}=\zeta^{k_{r}}$, we see

$$
\Delta=\prod_{i>j}\left(\zeta^{k_{i}}-\zeta^{k_{j}}\right) \Psi\left(\zeta^{k_{1}}, \zeta^{k_{2}}, \cdots, \zeta^{k_{r}}\right)
$$

Let $g(x)=\Psi\left(x^{k_{1}}, x^{k_{2}}, \cdots, x^{k_{r}}\right)$. This is a polynomial with integral coefficients. If $\Delta=0$, then $g(\zeta)=0$. By Lemma 6.2,

$$
g(1) \equiv 0 \quad(\bmod N+1)
$$

Therefore, according to Lemma 6.3, we can conclude an absurd identity

$$
\operatorname{det}\left(\frac{\ell_{i}\left(\ell_{i}-1\right) \cdots\left(\ell_{i}-j+1\right)}{(j-1)!} ; 1 \leqq i, j \leqq r\right)
$$

$$
\begin{aligned}
& =\frac{1}{1!2!\cdots(r-1)!}\left|\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
\ell_{1} & \ell_{2} & \cdots & \ell_{r} \\
\ell_{1}^{r-1} & \ell_{2}^{r-1} & \cdots & \ell_{r}^{r-1}
\end{array}\right| \\
& \equiv 0 \quad(\bmod N+1) .
\end{aligned}
$$

Thus, $\Delta \neq 0$. Proposition 6.1 is completely proved.

References

[1] E. Borel, Sur les zéros des fonctions entières, Acta Math., 20 (1897), 357-396.
[2] H. Fujimoto, The uniqueness problem of meromorphic maps into the complex projective space, Nagoya Math. J., 58 (1975), 1-23.
[3] -, A uniqueness theorem of algebraically non-degenerate meromorphic maps into $P^{N}(C)$, Nagoya Math. J., 64 (1976), 117-147.
[4] R. Nevanlinna, Einige Eindeutigkeitssätze in der Theorie der meromorphen Funktionen, Acta Math., 48 (1926), 367-391.
[5] G. Pólya, Bestimmung einer ganzen Funktionen endlichen Geschlechts durch viererlei Stellen, Math. Tidskrift, B, (1921), 16-21.

Nagoya University

[^0]: Received February 4, 1977.

