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BINARY TREES AND THE n-CUTSET PROPERTY 

PETER ARPIN AND JOHN GINSBURG 

ABSTRACT. A partially ordered set P is said to have the rc-cutset property 
if for every element x of P, there is a subset S of P all of whose elements 
are noncomparable to JC, with \S\ < n, and such that every maximal chain 
in P meets {JC} U 5. It is known that if P has the «-cutset property then P 
has at most 2n maximal elements. Here we are concerned with the extremal 
case. We let Max P denote the set of maximal elements of P. We establish 
the following result. THEOREM: Let n be a positive integer. Suppose P has the 
«-cutset property and that | Max P\ = 2n. Then P contains a complete binary 
tree T of height n with Max T = Max P and such that CC\ T is a maximal 
chain in T for every maximal chain C of P. Two examples are given to show 
that this result does not extend to the case when n is infinite. However the 
following is shown. THEOREM: Suppose that P has the u -cutset property and 
that | Max P\ = 2U. If P — Max P is countable then P contains a complete 
binary tree of height UJ . 

1. Introduction and preliminaries. Let P be a partially ordered set. A subset of 
P that intersects every maximal chain of P will be called a cutset for P. For x E P, let 
I(x) = {p E P : p is noncomparable to JC} . If S Ç I(x) and { JC} U S is a cutset for P, we 
say that S is a cutset for x in P. If for all JC E P there is a cutset S for JC in P with \S\ < n, 
the P is said to have the n-cutset property. Cutsets have been studied by several authors 
and other work can be found, for example, in [1,2,3,4,6,7,8]. 

If C is a chain in P then for JC E P we will say that JC extends C if { JC} U C is a chain in 
P. If S is a cutset for JC in P, then if C is a chain in P, there is an element/? E { JC} U S such 
that/? extends C. The set of maximal elements of P will be denoted by Max P and the set 
of maximal chains of P will be denoted by M{P). The statement "JC is noncomparable to 
y will be denoted by x J_ y and the statement that "JC is comparable to / ' will be denoted 
by JC ~ y. 

For a E P we let [a, —•) = { j c E / , : « < x } . I f a , ^ ? E / > and b > a and if there is no 
c E P such that b > c > a, then we say that £ covers a and write b y a. 

If /: is a positive integer we let L* denote the set of all 0-1 sequences of length k. 
Let Tn = UJ=i £*• Order 7rt as follows: for <T,T E r„, with a = (JCJ,JC2, . . . ,JC7),T = 
Cyi,j2, • • • ,)>*), w e set a < r if7 < Â: and xt = yt for all / E { 1,.. . J}. We say that Tn 

is the complete binary tree of height n. Let T*n — Tn U { 0} where for all a E 7^, 0 < cr. 
Then 7^ will be referred to as the complete rooted binary tree of height n with root 0. 
(see Figure 1). 
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FIGURE 1 

In this paper we give a new proof of the theorem proved in [ 1 ] which states that if n is 
a positive integer and if P has the «-cutset property, then | Max P\ <2n. It will be shown 
that in the case where | Max P\ = 2n where P has the «-cutset property, then P contains 
a complete binary tree T of height n such that Max T = Max P and if C G M(P) then 
CHT G M(T). In the case where n is infinite it will be shown that generalizations of the 
finite case do not hold. 

2. Binary trees and the «-cutset property. In this section P will denote a poset 
and n will denote a positive integer. 

LEMMA T. Let p G MaxP and a G P such that p _L a. Suppose x G [a,—>) and 
x has a cutset S in P with \S\ = n. Then S H [a, —>) is a cutset for x in [a, —•) and 
\SH [ a , - 0 | <n-l. 

PROOF. Let /?, a and x be as in the lemma. Then x J_ p. Since S is a cutset for x in p 
and x _L /?, there is a y G S such that y extends {p} and since /? is maximal, y < p. We 
must have y £ [a, —0 for if y G [a, —>) then <2 < y ; but then a < p. Let 5' = 5 D [a, —>) 
and let C G M([a,—•)), then a G C since a is minimum in [a, —•). Either x extends C or 
some z G S extends C. If JC extends C, then x G C since C G M([<z, —-»)). And if z extends 
C then a < z, for z < a implies, z <x contradicting z G S. And so z G C. So z G 5" and 
so S' is a cutset for x in [a, —•>). Since y ^ 5 ; we have |57| < 15 — { y} | = « — 1 . 

LEMMA 2. Létf F fee a poset and let X Ç Max P w*Y« Xfinite. Let P/ = {p G P : p < 
xfor some x G X}. Ifp G Pf and S is a cutset for p in P, then SC\ P' is a cutset for p in 
P*. 

PROOF. Let C e M(P'). Let X = { JCI , x2,..., xn } . Then there is an x G X such that 
x G C. For, if not, then there is a y, G C such that yt _L JC/ for all / G { 1,2,..., n} . Let y 
be the maximum element in {yi,y2,... ,y„}. Then y < xk for some /: G { 1, . . . ,«}. But 
then yk < JC*, a contradiction. Now either/? extends C or y extends C for some y G 5. If 
p extends C then p G C. If y extends C then y < x since JC is maximal and so y G P/. 
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We now give a new and shorter proof of the following theorem proved in [1]. 

THEOREM 1. IfP is a poset such that for all x G Max P there is a cutset S(x)for x in 
P with \S(x)\ < n, then | MaxP| < 2n. 

PROOF. For the case when n = 1: suppose that | MaxP| > 2. So there exist 3 
maximal elements, a, b and c of P. Let S(a) and S(b) be cutsets for a and b respectively 
in P where \S(a)\ = \S(b)\ = 1. Let {x} = S(a) and { y} = S(b). Since a 1 b and 
a _L c, x extends { b} and { c} and so JC < b and A: < c since & and c are maximal. 
Similarly y < a and y < c. Also y extends { JC, c} but y < JC implies y < b and x < y 
implies x < a, a contradiction, so | Max P\ < 2 when n = 1. 

For the sake of contradiction let n be the smallest positive integer such that the theorem 
doesn't hold. So there is a poset P with | MaxP| > 2n and such that for all x G MaxP 
there is a cutset S(x) for x in P with | S(x)\ < n. 

Let JC G MaxP. Lety G S(x). Then if X = {z G MaxP : y < z}, |X| < 2""1. This 
follows from Lemma 1 since y _L x and so for all z G X, S(z) H [y, —>) is a cutset for z in 
[y, —») and | S(z) D [y, —>)| < n — 1. Since X = Max[y, —>) with all z G X having a cutset 
of size at most n — 1, and since « is the smallest positive integer for which the theorem 
doesn't hold, |X| < 2n~\ 

Let y be such that y G 5(JC) for some x G Max P and | {z G Max P : y < z} | 
is maximal. Let F = {z G Max P : y < z} and let Z Ç (Max P) — y be such that 
\Z\ = 2 n - 1 + l. 

For all z G Z, y ± z. For any w G Z, let v G 5(w) such that v extends { y}. Then for 
all z G Z, v _L z. For if v ~ z for some z ^ Z then v < z since z is maximal. If y < v, then 
y < z contradicting y A. z and if v < y then | { z G Max P : v < z} | > \Y\ contradicting 
the maximum size of Y. 

Let P/ = {u e P : u <z for some z G Z}. By Lemma 2, S(z) fï P' is a cutset for z in 
P/ for all z G Z. By the preceding argument, if sz G S(z) such that j z extends { y}, then 
sz ^ P/ and so |5(z) Pi P / | < n — 1. So each maximal element in P/ has a cutset of size 
at most n— 1. But | MaxP/| > 2"_1 contradicting « being the smallest positive integer 
for which the theorem doesn't hold. 

LEMMA 3. Let Pbe a poset which contains a complete rooted binary tree T of height 
n with root a such that Max T Ç Max P. Then ifx G Max T and if S is any cutset for x in 
P, |SH [a,-^)| >n. 

PROOF. By induction on n. For n = 1, P contains a, b, c where b > a and c > a and 
b _L c and b and c are maximal. Let S(b) be a cutset for b in P. Then there is a £' G £(&) 
such that £/ extends { a, c} and b' > a since // _L £. So £/ G [a, —•>). Arguing in the same 
manner there is a c' G 5(c) a cutset for c in P where d extends { a, b} and cf > a. So for 
all JC G Max T and any cutset S(x) for JC in P, | S(JC) n [a, —*)| > 1. 

Suppose the lemma is true for m < n. Let T be a complete rooted binary tree of height 
n with a the root of T and Max T Ç Max P and let & and c be the two elements of T that 
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cover a in T. Let x G Max T. Then x is comparable to one and only one of b, c. Without 
loss of generality let b < x so x _L c. Let S(x) be a cutset for x in P. Let y G Max 7 such 
that y > c. Then y J_ &. Let xi G S(x) extend { a, c, y} . Then JCJ > a since xi J_ x and 
JCI < y since y is maximal. Hence x\ £ [b,—>) for if x\ > b then b < y. Now [&,—>) 
contains a complete rooted binary tree T' of height n — 1 with root b,Tl — TC\ [b, —•), 
and x G Max 7' Ç Max P. So by the induction hypothesis | S(x) D [b, —*)| > n — 1. Since 
*i ??[*,-^), |SWn[fl,—)| >#i. 

THEOREM 2. Létf P be a poset with \ Max P| = 2n such that for all x G Max P there 
is a cutset S(x) for x in P with \S(x)\ < n. Then there is a complete binary tree T of 
height n contained in P such that Max T — Max P. Furthermore, if C G M(P), then 

cnTeM(T). 

PROOF. By induction. For n = 1, | MaxP| = 2. So let MaxP = {a,b} and by 
Theorem 1 there can be no more than 2 maximal elements. Let C G M(P). Either a G C 
or b G C. For if not then there are c,d G C such that c _L a and d 1. b. Let S(a) = { x} 
and S(b) = { y} . Then x, y G C and x extends { b} and y extends { a} . Therefore x < £ 
and y < a since a and b are maximal. But if x < y then x < a and if y < x, then y < £, 
both of which are impossible. So either a G C or b G C. So { a, b} forms the desired 
complete binary tree of height 1 satisfying the conditions of the theorem. 

Now suppose the theorem is true for m < n. Let P be a poset with | Max P\ = 2n such 
that for all x G MaxP, S(x) is a cutset for x in P with |S(x)\ < n. We claim there is an 
a G MaxPandai G S(a) such that |{x G MaxP : a\ < x} | = 2 n - 1 . Now if x G MaxP 
and y G 5(x) then Lemma 1 and Theorem 1 imply that | { z G Max P : y < z} | < 2n~]. 
Suppose that for all x G MaxPandy G 5(x), |{z G MaxP : y < z}\ < 2n_1 . Lety G 
S(x) for some x G Max P be such that the size of Y = { z G Max P : y < z} is greatest. 
LetZ = (MaxP)-F. Then \Z\ > 2n~\ ConsiderP/ = {p G P : /? < z for some z G Z}. 
By Lemma 2 if z G Max P7 and S(z) is a cutset for z in P then 5(z) Pi P/ is a cutset for 
z in P/. Since MaxP' = Z then as in the proof of Theorem 1, \S(z) C\ P/\ < n — 1. 
But | MaxP /| = |Z| > 2n~x contradicting Theorem 1. Therefore our claim is verified. 
So let a G MaxP and a\ G S(a) be such that \{x G MaxP : a\ < x}\ = 2n~l. 
Let x G Max[fli,—*) and let xj G ^(x) such that xi extends {a}. Then x\ < a and 
xi ^ [«l,—^) otherwise «j < a. Now ^(x) = 5(x) H [ai,—*) is a cutset for x in [a\,—>), 
and | S'(x)| < n— 1 by Lemma 1. By the induction hypothesis [a\, —>) contains a complete 
binary tree Ta of height n — 1 with Max Ta — Max[<zi,—*) and every maximal chain of 
[̂ i,—-+) intersects Ta in a maximal chain of Ta. 

Now { a\} U Ta is a complete rooted binary tree of height « — 1. Let b G Max[#i, —»). 
By Lemma 3, |S(fc)n [ai,—>)| > w - 1. We note that | M a x P - Max[ai,—>)| = 2""1. 

Let &i G 5(/?) such that b\ extends {z} for all z G MaxP — Max[«i,—->). Therefore 
?̂i < z for all z G Max P — Max[«i, —•). And for all x G [«i, —•), ̂ i -L x. For if b\ < x, 

then since for all C G M([a\, —->)), CD Ta G M(Ta), there is a y G Max r a = Max[«i, —•*) 
such that x < y. So if b\ < x then | Max[Z?i,—>)| > 2n~\ contradicting a previous 
argument. If x < b\ then a\ < a. 
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Arguing as above, since | Max[&i,—»)| = 2n~\ then by the induction hypothesis 
[&i,—•) contains a complete binary tree Tb of height n—\ such that ifC G M([bi,—>))then 
CD Tb G M(Tb). Furthermore if x G [bu-+) then ax J_ x. Hence [«!,—>)fl [*!,—•) = 0. 
So there are no comparabilities between { ax} U Ta and { &i} U Tb. 

Therefore T = {ax} U TaU {bx} U Tb is a complete binary tree of height n. 
If C G M(P), to show that CD T G M(T) it suffices to show that either ax G C or 

*i € C . 
Forif^i G CthenCn[fli,—^)GM([«i,-^))andsoC / = (Cn[au-+))nTa £ M(Ta) 

by induction. Thus C'U {ax} = CHTe M{T). Similarly if bx G C. 
Suppose C G M(P) and ax $ C and bx $ C. Then « G C or & G C or neither belong 

to C. If a G C then there is a ^ G S(&) such that b^ G C. Now b2 > ax since, as argued 
above, \S(b) D [ax,—>)| = n — 1. But then «i < a, a contradiction. Similarly if £ G C 
then Z?i < &. If neither belong to C then there are ai G S(a) and &2 G S(£) such that 
#2> 2̂ G C and a2 7̂  #i and b2 ^ bx. But then a2 > £1 and bi>ax. Since 62 ~ «2 then 
[<zi,—OH [&i,—0 7̂  0, a contradiction. Therefore either ax € C or bx e C. 

We note that in the above theorem, since Cfl T G M(r) for all C G M(P), it follows 
that any cutset in T is a cutset in P. Now in a complete binary tree of height n, T, for any 
x G r the set { y G /(JC) : y >- z for some z < x} U {y G /(x) : y is minimal in T} is a 
cutset for x in 7\ Hence this is a cutset for x in P. 

3. On the case when n is infinite. As proved in [1], the inequality | MaxP| < 2n 

for an ordered set P with the n-cutset property holds for infinite cardinals n as well. Here 
we will consider whether the result of the preceding section can be extended to the case 
when n is infinite. We will present two examples to show that the answer is negative. We 
are able to obtain a positive theorem, in the case n = a;, for ordered sets of a special 
type. 

As above, for each positive integer /:, we let Lk denote the set of all 0-1 sequences of 
length k\ Lk = {(x\,X2, ...,**) : JC,- G {0,1} for all i = 1,2,...,/:}. We also let Lu 

denote the set of all infinite 0-1 sequences; L^ — {(xx,xi,...) : xt G { 0,1} for all / = 
1,2,.. .}. We let Tu = \J*LX Lk and we let Tu+X = T0JU Lu. If a = (JCI,JC2, . . . ,xk) G Lk 

and r = (yi,y2> • •• >yj) G Lj we set a < r if k < j and JC/ = y, for all / = 1,2,.../:. 
Similarly if a = (x\,X2,... ,**) G L& and r = (yi ,y2» • • •) G Lw, we set a < r if JC, = y, 
for all 1 = 1,2,.../:. With this standard ordering, T^ is referred to as the complete binary 
tree of height u. TUJ+X is of course just 7^ together with the o;th level adjoined. 

The set L^ can also be regarded as the Cantor set, or equivalently as { 0,1} u, the 
infinite product of countably many copies of the set { 0,1} . As such, Lw carries its natural 
topology (the product topology), which has a basis for the open sets all sets of the form 
Ga = {T € Lu : & < T} , where a G Lk for some integer k. The sets Ga are open and 
closed in this topology. 

It is well-known and easy to show that there is a subset X of L^, of cardinality 2U, 
such that X contains no closed subset of L^ having cardinality 2W. A so-called Bernstein 
set has this property, as described for example in [5]. For the unfamiliar reader, here 
is the standard argument for obtaining such a set: since Lœ has a countable basis, there 
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are exactly 2U closed subsets of Lu. Let { Ca : a < 2U } be an ennumeration of all 
the closed subsets of L^ which have cardinality 2W. Now inductively choose elements 
aa and ba, for all a < 2", such that aa G Ca,ba G Ca,aa ^ ba and aa £ {ap : 
P < a} U {bp : /3 < <*},&<* £ {<2/? : /3 < a } U { ^ : f5 < a}. We then take 
X = { aa : a < 2" } . Such a set will be useful in our first example below. 

The natural extension of the theorem in the preceding section to the case n — uo would 
be this: if P is an ordered set containing 2U maximal elements, and if every element of P 
has a countable cutset in P, then P contains a copy of the tree Tu+\. We can give a simple 
example where this fails, using a Bernstein set. 

EXAMPLE 1. Let X be a Bernstein set in Lw and let P = T^ U X, with the ordering 
induced from T^+x • Then P has 2^ maximal elements, every element of P has a countable 
cutset in P, but P contains no subset isomorphic to Tu+\. 

The countable cutset condition is verified by noting that, for each r G X, the set 
{ a G Tu : a is noncomparable to r } is a cutset for r in P. Since X contains no closed 
subset of Lw of cardinality 2W, the last assertion follows from the following observation: 
let S be a subset of T^ which is isomorphic to 7^, and let S* = { r £ L^: there are 
infinitely many a G S with cr < r } . Then 5* is a closed subset of Lu. To establish this 
latter fact, note that if S is isomorphic to Tu, we can write S — Uj^j S*, where S* is the 
Ath level of S. Therefore, we have, for r G L^.r G S* <-+ for all k = 1,2,... there exists 
a G Sk such that a < r . In other words, S* = f l j^ (Ures* Ga) where Ga is the open 
and closed set described above. As an intersection of closed sets, S* is itself closed in Lu. 

We now present a second example which further shows how unsatisfactory things can 
be in the infinite case. As usual, we let UJ\ denote the first uncountable ordinal number. 

EXAMPLE 2. Let P — {xa : a < u\} U {ya : a < UJ\} with the ordering < 
described as follows: xa < xp <-> a < j3 and xa < y@ +-+ a < (5 (see Figure 2). P 
has UJ\ maximal elements, every element of P has a countable cutset in P, but P does not 
contain a complete binary tree of height 2. 

The elements ya are all maximal elements of P. A countable cutset for ya in P is the 
set { yp : (3 < a } U { xa+\}, and a countable cutset for xa is the set { yp : (3 < a } . 

So there is no straightforward generalization of the result in the preceding section 
that applies to the infinite case: assuming the continuum hypothesis; the ordered set P 
in Example 2 has 2U maximal elements, every element has a countable cutset, and yet P 
does not even contain a complete binary tree of height 2. However, for a special kind of 
ordered set P, one for which P — Max P is countable, such a result can be obtained, as 
we next show. 

THEOREM 3. Let P be an ordered set with uncountably many maximal elements. 
Suppose that every maximal element ofP has a countable cutset in P and that P — Max P 
is countable. Then P contains a complete binary tree of height LU. 

PROOF. Let a be any maximal element of P, and let S be a countable cutset for a in 
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Figure 2 

P. Every other maximal element of P is comparable with some element of S. Since there 
are uncountably many maximal elements it follows that there is some element p G S 
for which the set A = {x G Max P : p < x} is uncountable. The desired binary tree 
can be obtained inductively, choosing one level after another, using the following lemma 
repeatedly. 

LEMMA 4. Letp G P and let A be an uncountable set of maximal elements ofP with 
p < xfor all x in A. Then there exist elements po and p\ in P and uncountable subsets 
AQ andA\ of A such that 

(i) p < poandp < px, 
(ii) po < xfor all x G AQ andpo jt xfor all x G A\, 

(Hi) p\ < xfor all x G Ai andp\ <fi xfor all x G AQ. 

To prove the lemma we first establish the following statement (*): there is some el
ement q with p < q such that both the sets {x G A : q < x} and {x G A : q <£ x} 
are uncountable. For the sake of contradiction, assume (*) is false. We claim that we can 
inductively select, for each a < UJ\, elements pa of A and co-countable subsets Ha of 
P such that po = /?, Ho — A, and such that a < (3 —• pa < pp, and pa < x for all x in 
Ha • For, suppose we have selected elements pa and co-countable subsets Ha of A for all 
a < j8, satisfying these conditions. Then the set B — Ua<p(A — Ha) is countable. We 
have pa < x for all a < (3 and for all x G A — B. Let XQ be any element of A — B, and 
let So be a countable cutset for xo in P. For each element JCGA — B — {XQ}, the chain 
{pa : oc < (3 } U {x} is extended by some element cx of So. Since cx is noncomparable 
to xo we must have pa < cx for all a < (3, and of course cx < x. Since So is countable, 
there is an uncountable subset T of A — B — {xo} such that cx = cy for all x,y G T. Let 
pp = cx for any (all) x in T. Then we have pa < pp for all a < (3, and pp < x for all 
JC in 7. Since by assumption (*) is false, the set {x G A : pp <fi x} is countable. We let 

https://doi.org/10.4153/CMB-1991-004-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1991-004-1


30 P. ARPIN AND J. GINSBURG 

H/3 — {x E A : pp < x}. This completes the induction step. In particular, if (*) fails, 
there is an LJ\-sequence {pa : a < cu\} in P. But this contradicts the assumption that 
P — Max P is countable. 

We return to the proof of the lemma. We start with an element p and an uncountable 
set A of maximal elements with p < x for all x G A. By (*) there is an element po > p 
and uncountable subsets BQ and B\ of A such that/?o < x for all x in Bo and/?o ^ x for 
all x in #1. Let JC be an element of Bo and let Sx be a countable cutset for x in P. Each of 
the chains {p,y}, for y G #1 is extended by some element of S*. Since Sx is countable 
there is an element cx of S* and an uncountable subset Bx of B\ such that/? < cx < y 
for all y G Bx. Now cx € P — Max P and P — Max P is countable. Therefore there is an 
uncountable subset A0 of B0 and an element c G P such that c* = c for all JC in A0. We 
have that c is noncomparable to x for every x in Ao, since c* belongs to a cutset for x. Let 
/?i = c and let Ai = Bx for any x in Ao. We have p\ < y for all y in A\ and p\ jt x for all 
JC in Ao. Furthermore, /?o < x for all JC in Ao and po ji y for all v in Ai. This completes 
the proof. 

We do not know the extent to which the condition on P — Max P can be weakened in 
Theorem 3. The counterexample in Example 2 suggests attempting to replace the count-
ability of P — Max P by the condition that P contains no uncountable chains, a prospect 
we have been unable to settle. 

The authors would like to thank Murray Bell for several useful discussions concerning 
the work in this paper. 
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