H. Fujimoto Nagoya Math. J. Vol. 71 (1978), 13-24

REMARKS TO THE UNIQUENESS PROBLEM OF MEROMORPHIC MAPS INTO $P^N(C)$, I

HIROTAKA FUJIMOTO

§ 1. Introduction

As generalizations of the results in [5] and [4], the author gave some uniqueness theorems of meromorphic maps into $P^N(C)$ in previous papers [2] and [3]. He studied two meromorphic maps f and g of C^n into $P^N(C)$ such that $\nu(f, H_i) = \nu(g, H_i)$ for q hyperplanes H_i located in general position in $P^N(C)$, where $\nu(f, H_i)$ and $\nu(g, H_i)$ denote the pullbacks of divisors (H_i) on $P^N(C)$ by f and g respectively. In [2], he showed that, if $g \geq 3N + 2$ and either f or g is non-degenerate, then $f \equiv g$. And, in [3] (p. 140), he gave the following

THEOREM. If $q \ge 2N + 3$ and either f or g is algebraically non-degenerate, i.e., the image is not included in any proper subvariety of $P^N(C)$, then $f \equiv g$.

Unfortunately, a gap was found in the proof of Lemma 6.5 in [3] which is essentially used to prove the above theorem.

The purposes of this paper are to give a complete proof of the above theorem and, simultaneously, to give some remarks to the uniqueness problem of meromorphic maps of C^n into $P^N(C)$. Theorem 6.9 in [3] will be improved and the results in the last section of [3] will be generalized to the higher dimensional case.

§ 2. Main results

We recall some notations and terminologies given in [3]. Let f be a meromorphic map of \mathbb{C}^n into the N-dimensional complex projective space $\mathbb{P}^N(\mathbb{C})$ and H a hyperplane in $\mathbb{P}^N(\mathbb{C})$ such that $f(\mathbb{C}^n) \subseteq H$. For an arbitrarily fixed homogeneous coordinates $w_1 : w_2 : \cdots : w_{N+1}$ on $\mathbb{P}^N(\mathbb{C})$, we can take a representation $f = f_1 : f_2 : \cdots : f_{N+1}$ with holomorphic func-

Received February 4, 1977.

tions f_1, f_2, \dots, f_{N+1} on C^n satisfying the condition

codim
$$\{z \in \mathbb{C}^n ; f_1(z) = f_2(z) = \cdots = f_{N+1}(z) = 0\} \ge 2$$
,

which we call an admissible representation of f. Let H be given as

$$H: a^1w_1 + a^2w_2 + \cdots + a^{N+1}w_{N+1} = 0$$

and define a holomorphic function

$$(2.1) F_f^H := a^1 f_1 + a^2 f_2 + \cdots + a^{N+1} f_{N+1}.$$

For each point z in \mathbb{C}^n , we denote by $\nu(f, H)(z)$ the zero multiplicity of \mathbb{F}_f^H at z. The integer-valued function $\nu(f, H)$ may be considered to be the pull-back of the divisor (H) by f.

Let us consider two meromorphic maps f, g of C^n into $P^N(C)$ and assume that there are 2N+2 hyperplanes H_i $(1 \le i \le 2N+2)$ located in general position in $P^N(C)$ such that $f(C^n) \subset H_i$, $g(C^n) \subset H_i$ and $\nu(f, H_i) = \nu(g, H_i)$ for any i. Then,

$$(2.2) h_i := F_f^{H_i} / F_g^{H_i} (1 \le i \le 2N + 2)$$

are nowhere zero holomorphic functions on C^n and the ratios h_i/h_j $(1 \le i, j \le 2N + 2)$ are uniquely determined independently of any choices of homogeneous coordinates and admissible representations of f and g.

In this situation, we shall prove

THEOREM I. If either f or g is algebraically non-degenerate, then after a suitable change of indices i of H_i the functions h_i are represented as one of the following two types;

(a)
$$h_1: h_2: \cdots h_{2N+2}$$

= $\eta_1: \eta_1^{-1}: \eta_2: \eta_2^{-1}: \cdots: \eta_N: \eta_N^{-1}: 1: (-1)^N$

(\beta)
$$N+1$$
 is prime and $h_1:h_2:\cdots:h_{2N+2}$
$$= \eta_1:\eta_2:\cdots:\eta_N:(\eta_1\eta_2\cdots\eta_N)^{-1}:1:\zeta:\cdots:\zeta^N \ ,$$

where $\eta_1, \eta_2, \dots, \eta_N$ are algebraically independent nowhere zero holomorphic functions on \mathbb{C}^n and ζ denotes a primitive (N+1)-th root of unity.

This is an improvement of Proposition 6.3 in [3], which is proved without using Lemma 6.5 in it. Thus, we can prove the theorem stated

in §1 correctly by the same argument as in [3], p. 141.

We shall give also the following theorem, which is an improvement of Theorem 6.9 in [3].

THEOREM II. If f or g is algebraically non-degenerate, then they are reduced by a suitable change of indices to one of the following two cases;

- (a)' there are relations between f and g such that $F_f^{H_{2i-1}}F_f^{H_{2i}}=F_g^{H_{2i-1}}F_g^{H_{2i}} \quad 1 \leq i \leq N$ $F_f^{H_{2N+1}}=F_g^{H_{2N+1}} \ , \qquad F_f^{H_{2N+2}}=(-1)^NF_g^{H_{2N+2}} \ ,$
- (β)' N+1 is prime and f and g are related as $L\cdot g=f$ with a projective linear transformation $L\colon P^N(C)\to P^N(C)$ which fixes hyperplanes H_1 , H_2,\cdots,H_{N+1} and maps $H_{N+2},H_{N+3},\cdots,H_{2N+2}$ onto $H_{2N+2},H_{N+2},\cdots,H_{2N+1}$ respectively.

These theorems will be proved in $\S 5$ completely after giving some preparations in $\S 3$ and $\S 4$.

§ 3. Some known results

Let f, g and H_i ($1 \le i \le 2N + 2$) satisfy the conditions stated in the previous section and assume that g is algebraically non-degenerate.

As in [3], we consider the multiplicative group H^* of all nowhere zero holomorphic functions on C^n and the factor group $G:=H^*/C^*$, where $C^*:=C-\{0\}$. For an element $h\in H^*$, we denote by [h] the class in G containing h and, for the functions h_1, \dots, h_{2N+2} defined as (2.2), by $t([h_1], \dots, [h_{2N+2}])$ the rank of the subgroup of G generated by $[h_1], \dots, [h_{2N+2}]$. We shall restate here Proposition 6.3 in [3] revised as follows.

PROPOSITION 3.1. There exist elements β_1, \dots, β_t in H^*/C^* such that, after a suitable change of indices,

where $t = t([h_1], \dots, [h_{2N+2}])$, 1 appears 2N - k - t + 2 times repeatedly and $a_k - a_{k-1} \leq t - k + 1$ (let $a_0 = 0$).

For the proof, see [3], pp. 138-140. In that place, Lemma 6.5 in

[3] whose proof contains a gap is used only to prove the assertion $a_k = t$ in Proposition 6.3 in [3] which is missed in the above Proposition 3.1.

We shall recall here another result in [3]. To state it, we choose 2s $(1 \le s \le N+1)$ hyperplanes among $H_1, H_2, \dots, H_{2N+2}$ arbitrarily and change indices so that they are $H_1, \dots, H_s, H_{N+2}, \dots, H_{N+s+1}$. We can take homogeneous coordinates $w_1: w_2: \dots: w_{N+1}$ such that

$$(3.3) \qquad \begin{array}{ll} H_i \colon w_i = 0 & 1 \leq i \leq N+1 \\ H_{N+j+1} \colon a_j^1 w_1 + \cdots + a_j^{N+1} w_{N+1} = 0 & 1 \leq j \leq N+1 \end{array},$$

where (a_j^i) is a square matrix of order N+1 whose minors do not vanish.

PROPOSITION 3.4. If $s > t := t([h_1], \dots, [h_{2N+2}])$, then

$$\det (a_i^i(h_i - h_{N+i+1}); 1 \le i, j \le s) \equiv 0$$
.

Proof. This is essentially the same as Corollary 5.4 in [3] and proved by the same argument as in its proof. In fact, if

$$\det (a_i^i(h_i - h_{N+j+1}); 1 \le i, j \le s) \not\equiv 0$$
,

we have obviously

$$\det (a_i^i(H_i(u) - H_{N+i+1}(u)); 1 \le i, j \le s) \ne 0$$
,

where $H_i(u)$ are rational functions of $u = (u_1, \dots, u_t)$ defined as

$$H_i(u) = c_i u_1^{\ell_{i1}} u_2^{\ell_{i2}} \cdots u_t^{\ell_{it}} u_{t+1}^{\ell_{it+1}} \qquad 1 \leq i \leq 2N+2$$

when h_i has representations

$$h_i = c_i \eta_1^{\ell i_1} \eta_2^{\ell i_2} \cdots \eta_t^{\ell i_t}$$

with algebraically independent $\eta_1, \dots, \eta_t \in H^*$ and $\ell_{it+1} = -(\ell_{i1} + \ell_{i2} + \dots + \ell_{it})$. Let $V_{f,g}$ be the smallest algebraic set in $P^N(C) \times P^N(C)$ which includes the set $(f \times g)(C^n)$. This implies that

$$\dim V_{t,a} \leq N - s + t < N$$

as in the proof of Theorem 5.3 in [3]. On the other hand, $V_{f,g}$ is of dimension N by (6.2) in [3]. This is a contradiction and gives Proposition 3.4.

Now, we change indices i of H_i $(1 \le i \le 2N + 2)$ so that (3.2) is rewritten as

(3.5)
$$[h_{1}]:[h_{2}]:\cdots:[h_{N+1}]:[h_{N+2}]:\cdots:[h_{2N+2}] = (\beta_{1}\cdots\beta_{a_{1}})^{-1}:\cdots:(\beta_{a_{k-1}+1}\cdots\beta_{a_{k}})^{-1}: \underbrace{1:\cdots:1}_{N+1-t \text{ times}}:\beta_{1}:\cdots:\beta_{t}:\underbrace{1:\cdots:1}_{N+1-t \text{ times}}.$$

And, we choose homogeneous coordinates $w_1: w_2: \cdots : w_{N+1}$ so that H_i 's with this arrangement are represented as in (3.3). We put anew η_i : $= h_i$ for each i ($1 \le i \le t$). By a suitable choice of an admissible representation of f, we may assume $h_{N+t+2} \equiv 1$. For convenience' sake, we put $\eta_{t+1} = h_{N+t+2}$ ($\equiv 1$). The relation (3.5) can be written as

$$h_i = x_i (\eta_{a_{i-1}+1} \cdots \eta_{a_i})^{-1} \qquad 1 \leq i \leq k$$

$$(3.6) \quad h_i = x_i \qquad k+1 \leq i \leq N+1 \quad \text{or} \quad N+t+3 \leq i \leq 2N+2$$

$$h_{N+1+j} = \eta_j \qquad 1 \leq j \leq t+1,$$

where x_i are some constants. Then, by Proposition 3.4,

(3.7)
$$\det (a_i^i(\tilde{\eta}_i\eta_i - x_i); 1 \le i, j \le t+1) \equiv 0,$$

where $\tilde{\eta}_i = \eta_{a_{t-1}+1} \cdots \eta_{a_t}$ $(1 \le i \le k)$ and $\tilde{\eta}_i \equiv 1$ $(k+1 \le i \le t+1)$. Since η_1, \dots, η_t are algebraically independent, i.e., have no non-trivial algebraic relation by (2.9) in [3], this is regarded as an identity of polynomials with indeterminates η_1, \dots, η_t .

§ 4. An algebraic lemma

For the proof of Theorems I and II, we have to investigate the relation (3.7) more precisely. We shall give the following.

LEMMA 4.1. Let (a_j^i) be a square matrix of order t+1 whose minors do not vanish and (3.7) holds as an identity of polynomials with indeterminates η_1, \dots, η_t and η_{t+1} . Then, after a suitable change of indices, one of the following two cases occurs;

(a)"
$$k = t, a_{k} - a_{k-1} = 1$$
 for any κ $(1 \le \kappa \le k)$
and $x_1 = x_2 = \cdots = x_t = 1, x_{t+1} = (-1)^t.$
(b)" $k = 1, a_1 = t$ and $x_1 = 1, x_2 = \zeta, x_3 = \zeta^2, \cdots, x_{t+1} = \zeta^t,$

where ζ denotes a primitive (t+1)-th root of unity.

Proof. Changing indices if necessary, we may assume

$$x_1=x_2=\cdots=x_\ell=1$$
 , $x_{\ell+1}
eq 1$, $x_k
eq 1$ $x_{k+1}=x_{k+2}=\cdots=x_{k+m}=1$, $x_{k+m+1}
eq 1$, $x_{k+m+1}
eq 1$, $x_{\ell+1}
eq 1$, $x_{\ell+$

where $0 \le \ell \le k$ and $0 \le m \le t - k + 1$. We divide the proof of Lemma 4.1 into several steps.

$$1^{\circ}$$
) $\ell \geq m+1$.

We note first $m \le t - 1$. In fact, if m = t, we have easily an absurd identity

$$a_{t+1}^1 \det (a_t^i; 1 \leq i, j \leq t) (\tilde{\eta}_1 - x_1) (\eta_1 - 1) (\eta_2 - 1) \cdots (\eta_t - 1) \equiv 0$$
.

Assume that $\ell \leq m$. Then, we can choose t-m η_{τ} 's, say, $\eta_{\tau_1}, \eta_{\tau_2}, \dots, \eta_{\tau_{t-m}}$, in the set $\{\eta_1, \dots, \eta_t\} - \{\eta_{a_1}, \eta_{a_2}, \dots, \eta_{a_t}\}$. Substitute $\eta_{\tau_1} = \eta_{\tau_2} = \dots = \eta_{\tau_{t-m}} = 1$ in (3.7). We see $\tilde{\eta}_i \eta_j - x_i = 0$ when and only when $i = k + 1, \dots, k + m$ and $j = \tau_1, \tau_2, \dots, \tau_{t-m}, t + 1$. So, (3.7) is in this case reduced to

$$\det\left(a_j^i\,;\,i
eq k+1,\cdots,k+m
ight)\det\left(a_j^i\,;\,i=k+1,\cdots,k+m
ight) \ \left(a_j^i\,;\,i=k+1,\cdots,k+m
ight) \ imes \prod\limits_{i
eq k+1,\cdots,k+m}(\eta_i^*-x_i) imes \prod\limits_{j
eq au_1,\cdots, au_{t-m},t+1}(\eta_j-1)\equiv 0 \;,$$

where η_i^* ($\neq x_i$) are quantities obtained from $\tilde{\eta}_i$ by substitutions of $\eta_{\tau_1} = \eta_{\tau_2} = \cdots = \eta_{\tau_{t-m}} = 1$. This is a contradiction. We conclude $\ell \geq m+1$.

2°) Put $r := [(\ell - m + 1)/2] (\ge 1)$, where [a] denotes the largest integer not larger than a real number a. And, assume

$$\alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_\ell$$

for $\alpha_{\kappa} := a_{\kappa} - a_{\kappa-1}$ $(1 \le \kappa \le \ell)$ by a suitable change of indices, where we put $a_0 = 0$. We have then one of the followings;

- (i) $a_r + m + r \leq t$,
- (ii) $\ell = t$,
- (iii) m=0 and r=1.

To see this, we assume $a_r + m + r > t$. Then, for any chosen i_1 , i_2, \dots, i_r $(1 \le i_1 < i_2 < \dots < i_r \le \ell)$,

$$\alpha_{i_1} + \alpha_{i_2} + \cdots + \alpha_{i_r} \geq t - m - r + 1$$
.

Therefore,

$$\sum_{1 \le i_1 < \dots < i_r \le \ell} (\alpha_{i_1} + \dots + \alpha_{i_r}) = (\alpha_1 + \dots + \alpha_{\ell}) \frac{(\ell - 1)!}{(r - 1)! (\ell - r)!}$$

$$\ge (t - m - r + 1) \frac{\ell!}{r! (\ell - r)!}$$

and so

$$rt \ge ra_{\ell} = r(\alpha_1 + \cdots + \alpha_{\ell}) \ge \ell(t - m - r + 1)$$
.

Since $\ell - m + 1 \ge 2r$ in any case, we have

$$\ell(m+r-1) \ge t(\ell-r) \ge t(m+r-1).$$

If m+r-1>0, then $t\leq \ell$ and so the case (ii) occurs. If m+r-1=0, then we have the case (iii).

 3°) The case (i) of 2°) is impossible.

In fact, if it occurs, we can choose distinct indices $\sigma_1, \dots, \sigma_{t-(m+r)}$ such that $\{1, 2, \dots, a_r\} \subset \{\sigma_1, \sigma_2, \dots, \sigma_{t-(m+r)}\}$ and $\{\sigma_1, \sigma_2, \dots, \sigma_{t-(m+r)}\}$ $\cap \{a_{r+1}, a_{r+2}, \dots, a_\ell\} = \emptyset$, because

$$a_r \leq t - m - r \leq t - (\ell - r)$$
.

Substitute $\eta_{\sigma_1} = \cdots = \eta_{\sigma_{t-(m+r)}} = 1$ in (3.7). Then, $\tilde{\eta}_i \eta_j - x_i = 0$ when and only when $i = 1, 2, \dots, r, k+1, \dots, k+m$ and $j = \sigma_1, \sigma_2, \dots, \sigma_{t-(m+r)}, t+1$. And, as is easily seen, the relation (3.7) contradicts the assumption that any minor of (a_j^i) does not vanish. Therefore the case (i) of 2°) does not occur.

 4°) The case (ii) of 2°) is reduced to the case (α)" of Lemma 4.1.

Let $\ell=t$. We see easily k=t and $a_{\epsilon}-a_{\epsilon-1}=1$ $(1 \le \kappa \le t)$. The identity (3.7) can be rewritten as

$$\det(a_i^1(\eta_i\eta_1-1),\cdots,a_i^t(\eta_i\eta_t-1),a_i^{t+1}(\eta_i-x_{t+1});1\leq i\leq t+1)\equiv 0$$
,

where $\eta_{t+1} = 1$. Put s = [(t+1)/2]. And, substitute $\eta_1 = \eta_2 = \cdots = \eta_s = (-1)^t$. We can conclude easily $x_{t+1} = (-1)^t$. This gives the case $(\alpha)''$.

5°) The case (iii) of 2°) is reduced to the case $(\beta)''$.

Assume that m=0 and r=1. If $a_1 \le t-1$, we substitute $\eta_1 = \eta_2 = \cdots = \eta_{t-\ell} = 1$ in (3.7), where $\ell = 1$ or $\ell = 2$. This leads to a contradiction. Let $\ell = 1$. We have then $\ell = 1$ and

$$\det (a_i^1(\eta_1 \cdots \eta_t)\eta_i - 1), a_i^2(\eta_i - x_2), \cdots, a_i^{t+1}(\eta_i - x_{t+1}); 1 \leq i \leq t+1) \equiv 0.$$

For each $u(1 \le u \le t)$, substitute $\eta_1 = \eta_2 = \cdots = \eta_t = \zeta^u$, where ζ denotes a primitive (t+1)-th root of unity. Since $\zeta^{st} \ne 1$ for any s $(1 \le s \le t)$, some x_i $(2 \le i \le t+1)$ is equal to ζ^u . By a suitable change of indices, we have

$$x_2=\zeta$$
, $x_3=\zeta^2$, $x_{t+1}=\zeta^t$,

because $\zeta, \zeta^2, \dots, \zeta^t$ are mutually distinct. This is the case $(\beta)''$ of Lemma 4.1. Lemma 4.1 is completely proved.

§ 5. Proofs of Theorems I and II

We shall prove first Theorem I. By the results in §3 and Lemma 4.1, we may put

(5.1)
$$(h_1, h_2, \dots, h_{2N+2})$$

$$= (\eta_1, \dots, \eta_t, \eta_1^{-1}, \dots, \eta_t^{-1}, 1, (-1)^t, c_{2t+3}, \dots, c_{2N+2})$$

 \mathbf{or}

(5.2)
$$(h_1, h_2, \dots, h_{2N+2})$$

$$= (\eta_1, \dots, \eta_t, (\eta_1 \dots \eta_t)^{-1}, 1, \zeta, \dots, \zeta^t, c_{2t+3}, \dots, c_{2N+2})$$

after a suitable change of indices, where $t = t([h_1], \dots, [h_{2N+2}])$ and c_i are some constants. In this place, we shall show t = N. Since Proposition 3.4 remains valid even if the indices of H_i 's are changed in any given order, it is easily seen that any chosen 2t + 2 elements $h_{i_1}, h_{i_2}, \dots, h_{i_{2i+2}}$ among $h_1, h_2, \dots, h_{2N+2}$ ought to be of the type similar to $h_1, h_2, \dots, h_{2t+2}$ in (5.1) or (5.2) up to changes of the order and multiplication of a common factor. If t < N, for example, $h_2, h_3, \dots, h_{2t+3}$ cannot be of such types, because there exist three distinct indices i, j, k among 2, $3, \dots, 2t + 3$ (let i = 2t + 1, j = 2t + 2, k = 2t + 3) such that h_i/h_j and h_i/h_k are both constants, but not for h_1, \dots, h_{2t+2} in (5.1) and (5.2). This concludes t = N.

To complete the proof of Theorem I, we have only to prove that N+1 is prime for the case t=N of $(\beta)''$ of Lemma 4.1. For convenience' sake, we change again indices of H_i so that

$$(h_1, h_2, \dots, h_{2N+2}) = (\zeta, \zeta^2, \dots, \zeta^N, 1, \eta_1, \dots, \eta_N, (\eta_1 \dots \eta_N)^{-1})$$

and let H_i 's with these labels be given as (3.3), where ζ denotes a primitive (N+1)-th root of unity. For admissible representations $f = f_1 : f_2 : \cdots : f_{N+1}$ and $g = g_1 : g_2 : \cdots : g_{N+1}$, we have

$$(5.3) f_i = \zeta^i g_i 1 \le i \le N+1$$

and

(5.4)
$$\sum_{i=1}^{N+1} a_j^i f_i = \eta_j (\sum_{i=1}^{N+1} a_j^i g_i) \qquad 1 \le j \le N$$
$$\sum_{i=1}^{N+1} a_{N+1}^i f_i = (\eta_1 \eta_2 \cdots \eta_N)^{-1} (\sum_{i=1}^{N+1} a_{N+1}^i g_i).$$

Substitute (5.3) into (5.4) and multiply all relations in (5.4) together. We get a relation

$$(5.5) \qquad \qquad \prod_{i=1}^{N+1} \left(\sum_{i=1}^{N+1} a_i^i \zeta^i g_i \right) = \prod_{i=1}^{N+1} \left(\sum_{i=1}^{N+1} a_i^i g_i \right).$$

Since g is algebraically non-degenerate by the assumption, this is regarded as an identity of polynomials with indeterminates $g_1, g_2, \cdots, g_{N+1}$. By the unique factorization theorem for polynomials, each factor in one side of (5.5) coincides with a factor in the other up to a constant multiplication. We may assume here $a_j^i = 1$ if i = N+1 or j = N+1. Under this condition, we can conclude easily $a_j^i = \zeta^{ij}$ $(1 \le i, j \le N+1)$ by a suitable change of indices. If N+1 is not prime and so $N+1 = k\ell$ for some k, ℓ $(1 \le k \le \ell \le N)$, then

$$egin{aligned} egin{aligned} a_\ell^k & a_\ell^{N+1} \ a_{N+1}^k & a_{N+1}^{N+1} \end{aligned} = 0$$
 ,

which contradicts the assumption that any minor of (a_j^i) does not vanish. Therefore, N+1 is prime.

We shall prove next Theorem II. We know that the case (α) or (β) of Theorem I occurs. It is obvious that the case (α) implies the case $(\alpha)'$ of Theorem II. Assume that the case (β) occurs. We choose homogeneous coordinates satisfying the above conditions. Meromorphic maps f and g are related as (5.3) and (5.4). The relation (5.3) is rewritten as $L \cdot g = f$ if we take a projective linear transformation

$$L: w'_i = \zeta^i w_i$$
 $1 \le i \le N+1$.

We have shown in the above that $a_j^i = \zeta^{ij}$. It follows that L fixes H_1 , \ldots , H_{N+1} and maps H_{N+2} , H_{N+3} , \ldots , H_{2N+2} onto H_{2N+2} , H_{N+2} , \ldots , H_{2N+1} respectively. Thus, Theorem II is completely proved.

§ 6. An additional remark

In the previous paper [3], pp. 141–142, the author gave an example of mutually distinct algebraically non-degenerate meromorphic maps f and g of C^n into $P^N(C)$ such that $\nu(f,H_i)=\nu(g,H_i)$ for 2N+2 hyperplanes H_i in general position. This is a special case of $(\alpha)'$ of Theorem II and the case that f and g are related as $L \cdot g = f$ with a projective linear transformation $L \colon P^N(C) \to P^N(C)$ which maps H_1, H_2, \dots, N_N onto $H_{N+2}, H_{N+3}, \dots, H_{2N+1}$ respectively and fixes H_{N+1} and H_{2N+2} after a suitable change of indices. As is shown in [3], we have always a relation of this type between f and g for the case N=1 or g=1 of g=1 of the case g=1 or g=1 of g=1 of the case g=1 or g=1 of g=1 or g=1 of the case g=1 or g=1 of g=1 or g=1 of the case g=1 or g=1 or g=1 of g=1 or g=1 or

PROPOSITION 6.1. Let $A = (\zeta^{ij}; 1 \leq i, j \leq N+1)$, where ζ denotes a primitive (N+1)-th root of unity. If N+1 is prime, then any minor of A does not vanish.

For the proof, we give

LEMMA 6.2. Let F(x) be a polynomial with integral coefficients. If $F(\zeta) = 0$, then $F(1) \equiv 0 \pmod{N+1}$.

Proof. We can find easily a polynomial g(x) with integral coefficients such that

$$F(x) = (1 + x + x^2 + \cdots + x^N)g(x)$$
.

Therefore,

$$F(1) = (N+1)g(1) \equiv 0 \pmod{N+1}$$
.

LEMMA 6.3. Let $f_1(x), \dots, f_r(x)$ be polynomials and define a polynomial $\Psi(\zeta_1, \dots, \zeta_r)$ with indeterminates ζ_1, \dots, ζ_r so that it satisfies the condition

$$\det (f_j(\zeta_i); 1 \leq i, j \leq r) = \varPsi(\zeta_1, \cdots, \zeta_r) \prod_{i \geq j} (\zeta_i - \zeta_j)$$
.

Then,

(6.4)
$$\varPsi(1,1,\dots,1) = \det\left(\frac{f_i^{(j-1)}(1)}{(j-1)!}; 1 \le i, j \le r\right),$$

where $f_i^{(j-1)}$ denotes the (j-1)-th derivative of f_i .

Proof. We expand each $f_i(x)$ as

$$f_i(x) = \sum_{\nu} \alpha^i_{\nu}(x-1)^{\nu}$$

with constants α_{ν}^{i} and put

$$g_{j,i}(x) = \sum_{\nu \ge j-1} \alpha_{\nu}^{i} (x-1)^{\nu-j+1}$$

Then,

$$g_{j,i}(x) - g_{j,i}(1) = (x-1)g_{j+1,i}(x)$$
.

As is easily seen by the induction on k, it holds that

$$\begin{split} & \varPsi(1, \, \cdots, 1, \zeta_{k+1}, \, \cdots, \zeta_r) \prod_{k < j < i \le r} (\zeta_i - \zeta_j) \ &= \det \left(g_{1,i}(1), \, \cdots, \, g_{k,i}(1), \, g_{k+1,i}(\zeta_{k+1}), \, \cdots, \, g_{k+1,i}(\zeta_r) \, ; \, 1 \le i \le r \right) \, . \end{split}$$

For the case k = r, we get (6.4) because

$$g_{j,i}(1) = f_i^{(j-1)}(1)/(j-1)!$$
.

Proof of Proposition 6.1. Obviously, a minor of A of degree N+1 does not equal to zero. Take a minor

$$\Delta = \det (\zeta^{k_i \ell_j} : 1 \leq i, j \leq r)$$

of A arbitrarily, where $1 \leq k_1 < \cdots < k_r \leq N+1$ and $1 \leq \ell_1 < \ell_2 \cdots < \ell_r \leq N+1$ ($1 \leq r \leq N$). Apply Lemma 6.3 to the polynomials $f_1(x) = x^{\ell_1}, \cdots, f_r(x) = x^{\ell_r}$. For the polynomial $\Psi(\zeta_1, \cdots, \zeta_r)$ as in Lemma 6.3, putting $\zeta_1 = \zeta^{k_1}, \cdots, \zeta_r = \zeta^{k_r}$, we see

$$\Delta = \prod\limits_{i>j} (\zeta^{k_i} - \zeta^{k_j}) \Psi(\zeta^{k_1}, \zeta^{k_2}, \cdots, \zeta^{k_r})$$
.

Let $g(x) = \Psi(x^{k_1}, x^{k_2}, \dots, x^{k_r})$. This is a polynomial with integral coefficients. If $\Delta = 0$, then $g(\zeta) = 0$. By Lemma 6.2,

$$g(1) \equiv 0 \pmod{N+1}$$
.

Therefore, according to Lemma 6.3, we can conclude an absurd identity

$$\det\left(\frac{\ell_i(\ell_i-1)\cdots(\ell_i-j+1)}{(j-1)!}; 1 \le i, j \le r\right)$$

$$=rac{1}{1!\, 2! \, \cdots \, (r-1)!} egin{array}{cccc} 1 & 1 & \cdots & 1 \ \ell_1 & \ell_2 & \cdots & \ell_r \ & \cdots & & \ \ell_1^{r-1} & \ell_2^{r-1} & \cdots & \ell_r^{r-1} \ \end{array} \ \equiv 0 \pmod{N+1} \; .$$

Thus, $\Delta \neq 0$. Proposition 6.1 is completely proved.

REFERENCES

- [1] E. Borel, Sur les zéros des fonctions entières, Acta Math., 20 (1897), 357-396.
- [2] H. Fujimoto, The uniqueness problem of meromorphic maps into the complex projective space, Nagoya Math. J., 58 (1975), 1-23.
- [3] —, A uniqueness theorem of algebraically non-degenerate meromorphic maps into $P^N(C)$, Nagoya Math. J., 64 (1976), 117-147.
- [4] R. Nevanlinna, Einige Eindeutigkeitssätze in der Theorie der meromorphen Funktionen, Acta Math., 48 (1926), 367-391.
- [5] G. Pólya, Bestimmung einer ganzen Funktionen endlichen Geschlechts durch viererlei Stellen, Math. Tidskrift, B, (1921), 16-21.

Nagoya University