BINARY TREES AND THE n-CUTSET PROPERTY

PETER ARPIN AND JOHN GINSBURG

Abstract

A partially ordered set P is said to have the n-cutset property if for every element x of P, there is a subset S of P all of whose elements are noncomparable to x, with $|S| \leq n$, and such that every maximal chain in P meets $\{x\} \cup S$. It is known that if P has the n-cutset property then P has at most 2^{n} maximal elements. Here we are concerned with the extremal case. We let Max P denote the set of maximal elements of P. We establish the following result. Theorem: Let n be a positive integer. Suppose P has the n-cutset property and that $|\operatorname{Max} P|=2^{n}$. Then P contains a complete binary tree T of height n with Max $T=\operatorname{Max} P$ and such that $C \cap T$ is a maximal chain in T for every maximal chain C of P. Two examples are given to show that this result does not extend to the case when n is infinite. However the following is shown. Theorem: Suppose that P has the ω-cutset property and that $|\operatorname{Max} P|=2^{\omega}$. If $P-\operatorname{Max} P$ is countable then P contains a complete binary tree of height ω.

1. Introduction and preliminaries. Let P be a partially ordered set. A subset of P that intersects every maximal chain of P will be called a cutset for P. For $x \in P$, let $I(x)=\{p \in P: p$ is noncomparable to $x\}$. If $S \subseteq I(x)$ and $\{x\} \cup S$ is a cutset for P, we say that S is a cutset for x in P. If for all $x \in P$ there is a cutset S for x in P with $|S| \leq n$, the P is said to have the n-cutset property. Cutsets have been studied by several authors and other work can be found, for example, in [1,2,3,4,6,7,8].

If C is a chain in P then for $x \in P$ we will say that x extends C if $\{x\} \cup C$ is a chain in P. If S is a cutset for x in P, then if C is a chain in P, there is an element $p \in\{x\} \cup S$ such that p extends C. The set of maximal elements of P will be denoted by Max P and the set of maximal chains of P will be denoted by $M(P)$. The statement " x is noncomparable to y " will be denoted by $x \perp y$ and the statement that " x is comparable to y " will be denoted by $x \sim y$.

For $a \in P$ we let $[a, \rightarrow)=\{x \in P: a \leq x\}$. If $a, b \in P$ and $b>a$ and if there is no $c \in P$ such that $b>c>a$, then we say that b covers a and write $b \succ a$.

If k is a positive integer we let L_{k} denote the set of all $0-1$ sequences of length k. Let $T_{n}=\cup_{k=1}^{n} L_{k}$. Order T_{n} as follows: for $\sigma, \tau \in T_{n}$, with $\sigma=\left(x_{1}, x_{2}, \ldots, x_{j}\right), \tau=$ $\left(y_{1}, y_{2}, \ldots, y_{k}\right)$, we set $\sigma<\tau$ if $j<k$ and $x_{i}=y_{i}$ for all $i \in\{1, \ldots, j\}$. We say that T_{n} is the complete binary tree of height n. Let $T_{n}^{*}=T_{n} \cup\{\emptyset\}$ where for all $\sigma \in T_{n}, \emptyset<\sigma$. Then T_{n}^{*} will be referred to as the complete rooted binary tree of height n with root \emptyset. (see Figure 1).

[^0]

The Complete binary tree of height 3

000001010011100101110111

The complete rooted binary tree of height 3

Figure 1
In this paper we give a new proof of the theorem proved in [1] which states that if n is a positive integer and if P has the n-cutset property, then $|\operatorname{Max} P| \leq 2^{n}$. It will be shown that in the case where $|\operatorname{Max} P|=2^{n}$ where P has the n-cutset property, then P contains a complete binary tree T of height n such that $\operatorname{Max} T=\operatorname{Max} P$ and if $C \in M(P)$ then $C \cap T \in M(T)$. In the case where n is infinite it will be shown that generalizations of the finite case do not hold.
2. Binary trees and the n-cutset property. In this section P will denote a poset and n will denote a positive integer.

Lemma 1. Let $p \in \operatorname{Max} P$ and $a \in P$ such that $p \perp a$. Suppose $x \in[a, \rightarrow)$ and x has a cutset S in P with $|S|=n$. Then $S \cap[a, \rightarrow)$ is a cutset for x in $[a, \longrightarrow)$ and $|S \cap[a, \rightarrow)| \leq n-1$.

Proof. Let p, a and x be as in the lemma. Then $x \perp p$. Since S is a cutset for x in p and $x \perp p$, there is a $y \in S$ such that y extends $\{p\}$ and since p is maximal, $y \leq p$. We must have $y \notin[a, \rightarrow)$ for if $y \in[a, \rightarrow)$ then $a \leq y$; but then $a \leq p$. Let $S^{\prime}=S \cap[a, \rightarrow)$ and let $C \in M([a, \rightarrow))$, then $a \in C$ since a is minimum in $[a, \rightarrow)$. Either x extends C or some $z \in S$ extends C. If x extends C, then $x \in C$ since $C \in M([a, \rightarrow))$. And if z extends C then $a \leq z$, for $z \leq a$ implies, $z \leq x$ contradicting $z \in S$. And so $z \in C$. So $z \in S^{\prime}$ and so S^{\prime} is a cutset for x in $[a, \rightarrow)$. Since $y \notin S^{\prime}$ we have $\left|S^{\prime}\right| \leq|S-\{y\}|=n-1$.

Lemma 2. Let P be a poset and let $X \subseteq \operatorname{Max} P$ with X finite. Let $P^{\prime}=\{p \in P: p \leq$ xfor some $x \in X\}$. If $p \in P^{\prime}$ and S is a cutset for p in P, then $S \cap P^{\prime}$ is a cutset for p in P^{\prime}.

Proof. Let $C \in M\left(P^{\prime}\right)$. Let $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. Then there is an $x \in X$ such that $x \in C$. For, if not, then there is a $y_{i} \in C$ such that $y_{i} \perp x_{i}$ for all $i \in\{1,2, \ldots, n\}$. Let y be the maximum element in $\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$. Then $y \leq x_{k}$ for some $k \in\{1, \ldots, n\}$. But then $y_{k} \leq x_{k}$, a contradiction. Now either p extends C or y extends C for some $y \in S$. If p extends C then $p \in C$. If y extends C then $y \leq x$ since x is maximal and so $y \in P^{\prime}$.

We now give a new and shorter proof of the following theorem proved in [1].
Theorem 1. If P is a poset such that for all $x \in \operatorname{Max} P$ there is a cutset $S(x)$ for x in P with $|S(x)| \leq n$, then $|\operatorname{Max} P| \leq 2^{n}$.

Proof. For the case when $n=1$: suppose that $|\operatorname{Max} P|>2$. So there exist 3 maximal elements, a, b and c of P. Let $S(a)$ and $S(b)$ be cutsets for a and b respectively in P where $|S(a)|=|S(b)|=1$. Let $\{x\}=S(a)$ and $\{y\}=S(b)$. Since $a \perp b$ and $a \perp c, x$ extends $\{b\}$ and $\{c\}$ and so $x \leq b$ and $x \leq c$ since b and c are maximal. Similarly $y \leq a$ and $y \leq c$. Also y extends $\{x, c\}$ but $y \leq x$ implies $y \leq b$ and $x \leq y$ implies $x \leq a$, a contradiction, so $|\operatorname{Max} P| \leq 2$ when $n=1$.

For the sake of contradiction let n be the smallest positive integer such that the theorem doesn't hold. So there is a poset P with $|\operatorname{Max} P|>2^{n}$ and such that for all $x \in \operatorname{Max} P$ there is a cutset $S(x)$ for x in P with $|S(x)| \leq n$.

Let $x \in \operatorname{Max} P$. Let $y \in S(x)$. Then if $X=\{z \in \operatorname{Max} P: y \leq z\},|X| \leq 2^{n-1}$. This follows from Lemma 1 since $y \perp x$ and so for all $z \in X, S(z) \cap[y, \rightarrow)$ is a cutset for z in $[y, \rightarrow)$ and $|S(z) \cap[y, \rightarrow)| \leq n-1$. Since $X=\operatorname{Max}[y, \rightarrow)$ with all $z \in X$ having a cutset of size at most $n-1$, and since n is the smallest positive integer for which the theorem doesn't hold, $|X| \leq 2^{n-1}$.

Let y be such that $y \in S(x)$ for some $x \in \operatorname{Max} P$ and $|\{z \in \operatorname{Max} P: y<z\}|$ is maximal. Let $Y=\{z \in \operatorname{Max} P: y \leq z\}$ and let $Z \subseteq(\operatorname{Max} P)-Y$ be such that $|Z|=2^{n-1}+1$.

For all $z \in Z, y \perp z$. For any $w \in Z$, let $v \in S(w)$ such that v extends $\{y\}$. Then for all $z \in Z, v \perp z$. For if $v \sim z$ for some $z \in Z$ then $v \leq z$ since z is maximal. If $y \leq v$, then $y \leq z$ contradicting $y \perp z$ and if $v \leq y$ then $|\{z \in \operatorname{Max} P: v \leq z\}|>|Y|$ contradicting the maximum size of Y.

Let $P^{\prime}=\{u \in P: u \leq z$ for some $z \in Z\}$. By Lemma $2, S(z) \cap P^{\prime}$ is a cutset for z in P^{\prime} for all $z \in Z$. By the preceding argument, if $s_{z} \in S(z)$ such that s_{z} extends $\{y\}$, then $s_{z} \notin P^{\prime}$ and so $\left|S(z) \cap P^{\prime}\right| \leq n-1$. So each maximal element in P^{\prime} has a cutset of size at most $n-1$. But $\left|\operatorname{Max} P^{\prime}\right|>2^{n-1}$ contradicting n being the smallest positive integer for which the theorem doesn't hold.

Lemma 3. Let P be a poset which contains a complete rooted binary tree T of height n with root a such that $\operatorname{Max} T \subseteq \operatorname{Max} P$. Then if $x \in \operatorname{Max} T$ and if S is any cutset for x in $P,|S \cap[a, \rightarrow)| \geq n$.

Proof. By induction on n. For $n=1, P$ contains a, b, c where $b>a$ and $c>a$ and $b \perp c$ and b and c are maximal. Let $S(b)$ be a cutset for b in P. Then there is a $b^{\prime} \in S(b)$ such that b^{\prime} extends $\{a, c\}$ and $b^{\prime}>a$ since $b^{\prime} \perp b$. So $b^{\prime} \in[a, \rightarrow)$. Arguing in the same manner there is a $c^{\prime} \in S(c)$ a cutset for c in P where c^{\prime} extends $\{a, b\}$ and $c^{\prime}>a$. So for all $x \in \operatorname{Max} T$ and any cutset $S(x)$ for x in $P,|S(x) \cap[a, \rightarrow)| \geq 1$.

Suppose the lemma is true for $m<n$. Let T be a complete rooted binary tree of height n with a the root of T and $\operatorname{Max} T \subseteq \operatorname{Max} P$ and let b and c be the two elements of T that
cover a in T. Let $x \in \operatorname{Max} T$. Then x is comparable to one and only one of b, c. Without loss of generality let $b \leq x$ so $x \perp c$. Let $S(x)$ be a cutset for x in P. Let $y \in \operatorname{Max} T$ such that $y \geq c$. Then $y \perp b$. Let $x_{1} \in S(x)$ extend $\{a, c, y\}$. Then $x_{1} \geq a$ since $x_{1} \perp x$ and $x_{1} \leq y$ since y is maximal. Hence $x_{1} \notin[b, \rightarrow)$ for if $x_{1} \geq b$ then $b \leq y$. Now $[b, \rightarrow)$ contains a complete rooted binary tree T^{\prime} of height $n-1$ with root $b, T^{\prime}=T \cap[b, \rightarrow)$, and $x \in \operatorname{Max} T^{\prime} \subseteq \operatorname{Max} P$. So by the induction hypothesis $|S(x) \cap[b, \rightarrow)| \geq n-1$. Since $x_{1} \notin[b, \rightarrow),|S(x) \cap[a, \rightarrow)| \geq n$.

Theorem 2. Let P be a poset with $|\operatorname{Max} P|=2^{n}$ such that for all $x \in \operatorname{Max} P$ there is a cutset $S(x)$ for x in P with $|S(x)| \leq n$. Then there is a complete binary tree T of height n contained in P such that $\operatorname{Max} T=$ Max P. Furthermore, if $C \in M(P)$, then $C \cap T \in M(T)$.

Proof. By induction. For $n=1,|\operatorname{Max} P|=2$. So let $\operatorname{Max} P=\{a, b\}$ and by Theorem 1 there can be no more than 2 maximal elements. Let $C \in M(P)$. Either $a \in C$ or $b \in C$. For if not then there are $c, d \in C$ such that $c \perp a$ and $d \perp b$. Let $S(a)=\{x\}$ and $S(b)=\{y\}$. Then $x, y \in C$ and x extends $\{b\}$ and y extends $\{a\}$. Therefore $x \leq b$ and $y \leq a$ since a and b are maximal. But if $x \leq y$ then $x \leq a$ and if $y \leq x$, then $y \leq b$, both of which are impossible. So either $a \in C$ or $b \in C$. So $\{a, b\}$ forms the desired complete binary tree of height 1 satisfying the conditions of the theorem.

Now suppose the theorem is true for $m<n$. Let P be a poset with $|\operatorname{Max} P|=2^{n}$ such that for all $x \in \operatorname{Max} P, S(x)$ is a cutset for x in P with $|S(x)| \leq n$. We claim there is an $a \in \operatorname{Max} P$ and $a_{1} \in S(a)$ such that $\left|\left\{x \in \operatorname{Max} P: a_{1} \leq x\right\}\right|=2^{n-1}$. Now if $x \in \operatorname{Max} P$ and $y \in S(x)$ then Lemma 1 and Theorem 1 imply that $|\{z \in \operatorname{Max} P: y \leq z\}| \leq 2^{n-1}$. Suppose that for all $x \in \operatorname{Max} P$ and $y \in S(x),|\{z \in \operatorname{Max} P: y \leq z\}|<2^{n-1}$. Let $y \in$ $S(x)$ for some $x \in \operatorname{Max} P$ be such that the size of $Y=\{z \in \operatorname{Max} P: y \leq z\}$ is greatest. Let $Z=(\operatorname{Max} P)-Y$. Then $|Z|>2^{n-1}$. Consider $P^{\prime}=\{p \in P: p \leq z$ for some $z \in Z\}$. By Lemma 2 if $z \in$ Max P^{\prime} and $S(z)$ is a cutset for z in P then $S(z) \cap P^{\prime}$ is a cutset for z in P^{\prime}. Since $\operatorname{Max} P^{\prime}=Z$ then as in the proof of Theorem $1,\left|S(z) \cap P^{\prime}\right| \leq n-1$. But $\left|\operatorname{Max} P^{\prime}\right|=|Z|>2^{n-1}$ contradicting Theorem 1. Therefore our claim is verified. So let $a \in \operatorname{Max} P$ and $a_{1} \in S(a)$ be such that $\left|\left\{x \in \operatorname{Max} P: a_{1} \leq x\right\}\right|=2^{n-1}$. Let $x \in \operatorname{Max}\left[a_{1}, \rightarrow\right)$ and let $x_{1} \in S(x)$ such that x_{1} extends $\{a\}$. Then $x_{1}<a$ and $x_{1} \notin\left[a_{1}, \rightarrow\right)$ otherwise $a_{1} \leq a$. Now $S^{\prime}(x)=S(x) \cap\left[a_{1}, \rightarrow\right)$ is a cutset for x in $\left[a_{1}, \rightarrow\right)$, and $\left|S^{\prime}(x)\right| \leq n-1$ by Lemma 1. By the induction hypothesis $\left[a_{1}, \rightarrow\right)$ contains a complete binary tree T_{a} of height $n-1$ with $\operatorname{Max} T_{a}=\operatorname{Max}\left[a_{1}, \rightarrow\right)$ and every maximal chain of $\left[a_{1}, \rightarrow\right.$) intersects T_{a} in a maximal chain of T_{a}.

Now $\left\{a_{1}\right\} \cup T_{a}$ is a complete rooted binary tree of height $n-1$. Let $b \in \operatorname{Max}\left[a_{1}, \rightarrow\right)$. By Lemma 3, $\left|S(b) \cap\left[a_{1}, \rightarrow\right)\right| \geq n-1$. We note that $\left|\operatorname{Max} P-\operatorname{Max}\left[a_{1}, \rightarrow\right)\right|=2^{n-1}$.

Let $b_{1} \in S(b)$ such that b_{1} extends $\{z\}$ for all $z \in \operatorname{Max} P-\operatorname{Max}\left[a_{1}, \rightarrow\right)$. Therefore $b_{1} \leq z$ for all $z \in \operatorname{Max} P-\operatorname{Max}\left[a_{1}, \rightarrow\right)$. And for all $x \in\left[a_{1}, \rightarrow\right), b_{1} \perp x$. For if $b_{1} \leq x$, then since for all $C \in M\left(\left[a_{1}, \rightarrow\right)\right), C \cap T_{a} \in M\left(T_{a}\right)$, there is a $y \in \operatorname{Max} T_{a}=\operatorname{Max}\left[a_{1}, \rightarrow\right)$ such that $x \leq y$. So if $b_{1} \leq x$ then $\left|\operatorname{Max}\left[b_{1}, \rightarrow\right)\right|>2^{n-1}$, contradicting a previous argument. If $x \leq b_{1}$ then $a_{1} \leq a$.

Arguing as above, since $\left|\operatorname{Max}\left[b_{1}, \rightarrow\right)\right|=2^{n-1}$, then by the induction hypothesis $\left[b_{1}, \rightarrow\right.$) contains a complete binary tree T_{b} of height $n-1$ such that if $C \in M\left(\left[b_{1}, \rightarrow\right)\right)$ then $C \cap T_{b} \in M\left(T_{b}\right)$. Furthermore if $x \in\left[b_{1}, \rightarrow\right)$ then $a_{1} \perp x$. Hence $\left[a_{1}, \rightarrow\right) \cap\left[b_{1}, \rightarrow\right)=\emptyset$. So there are no comparabilities between $\left\{a_{1}\right\} \cup T_{a}$ and $\left\{b_{1}\right\} \cup T_{b}$.

Therefore $T=\left\{a_{1}\right\} \cup T_{a} \cup\left\{b_{1}\right\} \cup T_{b}$ is a complete binary tree of height n.
If $C \in M(P)$, to show that $C \cap T \in M(T)$ it suffices to show that either $a_{1} \in C$ or $b_{1} \in C$.

For if $a_{1} \in C$ then $C \cap\left[a_{1}, \rightarrow\right) \in M\left(\left[a_{1}, \rightarrow\right)\right)$ and so $C^{\prime}=\left(C \cap\left[a_{1}, \rightarrow\right)\right) \cap T_{a} \in M\left(T_{a}\right)$ by induction. Thus $C^{\prime} \cup\left\{a_{1}\right\}=C \cap T \in M(T)$. Similarly if $b_{1} \in C$.

Suppose $C \in M(P)$ and $a_{1} \notin C$ and $b_{1} \notin C$. Then $a \in C$ or $b \in C$ or neither belong to C. If $a \in C$ then there is a $b_{2} \in S(b)$ such that $b_{2} \in C$. Now $b_{2} \geq a_{1}$ since, as argued above, $\left|S(b) \cap\left[a_{1}, \rightarrow\right)\right|=n-1$. But then $a_{1} \leq a$, a contradiction. Similarly if $b \in C$ then $b_{1} \leq b$. If neither belong to C then there are $a_{2} \in S(a)$ and $b_{2} \in S(b)$ such that $a_{2}, b_{2} \in C$ and $a_{2} \neq a_{1}$ and $b_{2} \neq b_{1}$. But then $a_{2} \geq b_{1}$ and $b_{2} \geq a_{1}$. Since $b_{2} \sim a_{2}$ then $\left[a_{1}, \rightarrow\right) \cap\left[b_{1}, \rightarrow\right) \neq \emptyset$, a contradiction. Therefore either $a_{1} \in C$ or $b_{1} \in C$.

We note that in the above theorem, since $C \cap T \in M(T)$ for all $C \in M(P)$, it follows that any cutset in T is a cutset in P. Now in a complete binary tree of height n, T, for any $x \in T$ the set $\{y \in I(x): y \succ z$ for some $z<x\} \cup\{y \in I(x): y$ is minimal in $T\}$ is a cutset for x in T. Hence this is a cutset for x in P.
3. On the case when n is infinite. As proved in [1], the inequality $|\operatorname{Max} P| \leq 2^{n}$ for an ordered set P with the n-cutset property holds for infinite cardinals n as well. Here we will consider whether the result of the preceding section can be extended to the case when n is infinite. We will present two examples to show that the answer is negative. We are able to obtain a positive theorem, in the case $n=\omega$, for ordered sets of a special type.

As above, for each positive integer k, we let L_{k} denote the set of all 0-1 sequences of length $k ; L_{k}=\left\{\left(x_{1}, x_{2}, \ldots, x_{k}\right): x_{i} \in\{0,1\}\right.$ for all $\left.i=1,2, \ldots, k\right\}$. We also let L_{ω} denote the set of all infinite $0-1$ sequences; $L_{\omega}=\left\{\left(x_{1}, x_{2}, \ldots\right): x_{i} \in\{0,1\}\right.$ for all $i=$ $1,2, \ldots\}$. We let $T_{\omega}=\cup_{k=1}^{\infty} L_{k}$ and we let $T_{\omega+1}=T_{\omega} \cup L_{\omega}$. If $\sigma=\left(x_{1}, x_{2}, \ldots, x_{k}\right) \in L_{k}$ and $\tau=\left(y_{1}, y_{2}, \ldots, y_{j}\right) \in L_{j}$ we set $\sigma<\tau$ if $k<j$ and $x_{i}=y_{i}$ for all $i=1,2, \ldots k$. Similarly if $\sigma=\left(x_{1}, x_{2}, \ldots, x_{k}\right) \in L_{k}$ and $\tau=\left(y_{1}, y_{2}, \ldots\right) \in L_{\omega}$, we set $\sigma<\tau$ if $x_{i}=y_{i}$ for all $i=1,2, \ldots k$. With this standard ordering, T_{ω} is referred to as the complete binary tree of height $\omega . T_{\omega+1}$ is of course just T_{ω} together with the ω th level adjoined.

The set L_{ω} can also be regarded as the Cantor set, or equivalently as $\{0,1\}^{\omega}$, the infinite product of countably many copies of the set $\{0,1\}$. As such, L_{ω} carries its natural topology (the product topology), which has a basis for the open sets all sets of the form $G_{\sigma}=\left\{\tau \in L_{\omega}: \sigma<\tau\right\}$, where $\sigma \in L_{k}$ for some integer k. The sets G_{σ} are open and closed in this topology.

It is well-known and easy to show that there is a subset X of L_{ω}, of cardinality 2^{ω}, such that X contains no closed subset of L_{ω} having cardinality 2^{ω}. A so-called Bernstein set has this property, as described for example in [5]. For the unfamiliar reader, here is the standard argument for obtaining such a set: since L_{ω} has a countable basis, there
are exactly 2^{ω} closed subsets of L_{ω}. Let $\left\{C_{\alpha}: \alpha<2^{\omega}\right\}$ be an ennumeration of all the closed subsets of L_{ω} which have cardinality 2^{ω}. Now inductively choose elements a_{α} and b_{α}, for all $\alpha<2^{\omega}$, such that $a_{\alpha} \in C_{\alpha}, b_{\alpha} \in C_{\alpha}, a_{\alpha} \neq b_{\alpha}$ and $a_{\alpha} \notin\left\{a_{\beta}\right.$: $\beta<\alpha\} \cup\left\{b_{\beta}: \beta<\alpha\right\}, b_{\alpha} \notin\left\{a_{\beta}: \beta<\alpha\right\} \cup\left\{b_{\beta}: \beta<\alpha\right\}$. We then take $X=\left\{a_{\alpha}: \alpha<2^{\omega}\right\}$. Such a set will be useful in our first example below.

The natural extension of the theorem in the preceding section to the case $n=\omega$ would be this: if P is an ordered set containing 2^{ω} maximal elements, and if every element of P has a countable cutset in P, then P contains a copy of the tree $T_{\omega+1}$. We can give a simple example where this fails, using a Bernstein set.

Example 1. Let X be a Bernstein set in L_{ω} and let $P=T_{\omega} \cup X$, with the ordering induced from $T_{\omega+1}$. Then P has 2^{ω} maximal elements, every element of P has a countable cutset in P, but P contains no subset isomorphic to $T_{\omega+1}$.

The countable cutset condition is verified by noting that, for each $\tau \in X$, the set $\left\{\sigma \in T_{\omega}: \sigma\right.$ is noncomparable to $\left.\tau\right\}$ is a cutset for τ in P. Since X contains no closed subset of L_{ω} of cardinality 2^{ω}, the last assertion follows from the following observation: let S be a subset of T_{ω} which is isomorphic to T_{ω}, and let $S^{*}=\left\{\tau \in L_{\omega}\right.$: there are infinitely many $\sigma \in S$ with $\sigma<\tau\}$. Then S^{*} is a closed subset of L_{ω}. To establish this latter fact, note that if S is isomorphic to T_{ω}, we can write $S=\cup_{k=1}^{\infty} S_{k}$, where S_{k} is the k th level of S. Therefore, we have, for $\tau \in L_{\omega}, \tau \in S^{*} \leftrightarrow$ for all $k=1,2, \ldots$ there exists $\sigma \in S_{k}$ such that $\sigma<\tau$. In other words, $S^{*}=\cap_{k=1}^{\infty}\left(\cup_{\sigma \in S_{k}} G_{\sigma}\right)$ where G_{σ} is the open and closed set described above. As an intersection of closed sets, S^{*} is itself closed in L_{ω}.

We now present a second example which further shows how unsatisfactory things can be in the infinite case. As usual, we let ω_{1} denote the first uncountable ordinal number.

Example 2. Let $P=\left\{x_{\alpha}: \alpha<\omega_{1}\right\} \cup\left\{y_{\alpha}: \alpha<\omega_{1}\right\}$ with the ordering $<$ described as follows: $x_{\alpha} \leq x_{\beta} \leftrightarrow \alpha \leq \beta$ and $x_{\alpha} \leq y_{\beta} \leftrightarrow \alpha \leq \beta$ (see Figure 2). P has ω_{1} maximal elements, every element of P has a countable cutset in P, but P does not contain a complete binary tree of height 2 .

The elements y_{α} are all maximal elements of P. A countable cutset for y_{α} in P is the set $\left\{y_{\beta}: \beta<\alpha\right\} \cup\left\{x_{\alpha+1}\right\}$, and a countable cutset for x_{α} is the set $\left\{y_{\beta}: \beta<\alpha\right\}$.

So there is no straightforward generalization of the result in the preceding section that applies to the infinite case: assuming the continuum hypothesis; the ordered set P in Example 2 has 2^{ω} maximal elements, every element has a countable cutset, and yet P does not even contain a complete binary tree of height 2 . However, for a special kind of ordered set P, one for which $P-\operatorname{Max} P$ is countable, such a result can be obtained, as we next show.

THEOREM 3. Let P be an ordered set with uncountably many maximal elements. Suppose that every maximal element of P has a countable cutset in P and that $P-\operatorname{Max} P$ is countable. Then P contains a complete binary tree of height ω.

Proof. Let a be any maximal element of P, and let S be a countable cutset for a in

Figure 2
P. Every other maximal element of P is comparable with some element of S. Since there are uncountably many maximal elements it follows that there is some element $p \in S$ for which the set $A=\{x \in \operatorname{Max} P: p<x\}$ is uncountable. The desired binary tree can be obtained inductively, choosing one level after another, using the following lemma repeatedly.

Lemma 4. Let $p \in P$ and let A be an uncountable set of maximal elements of P with $p<x$ for all x in A. Then there exist elements p_{0} and p_{1} in P and uncountable subsets A_{0} and A_{1} of A such that
(i) $p<p_{0}$ and $p<p_{1}$,
(ii) $p_{0}<x$ for all $x \in A_{0}$ and $p_{0} \nless x$ for all $x \in A_{1}$,
(iii) $p_{1}<x$ for all $x \in A_{1}$ and $p_{1} \nless x$ for all $x \in A_{0}$.

To prove the lemma we first establish the following statement (*): there is some element q with $p<q$ such that both the sets $\{x \in A: q<x\}$ and $\{x \in A: q \nless x\}$ are uncountable. For the sake of contradiction, assume ($*$) is false. We claim that we can inductively select, for each $\alpha<\omega_{1}$, elements p_{α} of A and co-countable subsets H_{α} of P such that $p_{0}=p, H_{0}=A$, and such that $\alpha<\beta \rightarrow p_{\alpha}<p_{\beta}$, and $p_{\alpha}<x$ for all x in H_{α}. For, suppose we have selected elements p_{α} and co-countable subsets H_{α} of A for all $\alpha<\beta$, satisfying these conditions. Then the set $B=\mathrm{U}_{\alpha<\beta}\left(A-H_{\alpha}\right)$ is countable. We have $p_{\alpha}<x$ for all $\alpha<\beta$ and for all $x \in A-B$. Let x_{0} be any element of $A-B$, and let S_{0} be a countable cutset for x_{0} in P. For each element $x \in A-B-\left\{x_{0}\right\}$, the chain $\left\{p_{\alpha}: \alpha<\beta\right\} \cup\{x\}$ is extended by some element c_{x} of S_{0}. Since c_{x} is noncomparable to x_{0} we must have $p_{\alpha}<c_{x}$ for all $\alpha<\beta$, and of course $c_{x} \leq x$. Since S_{0} is countable, there is an uncountable subset T of $A-B-\left\{x_{0}\right\}$ such that $c_{x}=c_{y}$ for all $x, y \in T$. Let $p_{\beta}=c_{x}$ for any (all) x in T. Then we have $p_{\alpha}<p_{\beta}$ for all $\alpha<\beta$, and $p_{\beta}<x$ for all x in T. Since by assumption (*) is false, the set $\left\{x \in A: p_{\beta} \nless x\right\}$ is countable. We let
$H_{\beta}=\left\{x \in A: p_{\beta}<x\right\}$. This completes the induction step. In particular, if ($*$) fails, there is an ω_{1}-sequence $\left\{p_{\alpha}: \alpha<\omega_{1}\right\}$ in P. But this contradicts the assumption that P - Max P is countable.

We return to the proof of the lemma. We start with an element p and an uncountable set A of maximal elements with $p<x$ for all $x \in A$. By $(*)$ there is an element $p_{0}>p$ and uncountable subsets B_{0} and B_{1} of A such that $p_{0}<x$ for all x in B_{0} and $p_{0} \nless x$ for all x in B_{1}. Let x be an element of B_{0} and let S_{x} be a countable cutset for x in P. Each of the chains $\{p, y\}$, for $y \in B_{1}$ is extended by some element of S_{x}. Since S_{x} is countable there is an element c_{x} of S_{x} and an uncountable subset B_{x} of B_{1} such that $p<c_{x}<y$ for all $y \in B_{x}$. Now $c_{x} \in P-\operatorname{Max} P$ and $P-\operatorname{Max} P$ is countable. Therefore there is an uncountable subset A_{0} of B_{0} and an element $c \in P$ such that $c_{x}=c$ for all x in A_{0}. We have that c is noncomparable to x for every x in A_{0}, since c_{x} belongs to a cutset for x. Let $p_{1}=c$ and let $A_{1}=B_{x}$ for any x in A_{0}. We have $p_{1}<y$ for all y in A_{1} and $p_{1} \nless x$ for all x in A_{0}. Furthermore, $p_{0}<x$ for all x in A_{0} and $p_{0} \nless y$ for all y in A_{1}. This completes the proof.

We do not know the extent to which the condition on $P-\operatorname{Max} P$ can be weakened in Theorem 3. The counterexample in Example 2 suggests attempting to replace the countability of $P-$ Max P by the condition that P contains no uncountable chains, a prospect we have been unable to settle.

The authors would like to thank Murray Bell for several useful discussions concerning the work in this paper.

References

1. J. Ginsburg, On the number of maximal elements in a partially ordered set, Can. Math. Bull. 30(3)(1987), 351-357.
2. J. Ginsburg, I. Rival and B. Sands, Antichains and finite sets that meet all maximal chains, Can. Jour. Math. 28(3)(1986), 619-632.
3. J. Ginsburg, Ladders in ordered sets, Order 3(1986), 21-38.
4. D. Higgs, A companion to Grillet's Theorem on maximal chains and antichains, Order 1(1985), 371-375.
5. J. C. Oxtoby, Measure and category, Springer-Verlag, New York, 1971.
6. I. Rival and N. Zaguia, Antichain cutsets, Order 1(1985,) 235-247.
7. N. Sauer and R. Woodrow, Finite cutsets and finite antichains, Order 1(1984), 35-46.
8. N. Sauer and M. El Zahar, The length, the width and the cuset number of finite ordered sets, Order 2(1985), 243-248.

University of Winnipeg
Winnipeg, Manitoba R3B 2E9

[^0]: Key words and phrases: partially ordered set, cutset, n-cutset property, maximal element, binary tree Received by the editors November 25, 1988, revised January 19, 1990.
 AMS subject classification: 06A10.
 (c)Canadian Mathematical Society 1991.

