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Impulsive impact of a twin hull
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An impulsively starting motion of two cylindrical bodies floating on a free liquid surface
is considered. The shape of the cross-section of each body and the distance between them
are arbitrary. The integral hodograph method is advanced to derive the complex velocity
potential defined in a rectangular parameter region in terms of the elliptic quasi-doubly
periodic Jacobi theta functions. A system of singular integral equations in the velocity
magnitude on the free surface and in the slope of the wetted part of each body is derived
using the kinematic boundary condition, which is then solved numerically. The velocity
field, the pressure impulse on the bodies and the added mass coefficients of each body
immediately after the impact are determined in a wide range of distances between the
bodies and for cross-sectional shapes such as the flat plate and half-circle.

Key words: wave-structure interactions

1. Introduction

A twin hull is the most common design of high-speed semi-displaced vessels, such as
catamarans, air cushion vessels and skeg-type hovercraft, in which skegs can also serve
as demihulls (Faltinsen 2005). A significant interest in the development of these types
of vessels has arisen in the last decades due to the need for fast sea transportation of
passengers and goods and for military applications. The advantages of twin hull vessels
are mainly due to a large deck area, favourable stability characteristics, seakeeping and
relative fuel saving. At the same time, twin hull vessels may experience slamming loads
larger than conventional monohulls due to their smaller draft and the slamming of the
bridge, or the deck referred to in the literature as ‘wetdeck slamming’.

A comprehensive review on ship slamming and impact load evaluation was recently
provided by Dias & Ghidaglia (2018). Following Lafeber, Brosset & Bogaert (2012),
they explained the water impact of a steep wave as a combination of elementary loading
processes consisting of the direct impact of the wave crest, the main liquid body impact
with capturing of a gas bubble and the compression/expansion stage due to the bubble
oscillations. Based on experimental observations, they concluded that the largest impact
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loading is associated with a rapid change of the total momentum of the liquid, which can
be accounted for using the pressure impulse concept (Cooker & Peregrine 1995).

The pressure impulse concept has a long history, which goes back to the work of
Lagrange (1781) and Havelock (1927). A remarkable advancement in the impulse impact
theory was made by von Kármán (1929) with application to seaplane landing. For ship
slamming applications, Wagner (1932), in his foundational paper, accounted for the
rise of the free surface using the von Kármán solution. This approach received further
development for solving modern water impact problems (Howison, Ockendon & Oliver
2004). There is also a large body of research dealing with the impulse impact concept,
which includes the impulsive motion of a body initially floating on a flat free surface
(Iafrati & Korobkin 2005), dam-break flows (Korobkin & Yilmaz 2009), ice breaking by
a high-speed water jet impact (Yuan et al. 2022) and bubble collapse (Zhang et al. 2023).

According to this concept, the pressure at the time of impact tends to infinity, but the
impact lasts an infinitesimal period of time. Recently, Speirs et al. (2021) investigated
the impulsive impact of a flat bottom cylinder experimentally, accounting for the small
compressibility of water. Not only did they find high pressures similar to previous studies,
but they also revealed a decrease in the local pressure sufficient to cavitate the liquid. This
occurs due to the pressure wave reflecting from the free surface and forming a negative
pressure region. Thus, the pressure impulse concept is applicable to the determination of
pressure loads for an impact duration small enough to neglect the motion of free surfaces
but large enough to neglect the water compressibility.

All the studies mentioned above consider a single body floating on a free surface.
By contrast, our research examines two bodies with a gap between them, which are
synchronously set in motion. This case directly corresponds to the slamming of various
vessels with twin hulls, such as catamarans. Another relevant case corresponds to ships
containing a ‘moonpool’, i.e. vertical openings through the deck and the hull used for
marine and offshore operations, such as pipe laying or diver recovery (Molin 2001;
Faltinsen, Rognebakke & Timokha 2007).

Mathematical models of impulse flows are based on the theory for an incompressible
and irrotational flow, so that a velocity potential can be introduced. The free surface is
assumed to be flat before the impact and the potential on the free surface remains zero
during the impact. The boundary-value problem for the velocity potential can be written
as follows:

�Φ ′ = 0, (1.1)

in the fluid domain;
Φ ′ = 0 (1.2)

on the free surface;
∂Φ ′

∂n
= −Uny, (1.3)

on each body surface, where U is the velocity immediately after the impact, n is the
outward normal to the body surface and ny is its component in the y direction;

|∇Φ ′| → 0, x2 + y2 → ∞, (1.4a,b)

which is the far-field condition.
Our solution method is based on a further extension of the integral hodograph method

for solving two-dimensional boundary-value problems with mixed boundary conditions:
there are two parts of the flow boundary with free surfaces and two parts corresponding
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Figure 1. (a) Definition sketch of the physical domain and (b) the parameter, or ζ -plane.

to the two solid bodies where the impermeability condition is implied. The key step
of the method is finding the two governing functions: the complex velocity and the
derivative of the complex potential, both defined in an auxiliary parameter region. For
the determination of the complex velocity, we derived an integral formula for solving a
mixed boundary-value problem for an analytical function defined in a rectangular auxiliary
parameter region. This formula makes it easy to determine an analytical function from the
values of its argument given on the two horizontal sides of the rectangle corresponding to
the solid bodies, and its modulus given on the two vertical sides corresponding to the two
parts of the free surface.

The system of integral equations in the velocity angle along the body and the
velocity magnitude along the free surface was derived by employing kinematic boundary
conditions on the body and the free surface. These integral equations were solved
numerically to complete the solution.

The coefficients of the added masses, the pressure impulse acting on the bodies and
the velocity on the free surface including the gap between the bodies were determined for
various widths of the gap and for various cross-sectional shapes of the impacting bodies,
such as flat plates and half-circles.

2. Boundary-value problem

A sketch of the physical domain is shown in figure 1(a). Two bodies partially submerged
in a liquid and connected by a deck float on the free surface. In general, the level of the
liquid in the gap between the bodies may be different from the calm water level at infinity
if the pressure in the gap chamber is different from the ambient pressure. The shapes of
the bodies can be different; therefore, the chosen characteristic length L corresponds to the
size of one of them. Before the time of impact, t = 0, the body and the liquid are at rest.
At time t = 0+ the body is suddenly set in motion with acceleration a directed downwards
so that, during an infinitesimal time interval �t > 0, the velocity of the body reaches the
value U = a�t.

The problem of a rigid body moving in a fluid body is kinematically equivalent to
the problem of a fluid body moving around a fixed rigid body with acceleration a at
infinity. We define a Cartesian coordinate system XY attached to the deck, as shown in
figure 1(a), and a coordinate system X′Y ′, which coincides with XY but attached to the
calm free surface before the impact. Each body is assumed to have an arbitrary shape,
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which is defined by the slope of the body boundary, δi = δi(Sbi), as a function of the arc
length coordinate Sbi along the body i, i = 1, 2. The liquid is assumed to be ideal and
incompressible, and the flow is irrotational. Gravity and surface tension effects during the
impact are ignored. The contact points between the free surface and the body, A, C, D and
G, are shown in figure 1(a), as well as the stagnation points B and F. The points H and H′
denote points of infinity on the free surface.

We introduce complex potentials W(Z) = Φ(X, Y) + iΨ (X, Y) and W ′(Z) =
Φ ′(X, Y) + iΨ ′(X, Y), with Z = X + iY in the coordinate systems XY and X′Y ′,
respectively. By integrating Bernoulli’s equation over an infinitesimal time interval
�t → 0 in each system of coordinates, we can obtain the relation between the pressure
impulses in these systems of coordinates (Semenov, Savchenko & Savchenko 2021)

Π ′ =
∫ �t

0
p′ dt = −ρΦ ′ = Π + ρUY = −ρΦ + ρUY. (2.1)

Here, Π and Π ′ are the pressure impulses in the systems XY and X′Y ′, respectively; p′ is
the hydrodynamic pressure and ρ is the density of the liquid.

The added mass coefficients, λ′22 and λ′21, for the body A1 (contour DFG) and body A2

(contour ABC) of the bodies can be expressed as follows (Korotkin 2009):

λ′1,2
21 = −

∫ sG,sC

sD,sA

φ′(s) sin[δ1,2(s)] ds, λ′1,2
22 = −

∫ sG,sC

sD,sA

φ′ cos[δ1,2(s)] ds. (2.2a,b)

Here, φ(s) = Φ(S)/(LU) is the dimensionless potential normalized to U and L; sA, sC, sD,
sG are the arc length coordinates of points A, C, D, G; x = X/L, y = Y/L, s = S/L; the
dimensionless velocity on the free surface is v = |V|/U.

By substituting (2.1) in the dimensionless form into (2.2a,b) we obtain the relation
between the added mass coefficients in the systems of coordinates X′Y ′ and XY

λ′1,2
21 = λ1,2

21 , λ′1,2
22 = λ1,2

22 − a∗1,2, a∗1,2 =
∫ sG,sC

sD,sA

y(s) sin[δ1,2(s)] ds. (2.3a–c)

The coefficient λ1,2
22 accounts for the acceleration of the liquid in the y direction during

the impact, which is similar to gravity and causes the buoyancy force.
In the following, the objective is to determine the velocity potential of the flow φ(s) in

the system of coordinates XY , in which the liquid suddenly starts to move upward with
velocity U.

3. Conformal mapping

We choose the rectangle DGAC in the ζ -plane with the vertices (0, 0), (π/2, 0),
(π/2, πτ/2) and (0, πτ/2), respectively (figure 1b), as an auxiliary parameter region.
Here, τ is an imaginary number. The horizontal length of the rectangle is equal to π/2,
and its vertical length is equal to π|τ |/2. The corresponding points of the rectangle and the
flow region are denoted by the same letters. The horizontal sides of the rectangle DG and
AC correspond to the surface of bodies A1 and A2, respectively. The vertical side GA of the
rectangle (ξ = π/2, 0 < η < π/2) corresponds to the free surface outside the twin body,
i.e. HG (0 ≤ η < ih) and AH′ (h < η ≤ π/2). The vertical side DC (ξ = 0, 0 ≤ η ≤ π/2)
corresponds to the free surface between the bodies. The positions of the stagnation points
F (ζ = f ) and B (ζ = b + πτ/2), and point HH′ (ζ = π/2 + ih) corresponding to infinity,
have to be determined from the solution of the problem and physical considerations.
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Impulsive impact of a twin hull

We formulate boundary-value problems for the complex velocity function, dw/dz,
and for the derivative of the complex potential, dw/dζ , both defined in the ζ -plane. If
these functions are known, then the derivative of the mapping function can be obtained
(Joukovskii 1890; Michell 1890)

dzm

dζ
= dw

dζ

/
dw
dz

, (3.1)

and its integration in the ζ -plane gives the mapping function z = zm(ζ ) relating the
coordinates in the parameter and the physical planes.

If a complex function is defined in a rectangle, it can be extended periodically onto the
whole complex ζ -plane using the symmetry principle (Milne-Thompson 1962; Gurevich
1965). This periodic domain is consistent with the definition domain of doubly periodic
elliptic functions with periods π and πτ along the ξ and the η axes, respectively. The
derivation of the complex velocity (A4) and the derivative of the complex potential (A5)
using Jacobi’s theta functions is included in Appendix A. These equations include the
parameters b, f , h, K, τ , c1, c2 and c3 and the functions vi(η), δi(ξ), i = 1, 2, all to be
determined from physical considerations and the kinematic boundary condition on the
free surface and the solid boundary of each body.

3.1. System of equations in the unknowns b, f , h, K, τ , c1, c2 and c3

The constants c1, c2 and c3 are determined from the following conditions: the conjugate
velocity direction at contact point A (ζA = π/2 + πτ/2), arg(dw/dz)(ζ=ζA) = −δA; the
velocity magnitude at infinity, point H (ζH = π/2 + ih) is assumed to be equal to unity,
or |dw/dz|(ζ=ζH) = 1; the conjugate velocity direction at contact point G (ζG = π/2)
arg(dw/dz)(ζ=ζG) = −δG.

For the determination of the unknowns b, f , h, K and τ we use the following conditions:
the pressure impulse must be zero at contact points D and G, or

wG =
∫ π/2

0

dw
dζ

∣∣∣∣
ζ=ξ

dξ = 0; (3.2)

the wetted length of the first (second) body is Sw1(Sw2)∫ π/2

0

∣∣∣∣dzm

dζ

∣∣∣∣
ζ=ξ(ξ+πτ/2)

dξ = Sw1 (Sw2); (3.3)

the level of the free surface at left and right infinities should be the same. Integrating the
derivative of the mapping function (3.1) over an infinitesimal semi-circle centred at point
H (ζH = π/2 + ih) will correspond to a contour of infinitely large radius in the physical
plane with the ends belonging to the free surface. By evaluating the integral using residues
and taking its imaginary part, we obtain

Im
(∮

ζ=ζH

dzm

dζ
dζ

)
= Im

(
iπ

−iv∞
res
ζ=ζH

dw
dζ

)
= Im

{
π

−v∞
d

dζ

[
dw
dζ

(ζ − ζH)2
]}

= 0.

(3.4)
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By substituting the derivative of the complex potential (A5) into (3.4) and differentiating
the expression in brackets, we reduce (3.4) to the following equation:

Im
{

ϑ ′
1(ζH − f )

ϑ1(ζH − f )
+ ϑ ′

1(ζH + f )
ϑ1(ζH + f )

+ ϑ ′
4(ζH − b)

ϑ4(ζH − b)
+ ϑ ′

4(ζH + b)

ϑ4(ζH + b)
− 2

ϑ ′
2(ζH + ih)

ϑ2(ζH + ih)

}
= 0.

(3.5)

The distance between the bodies, Sgap, is obtained by integrating the derivative of the
mapping function along the vertical side DC in the parameter plane

Re

(∫ π|τ |/2

0

dzm

dζ

∣∣∣∣
ζ=iη

)
dη = Sgap. (3.6)

3.2. Body boundary conditions for the function δi(ξ), i = 1, 2
By using the given functions δi(sbi), i = 1, 2, where sbi is the arc length coordinate along
the ith body, and changing the variables, we obtain the following integro-differential
equations in the functions δi(ξ):

dδi

dξ
= dδi

ds
dsbi

dξ
= dδi

ds

∣∣∣∣dzm

dζ

∣∣∣∣
ζ=ξ

, 0 ≤ ξ ≤ π/2, i = 1, 2, (3.7)

where ζ1 = ξ and ζ2 = ξ + πτ/2 and the derivative of the mapping function (3.1) is used.

3.3. Free surface boundary conditions for the functions vi(η), i=1,2
An impulsive impact is characterized by an infinitesimally small time interval �t → 0
such that the position of the free surface does not change during the impact. From the
Euler equations it follows that the impact-generated velocity is perpendicular to the free
surface (since the pressure is constant)

arg

(
dw
dz

∣∣∣∣
ζ=ζ̄i

)
= −π

2
, i = 1, 2, (3.8)

where ζ̄1 = π/2 + iη, ζ̄2 = iη, 0 ≤ η ≤ π|τ |/2.
Taking the argument of the complex velocity from (A4), we obtain the following integral

equation in the functions d ln vi/dη, i = 1, 2:

(−1)i+1

π

∫ π|τ |/2

0

d ln vi

dη′ ln
∣∣∣∣ϑ1(η − η′)
ϑ1(η + η′)

∣∣∣∣ dη′

= −π

2
− Ibi(η) − Ivi(η) − c1η − c3, 0 ≤ η ≤ π|τ |/2, i = 1, 2, (3.9)
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Impulsive impact of a twin hull

where

Ibi(η) = 1
π

∫ π/2

0

dδ1

dξ
Im
{

ln
ϑ3−i(iη − ξ)

ϑ3−i(iη + ξ)

}
dξ

+ 1
π

∫ 0

π/2

dδ2

dξ
Im
{

ln
ϑi+2(iη − ξ)

ϑi+2(iη + ξ)

}
dξ,

Ivi(η) = Im
{

ln
ϑ3−i(iη − f )ϑi+2(iη − b)

ϑ3−i(iη + f )ϑi+2(iη + b)

}
+ (−1)i

π

∫ π|τ |/2

0

d ln v3−i

dη′ ln
∣∣∣∣ϑ2(iη′ − η)

ϑ2(iη′ + η)

∣∣∣∣ dη′.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.10)

Equation (3.9) is a Fredholm integral equation of the first kind with a logarithmic kernel,
which is solved numerically.

By using a small-time expansion, the first-order approximation of the free surface can
be obtained as follows:

η̄(x, t) = η̄(x, 0) + ∂η̄

∂t
(x, 0)t + . . . . (3.11)

Here, the kinematic boundary condition on the free surface (the velocity is perpendicular
to the free surface) is used

∂η̄

∂t
[x(η), 0] = −Im

(
dw
dz

)
ζ=iη

= v[x(η), 0]. (3.12)

3.4. Numerical approach
In discrete form, the solution is sought on a fixed set of nodes ζj, j = 1, . . . , 5M, distributed
along the boundary of the rectangle DGAC. The numbering starts and ends at point D.
Each part DG, GH, HA, AC and CD of the boundary is discretized using M points and the
cosine law to provide a higher density of nodes ζj near points D(ζ̂0), G(ζ̂1), H(ζ̂2), A(ζ̂3)

and C(ζ̂4) as follows:

ζj = ζ̂i−1 + (ζ̂i − ζ̂i−1) ∗
(

1 − cos
j − (i − 1)M

M − 1

)
,

j = (i − 1)M + 1, . . . , iM, i = 1, 5, (3.13)

where ζ̂0 = (0, 0), ζ̂1 = (π/2, 0), ζ̂2 = (π/2, ih), ζ̂3 = (π/2, πτ/2), ζ̂4 = (0, πτ/2),
ζ̂5 = (0, 0). The number M is chosen in the range from M = 50 to M = 400 based on
the requirement to provide the convergence of the solution and its reasonable accuracy.
The integrals appearing in (A4) are evaluated on the intervals (ζj−1, ζj) using a linear
interpolation of the functions δ1,2(ξ) and ln v1,2(η), and the 8-point Legendre–Gauss
quadrature formula.

The system of nonlinear equations (3.9) is solved using the iteration Newton method,
at each iteration of which the system of nonlinear equations (3.2), (3.3), (3.6) and the
integro-differential equation (3.7) are solved by the method of successive approximations
using nested iteration procedures. Several tens of iterations are necessary for solving (3.9)
and (3.7) to get a converged solution with a tolerance less than 10−6.

The accuracy of the calculations depends on the discretization of the horizontal and the
vertical sides of the rectangle in the parameter plane. Table 1 shows the convergence of

983 A16-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.102


B.-Y. Ni and Y.A. Semenov

M |τ | λ22 (Left) λ22 (Right) Q 2b/π 2f /π �η

50 1.05859 1.65556 1.65606 1.58909 0.61542 0.61539 0.001630
100 1.05600 1.66400 1.66411 1.59000 0.61572 0.61572 0.000409
200 1.05506 1.66823 1.66814 1.59071 0.61588 0.61588 0.000102
400 1.05458 1.67025 1.67015 1.59106 0.61596 0.61596 0.000026

Table 1. Convergence of the solution for various discetizations of the boundary of the parameter rectangle for
the case Sgap/L = 1; �η = −Im(ζ5M − ζ5M−1).
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Figure 2. The streamline patterns (left axis), the velocity magnitude on the free surface (right axis, red curve)
and the pressure impulse (left axis, blue curve) in the system of coordinates attached to the plate (a) and to the
calm free surface before the impact (b). The length of each plate is 2L and the gap Sgap = L.

the added mass and other parameters as the number of discretization points M increases
and the intervals (ζj, ζj−1) diminish, including the intervals closest to the contact points
between the free surface and the plates, D, C, G and A. This provides a more accurate
evaluation of the integrals in (A4) because the functions ln v1,2(η) are singular, but
integrable at the contact points. It can be seen that the difference of the parameters between
two adjacent lines in the table decreases as the number of discretization points M doubles.
The length of the intervals near points C and D (they are the same according to the
distribution (3.13)) is shown in the rightmost column of the table.

4. Results and discussion

Figure 2 shows streamline patterns (left axis) and the velocity magnitude on the free
surface (right axis) for the impulsive impact of twin plates in the system of coordinates
attached to the plate (a) and to the liquid at rest (b). As expected, the density of the
streamlines is higher near the plate edges, which corresponds to a higher velocity. This
agrees with the velocity magnitude on the free surface shown in the upper part of the
figures. The magnitude of the velocity rapidly increases, tending to infinity at the edges.
On the free surface between the plates, the velocity reaches its minimum at the middle of
the gap (due to the flow symmetry), which is higher than the velocity at infinity since the
plates push the liquid into the gap. The pressure impulse on the plate is shown as a blue
curve. It is the same in both systems of coordinates (2.1) because the thickness of the plate
is zero.
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Impulsive impact of a twin hull

Sgap/L |τ | λ22 Q vm vav = Q/Sgap vav/vm 2b/π

∞∗ — π/2 — — — — —
2 1.283 1.613 1.714 0.317 0.857 2.704 0.583
1 1.055 1.670 1.591 0.733 1.591 2.170 0.616
0.5 0.879 1.752 1.456 1.537 2.913 1.896 0.649
0.2 0.711 1.881 1.280 3.707 6.398 1.725 0.689
0.1 0.617 1.984 1.155 6.951 11.55 1.661 0.714
0.015 0.450 2.235 0.880 37.53 59.47 1.585 0.767
0.002 0.350 2.418 0.700 220.7 349.9 1.585 0.804
2.39 × 10−6 0.2 2.706 0.396 105699. 165532. 1.572 0.869
3.61 × 10−13 0.1 2.889 0.199 3.50 × 1011 5.50 × 1011 1.571 0.923
0∗ — π — — — — —

Table 2. Main parameters of the impulsive impact of the twin plates; the number of nodes M = 400.
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Figure 3. Same as in figure 2 but for two half-circles.

The main flow parameters are shown in table 2 for various widths of the gap: the added
mass coefficient λ22; the discharge through the gap, Q; the minimal velocity in the gap,
vm; the average velocity in the gap, vav; the ratio vav/vm; and the parameter 2b/π. Due to
the flow symmetry the parameter f = b and h = π|τ |/4. As the gap tends to infinity, the
flow near each plate becomes the same as for an isolated flat plate. As the gap tends to
zero, the total length of the plates increases twice, 4L, and the total added mass increases
by a factor of 4 (L2) and becomes 2π. It can be seen that the added mass of each plate
approaches π, or the total added mass of the two plates approaches 2π. As the gap gets
smaller, the velocity in the gap increases due to the infinite velocity at the edges of the
plate. This causes a moderate flow rate through the gap even for extremely small gaps. The
ratio of the average velocity to the minimum velocity in the gap tends to the value which
is close to π/2.

Figure 3 shows the results for twin half-circles of diameter 2L each and the gap Sgap = L.
The streamlines corresponding to the stagnation points in figure 3(a) are slightly inclined
to each other so that the distance between them increases near the bodies. This means
that the velocity there is smaller than at infinity, but then it rapidly increases in the gap
near the free surface. The velocity on the free surface is finite everywhere, including the
contact points of the free surface and the circles. This is because the slope of the circles
at the contact points equals π/2, which is the same as the velocity direction on the free
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M λ22 (Left) λ22 (Right) λ21 (Left) λ21 (Right) Q 2b/π 2f /π

50 1.83718 1.83719 0.09722 0.09708 1.32158 1.08681 1.08681
100 1.84999 1.84974 0.09802 0.09800 1.32747 1.08681 1.08682
200 1.85595 1.85565 0.09809 0.09809 1.32935 1.08680 1.08682
400 1.85884 1.85884 0.09805 0.09805 1.33124 1.08681 1.08681

Table 3. Convergence of the solution for the twin cylinders in the case |τ | = 0.7, Sgap/L = 1.332.

Sgap/L |τ | λ22 λ21 Q vm vav = Q/Sgap vav/vm

∞∗ — π/2 — — — — —
5.814 1.3 1.597 0.017 1.741 0.135 0.299 2.218
2.354 0.9 1.720 0.047 1.504 0.453 0.638 1.411
1.332 0.7 1.859 0.098 1.331 0.827 1.000 1.208
0.648 0.5 2.092 0.212 1.084 1.544 1.661 1.082
0.225 0.3 2.471 0.465 0.750 3.236 3.330 1.029
0.099 0.1 2.735 0.658 0.537 4.939 5.409 1.096

Table 4. Main parameters of the impulsive impact of the twin half-circles; the number of nodes M = 400.

surface, and therefore there is no jump in the velocity direction at the contact points and,
correspondingly, there is no singularity in the function of the complex velocity at these
points.

The streamlines corresponding to the impulsive motion of the twin half-circles are
shown in figure 3(b) together with the velocity distribution on the free surface in the upper
part of the figure. All the streamlines start on the circles, which move down with velocity
U, and end on the free surface, except for the two streamlines separating those ending on
the free surface in the gap between the half-circles and on the rest of the free surface. The
half-circles push the liquid into the gap, which results in a much higher velocity on the
free surface in the gap than on the rest of the free surface.

For shaped bodies, the additional functions δ1,2(ξ) are included into the computations.
They are computed by a nested iteration procedure when solving the integro-differential
equation (3.7). Both the functions δ1,2(ξ) and the function ln v1,2(η) are non-singular. The
convergence of the solution for the two circular cylinders is evident from table 3.

The main flow parameters are shown in table 4 for various widths of the gap. Due
to the identical geometry of the bodies, there is a line of flow symmetry, x = 0, which
can be considered as a rigid wall, which results in a non-zero force acting on each body
in the x-direction; therefore, the added mass coefficient λ21 /= 0. As the gap decreases,
the velocity on the free surface increases, but remains finite in contrast to the results
corresponding to the flat plate. The ratio of the average velocity to the minimum velocity
in the gap approaches unity; this means that the velocity distribution on the free surface in
the gap becomes almost uniform.

The impulsive impact of a non-symmetric twin body whose cross-section consists of
a circle and the flat plate is shown in figure 4. As expected, the streamlines and the
velocity magnitude on the free surface are no longer symmetric about the y-axis. The
remarkable feature is that the pressure impulse on the circle and the plate in figure 4(b) is
almost the same. This sheds some light on why Wagner’s theory based on the flat plate
impulsive impact predicts well water impacts of blunt-shaped bodies. However, when the
liquid impacts the twin body, the pressure impulse acting on the submerged cross-section
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Figure 4. Same as in figure 2 but for circle and plate cross-sectional shapes.

is significantly larger than that acting on the plate, as can be seen in figure 4(a). The
buoyancy force makes a significant contribution to the pressure impulse for the submerged
cross-section.

The results in figure 4 were compared with the case of the twin body consisting of the
flat plate (a) and the circle (b). As expected, the obtained results are a mirror reflection of
those shown in figure 4.

5. Conclusions

An impulsively starting flow generated by a pair of bodies floating on a free surface is
studied using the integral hodograph method. A rectangle is chosen as the parameter plane,
and the solution is obtained in terms of Jacobi’s quasi-doubly periodic theta functions. The
boundary-value problem is reduced to a system of integral equations in the functions of the
velocity direction on the solid boundaries and the velocity magnitude on the free surface,
which is solved numerically.

The streamline patterns, the velocity distribution on the free surface and the pressure
impulse along the bodies are presented for identical and different cross-sectional shapes
of the bodies, such as plates and half-circles.

The main flow parameters are determined as a function of the width of the gap. It
is shown that, as the gap tends to infinity, the flow parameters tend to their values
corresponding to the impulsive impact of a single body; as the gap tends to zero, the
flow parameters also tend to values corresponding to a single body but a larger dimension.
The computations are analysed for different numbers of nodes on the boundary of the
rectangle in the parameter plane, and the convergence of the solution is demonstrated.
The results can be used as benchmark results when studying the problem using alternative
approaches, although comparisons with experiments are desirable to better understand the
extent to which the pressure impulse concept works well.

The obtained solution is also applicable to the study of an upward impact since the
boundary conditions are the same but the velocity direction is the opposite. The obtained
solution can be considered as a first-order solution in solving the problem using the method
of small time series.

Chung (1977) conducted experiments on the determination of the added mass of
two-dimensional submerged bodies. He determined the added masses as a function of the
frequency of vertical oscillations and the depth of submergence of a beam with squared
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and circular cross-sections. His experiments supported the pressure impulse concept, but
they are not applicable for comparisons in the present case. In order to determine the added
masses of a floating twin body, the experimental set-up should be modified to avoid the
effect of the waves generated during the vertical oscillatory motion of the floating body.
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Appendix A. Expressions for the complex velocity and the derivative of the complex
potential

The body is considered to be fixed; therefore, the velocity direction on each body is
determined by the slope of the body, δi = δi(sbi), i = 1, 2. Besides, at this stage, we assume
that the argument of the complex velocity χi(ξ) = −dδi/ds[sbi(ξ)] is a known function
of the parameter variable ξ and the velocity magnitude on each part of the free surface
is a known function of the parameter variable η, or vi = vi(η), i = 1, 2. To determine the
complex velocity, we have to derive an integral formula that determines a complex function
defined in a rectangular domain from its values on the horizontal and vertical sides of the
rectangle. By applying the special point method (Gurevich 1965) and proceeding similarly
to Semenov & Wu (2020), the following integral formula can be obtained:

dw
dz

= exp

[
− 1

π

∫ π/2

0

dχ1

dξ
ln

ϑ1(ζ − ξ)

ϑ1(ζ + ξ)
dξ − 1

π

∫ 0

π/2

dχ2

dξ
ln

ϑ4(ζ − ξ)

ϑ4(ζ + ξ)
dξ

+ i
π

∫ π|τ |/2

0

d ln v1

dη
ln

ϑ2(ζ − iη)

ϑ2(ζ + iη)
dξ

+ i
π

∫ 0

π|τ |/2

d ln v2

dη
ln

ϑ1(ζ − iη)

ϑ1(ζ + iη)
dξ + c1ζ + c2 + ic3

]
, (A1)

where ϑi(ζ ), i = 1, 2, 4 are Jacobi’s doubly periodic theta functions, and ci, i = 1, 3 are
real constants to be determined from the conditions for the magnitude and direction of the
velocity at infinity, ζ = ζh = π/2 + ih and the angle determining the orientation between
the bodies. By substituting into (A1) ζ laying on the boundary of the rectangle, we can
verify that the boundary conditions for the function dw/dz are satisfied

arg
(

dw
dz

)
ζ=ξ{ζ=ξ+πτ/2}

= χ1(ξ){χ2(ξ)},
∣∣∣∣dw

dz

∣∣∣∣
ζ=π/2+iη{ζ=iη}

= v1(η)

vH

{
v2(η)

vC

}
,

(A2a,b)

where vH = v1(η)η=h = 1 is the velocity at infinity, and vC = |dw/dz|ζ=πτ/2 is the
velocity at point C.
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Impulsive impact of a twin hull

The velocity direction at the stagnation points F and B changes by π; thus we can write

χi(ξ) = arg
(

dw
dz

)
=

⎧⎪⎨⎪⎩
−δi(ξ) + π, 0 ≤ ξ ≤ f , η = 0, i = 1,

b ≤ ξ ≤ π/2, η = π|τ |/2, i = 2,

−δi(ξ), f ≤ ξ ≤ π/2, η = 0, i = 1,

0 ≤ ξ ≤ b, η = π|τ |/2, i = 2.

(A3)

By substituting (A3) into (A1) and evaluating the integrals over the step change of the
functions χ1(ξ) and χ2(ξ) at points F and B, we obtain the following expression for the
complex velocity:

dw
dz

= ϑ1(ζ − f )ϑ4(ζ − b)

ϑ1(ζ + f )ϑ4(ζ + b)
exp

[
− 1

π

∫ π/2

0

dδ1

dξ
ln

ϑ1(ζ − ξ)

ϑ1(ζ + ξ)
dξ

− 1
π

∫ 0

π
2

dδ2

dξ
ln

ϑ4(ζ − ξ)

ϑ4(ζ + ξ)
dξ + i

π

∫ π|τ |/2

0

d ln v1

dη
ln

ϑ2(ζ − iη)

ϑ2(ζ + iη)
dξ

+ i
π

∫ 0

π|τ |/2

d ln v2

dη
ln

ϑ1(ζ − iη)

ϑ1(ζ + iη)
dξ + c1ζ + c2 + ic3

]
. (A4)

Here, we used the relation between the theta functions ϑi(ζ ), i = 1, 2, 3, 4. The definition
of the theta functions and their properties are shown in Appendix B.

We derive the derivative of the complex potential, dw/dζ , using Chaplygin’s singular
point method (Gurevich 1965, Chapter 1, § 5). The function dw/dζ has simple zeros at the
points ζ = f and ζ = b + πτ/2 that correspond to the stagnation points F and B at which
the streamline splits into two branches. At point H (ζH = π/2 + ih) the complex potential
has a pole of the first order corresponding to a half-infinite flow domain (Gurevich 1965,
Chapter 1, § 5); therefore, the derivative of the complex potential at the point ζH has a pole
of the second order. By extending the derivative of the complex potential symmetrically
with respect to the sides DG and DC with the aim of providing real values of the complex
potential on the vertical and horizontal sides of the rectangle, we have to put singularities
of the same order in the symmetric points ζ = −f , ζ = −b + πτ/2 and ζ = π/2 − ih.
Then, using Liouville’s theorem, the derivative of the complex potential can be written in
the form

dw
dζ

= K
ϑ1(ζ − f )ϑ1(ζ + f )ϑ4(ζ − b)ϑ4(ζ + b)

ϑ2
2 (ζ − ih)ϑ2

2 (ζ + ih)
, (A5)

where K is a real constant; the relations between the theta functions ϑi(ζ ), i = 1, 2, 3, 4
are shown in Appendix B.
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Appendix B. Jacobi theta functions

Definition of four types of Jacobi theta functions and their properties (Whittaker & Watson
1927)

ϑ1(ζ ) = 2
∞∑

n=1

(−1)n−1q1/4(2n−1)2
sin(2n − 1)ζ, (B1)

ϑ2(ζ ) = 2
∞∑

n=1

q1/4(2n−1)2
cos(2n − 1)ζ, (B2)

ϑ3(ζ ) = 1 + 2
∞∑

n=1

qn2
cos 2nζ, (B3)

ϑ4(ζ ) = 1 + 2
∞∑

n=1

(−1)nqn2
cos 2nζ, (B4)

where q = eπiτ . Theta functions can be expressed one through another as

ϑ1(ζ ) = −ϑ2

(
ζ + π

2

)
= −iPϑ3

(
ζ + π

2
+ πτ

2

)
= −iPϑ4

(
ζ + πτ

2

)
ϑ2 (ζ ) = ϑ1

(
ζ + π

2

)
= Pϑ3

(
ζ + πτ

2

)
= Pϑ4

(
ζ + π

2
+ πτ

2

)
ϑ3 (ζ ) = Pϑ2

(
ζ + πτ

2

)
= Pϑ1

(
ζ + π

2
+ πτ

2

)
= ϑ4

(
ζ + π

2

)
ϑ4 (ζ ) = iPϑ2

(
ζ + π

2
+ πτ

2

)
= ϑ3

(
ζ + π

2

)
= −iPϑ1

(
ζ + πτ

2

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(B5)

Here, P = q−1/4eiζ . The derivatives of the logarithm of the theta functions can be
calculated using the fast converged series

ϑ ′
1(ζ )

ϑ1(ζ )
= cot ζ + 4

∞∑
n=1

q2n

1 − q2n sin(2nζ ), (B6)

ϑ ′
2(ζ )

ϑ2(ζ )
= − tan ζ + 4

∞∑
n=1

(−1)n q2n

1 − q2n sin(2nζ ). (B7)

ϑ ′
3(ζ )

ϑ3(ζ )
= 4

∞∑
n=1

(−1)n qn

1 − q2n sin(2nζ ). (B8)

ϑ ′
4(ζ )

ϑ4(ζ )
= 4

∞∑
n=1

qn

1 − q2n sin(2nζ ). (B9)
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