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Abstract

An approach for the identification of discontinuous and nonsmooth nonlinear forces, as those generated by frictional
contacts, in mechanical systems that can be approximated by a single-degree-of-freedom model is presented. To
handle the sharp variations and multiple motion regimes introduced by these nonlinearities in the dynamic response,
the partially known physics-basedmodel and noisymeasurements of the system’s response to a known input force are
combined within a switching Gaussian process latent force model (GPLFM). In this grey-box framework, multiple
Gaussian processes are used to model the unknown nonlinear force across different motion regimes and a resetting
model enables the generation of discontinuities. The states of the system, nonlinear force, and regime transitions are
inferred by using filtering and smoothing techniques for switching linear dynamical systems. The proposed switching
GPLFM is applied to a simulated dry friction oscillator and an experimental setup consisting of a single-storey frame
with a brass-to-steel contact. Excellent results are obtained in terms of the identified nonlinear and discontinuous
friction force for varying: (i) normal load amplitudes in the contact; (ii) measurement noise levels, and (iii) number of
samples in the datasets. Moreover, the identified states, friction force, and sequence of motion regimes are used for
evaluating: (1) uncertain system parameters; (2) the friction force–velocity relationship, and (3) the static friction
force. The correct identification of the discontinuous nonlinear force and the quantification of any remaining
uncertainty in its prediction enable the implementation of an accurate forward model able to predict the system’s
response to different input forces.

Impact Statement

Identifying the nonlinear forces generated by frictional joints is crucial for understanding and predicting the
nonlinear behavior of engineering structures. However, most identification approaches cannot deal with the
sharp variations and multiple motion regimes introduced by these nonlinearities in the system’s response. The
method presented in this paper combines a partially-known physics-based model of the system with noisy
measurements of its response in a switching Gaussian process (GP) latent force model, where multiple GPs are
used to model the nonlinear force across different motion regimes and a resetting model to generate
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discontinuities. Regime transitions and discontinuities are inferred in a Bayesian manner, along with the
nonlinear force, and can be used to implement forward models able to make reliable predictions.

1. Introduction

This paper focuses on one of the key challenges in structural dynamics: the identification of discontinuous
nonlinear forces arising at the structural joints of complex mechanical systems, when an incomplete
physics-based model of the system and noisy measurements of its dynamic response are available. Due to
tighter tolerances and the general requirement for higher performance, it is becoming more and more
essential to correctly account for the nonlinearity introduced by frictional joints in structural design and
analysis. The presence of friction can produce harsh or nonsmooth phenomena such as stick–slip motions
and vibro-impact, which cannot be accounted for with equivalent linear techniques even in low-amplitude
vibration settings (Butlin et al., 2015). In particular, an approach is proposed for the identification of
discontinuous and nonsmooth nonlinearities, as those introduced by dry friction in mechanical systems.

Nonlinearity in structural dynamics poses several challenges, including the need for advanced
mathematical models and solution techniques, and the lack of a universal approach to the experimental
testing of nonlinear structures (Wang et al., 2018). Nonlinear system identification plays here a funda-
mental role in reconciling numerical predictions with experimental investigations (Kerschen et al., 2006).
In fact, it enables the extraction of information about the nonlinear structural behavior from experimental
data and, as a consequence, the prediction of the response of these systems to different inputs. Several
techniques have been developed in the recent years to deal with the detection (Worden and Tomlinson,
2001), localization (Wang et al., 2018), characterization (Ondra et al., 2017) and quantification (Carella
and Ewins, 2011) of nonlinearities; for exhaustive reviews on this topic see (Kerschen et al., 2006; Ewins
et al., 2015; Noël and Kerschen, 2017). Nonetheless, most nonlinear system identification approaches
cannot easily handle discontinuous and nonsmooth nonlinearities, as those introduced by dry friction in
mechanical systems.

Avery promising approach for dealing with smooth nonlinearities is the Gaussian process latent force
model (GPLFM). TheGPLFMwas firstly introduced byAlvarez et al. (2009) for identifying the unknown
input force driving a second-order dynamical system from noisy observations of its response. The latent
driving force were modelled as a zero-mean temporal Gaussian process (GP) with a stationary kernel, and
the governing equation of the system (i.e., the domain knowledge) where exploited to update the GP prior
to the response measurements. Although outperforming pure data-driven approaches, this formulation
was computationally expensive, since GP regression scales asO T3

� �
with respect to the number of data

points T . To overcome this limitation, Hartikainen and Särkkä (2012) reformulated the problem as an
augmented state-space model, coupling the governing equations of the system with the state-space
representation of the GP latent force, whose derivation is presented in Hartikainen and Särkkä (2010).
In this formulation, inference could be performed sequentially by using Kalman filter (Kalman, 1960) and
Rauch–Tung–Striebel (RTS) (Rauch et al., 1965), significantly reducing the computational burden. In
recent years, the use of GPLFMs in mechanical systems has been explored by several authors. In
particular, the approach was applied to linear single degree-of-freedom (SDOF) (Rogers et al., 2018)
and multi degree-of-freedom (MDOF) mechanical systems (Nayek et al., 2019; Rogers et al., 2020), as
well as to nonlinear systems with a known nonlinearity (Rogers et al., 2020), to perform joint input-state
estimation. In Rogers et al. (2018, 2020), the GPLFM is also used to infer the uncertain physical
parameters of the system. Further applications of the GPLFM to joint input-state identification can be
found in recent experimental studies (Bilbao et al., 2022; Petersen et al., 2022; Zou et al., 2023, 2022b).
Finally, in Rogers and Friis (2022), the GPLFM is applied to the nonlinear identification of mechanical
systems with a known driving force. In the case of a SDOF Duffing oscillator, the joint estimation of
system parameters, latent states and nonlinear restoring force was performed by modelling the latter as a
GP latent force. In this approach, the functional form of the nonlinear force was also reconstructed by
fitting the inferred estimates with a polynomial curve, whose degree was obtained by using a Bayesian
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Information Criterion (Schwarz, 1978). A limitation of GPLFMs is that a single GP latent force is
generally not able to model sharp variations in the time series, as those generated by discontinuous
nonlinearities or switching driving forces, or to handle the response of systems operating under different
motion regimes. Different approaches have been developed for identifying systems driven by a sequence
of latent forces. For example, Alvarez et al., 2010 inferred the unknown switching time instants alongwith
the GP hyperparameters. However, this approach required a prior knowledge of the number of switching
points. Hartikainen and Särkkä (2012) overcame this limitation by formulating theGPLFMas a switching
linear dynamical system (SLDS), where the latent driving force model transitions are governed by a
discrete-time Markov model. Nonetheless, the use of switching latent force models for the identification
of nonlinear systems is currently unexplored.

In this paper, a switching (GPLFM) is proposed to identify a discontinuous nonlinear force and the
latent states of an SDOFmechanical system excited by a known driving force. Thismethod is based on the
introduction of the switching GPLFM framework (Hartikainen and Särkkä, 2012) in the latent nonlinear
restoring force model (Rogers and Friis, 2022), which enables: (i) the use of different GPs to model the
nonlinear forces acting under differentmotion regimes (e.g., during sliding and sticking responses of a dry
friction oscillator); (ii) the use of resetting models for generating discontinuities in the latent nonlinear
force.Moreover, an approach is developed for estimating the uncertain physical parameters of the system,
i.e., mass, viscous damping, and stiffness, from the identified latent states and discontinuous nonlinear
force. Finally, a procedure is proposed for characterizing the functional dependency of the nonlinear
friction force on the sliding velocity and determining the static friction force. This enables the evaluation
of the friction force–velocity relationship and the value of the static friction force, which are robust
features for the characterization of the friction law (Cabboi et al., 2022).

The paper is organized as follows. Themathematical formulation of the switching GPLFM, along with
its implementation, is introduced in Section 2. The proposed methodology is applied to the numerical
case-study of an SDOF dry friction oscillator under random phase multisine excitation in Section 3. An
experimental case-study is then presented in Section 4, where nonlinear system identification is per-
formed on the stick–slip response of a single-storey frame subject to harmonic base excitation. Finally, the
results are further discussed in the concluding remarks, presented in Section 5.

2. Mathematical Formulation of the Switching Gaussian Process Latent Force Model

Let us consider a nonlinear SDOF system of mass m, viscous damping coefficient c, and stiffness k,
excited by the dynamic load u tð Þ. The governing equation of this system can be expressed as follows:

m€zþ c_zþ kzþ f z, _zð Þ= u tð Þ (1)

where f z, _zð Þ is a generic unknown nonlinear function of the displacement and velocity of the mass. The
identification of this nonlinear term, including its most plausible function form and parameters, is
essential for the implementation of an accurate forward model of the system able to predict its response
to any input forces. If a set of noisymeasurements of the system’s response to a known driving force u tð Þ is
available, the nonlinear force can be identified by applying the GPLFM in the formulation proposed by
Rogers and Friis (2022). In this case, the latent force model is formulated by modeling the nonlinear
function as a zero-mean GP in time with a stationary kernel κ:

f z, _zð Þ�GP 0,κ t, t0ð Þð Þ (2)

The performances of this nonlinear system identification method are strictly dependent on the ability of
GPs of reconstructing the nonlinear force. A particularly challenging problem for the GPLFM is the
identification of nonlinear forces whose time evolution is characterized by the presence of discontinuities
or sharp variations. As an example, Figure 1 shows the performance of the GPLFM in identifying the
nonlinear force in a dry friction oscillator subject to a known random phasemultisine excitation, for which
noisymeasurements of themass displacement are available. In this system, which is thoroughly described
in Section 3, friction always opposes the sliding motion between the parts in contact, leading to the

Data-Centric Engineering e18-3

https://doi.org/10.1017/dce.2023.12 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2023.12


presence of a discontinuity in the nonlinear force when the sliding velocity sign changes. In Figure 1a, it
can be observed that the GP tends to smooth sharp variations in the identified nonlinear force. As a result,
information regarding the presence of the discontinuity will be lost during the identification process. This
can also be observed from the nonlinear friction force–velocity point estimates reported in
Figure 1b.Moreover, in Figure 1a, it can be observed that the friction force displays significantly different
patterns during the alternation of sticking and sliding phases characterizing the stick–slip response of the
system. If a single latent force is used to model the nonlinear friction force, this further affects the
performance of the GPLFM.

2.1. Probabilistic model

A switching GPFLM is here introduced to enable the identification of complex nonlinearities character-
ized by discontinuities and/or generating different motion regimes in the dynamic response. This latent
force model can be formulated as an SLDS in the following form:

p xtjxt�1,ut�1,stð Þ=N xtjA stð Þxt�1þB stð Þut�1,Q stð Þð Þ
p ytjxt,ut,stð Þ=N ytjC stð ÞxtþD stð Þut,R stð Þð Þ

�
3að Þ
3bð Þ

where st is a switch variable denoting the active latent forcemodel at the time instant t. For eachmodel, the
above equations correspond to the transition and observation models of the augmented linear Gaussian
state-space model (LGSSM) obtained by coupling the state-space representations of the system and the
latent force, as described in detail in Section 2.2.

This formulation is achieved in the same spirit of that proposed by Hartikainen and Särkkä (2012) to
identify dynamical systems where different latent forces can act as an input in different, and possibly
overlapping, time intervals. The proposed switching latent force model mostly differs from Hartikainen
and Särkkä’s model for the presence of a known input term, which enables the use of the GP latent forces
for modeling the unknown nonlinear forces acting in the system. In the switching GPLFM framework,
different dynamical models can be introduced to describe the evolution of the latent states and nonlinear
force at different time steps, allowing the use of different governing equations to deal with different
motion regimes. In the example of a dry frictional oscillator, the proposed approach allows the definition
of different equations to describe the behavior of the system during sliding and sticking phases. However,
to enable the presence of discontinuities in the latent nonlinear force, either at the transition between
different regimes or between two sliding phases with velocities of opposite sign, it is also necessary to
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Figure 1. Example of nonlinear restoring force identification in a dry friction oscillator (with model
parameters as specified in Section 3), obtained for f s = 500 Hz and SNR = 80 dB: displacement and

nonlinear friction force time evolutions (a) and friction force vs velocity (b).
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include a resetting model in the SLDS formulation. This model, as suggested by Hartikainen and Särkkä
(2012), resets the latent force components to a zero-mean Gaussian prior with a suitably chosen
covariance, while leaving the output states of the system unaltered.

In the switching GPLFM formulation, the SLDS from Equation (3) is generally coupled with a
discrete-time Markov model of form p stjst�1ð Þ, so that probabilistic inference can also be performed on
the transitions between the different latent force models. If S different models are considered, with the Sth
model operating as a resetting model, this Markov model can be written as follows:

p stjst�1ð Þ=

ρ, if st = st�1 ≠ S

1�ρ, if st = S and st�1 ≠ S
1

S�1
, if st ≠ S and st�1 = S

0, otherwise

8>>>><
>>>>:

(4)

with 0< ρ< 1. Equation (4) can be interpreted as follows. If a certain (non-resetting) model is active at the
time t�1, there is a probability equal to ρ that such a model will remain active at the subsequent time
instant t; otherwise, a transition to the resetting model will occur. Furthermore, if the resetting model is
active at the instant t�1, in the following time step there will be a transition to any of the other models,
with equal probabilities. The value of ρmust be chosen by the user, usually between 0.9 and 1 (see, e.g.,
Barber (2006); Hartikainen and Särkkä (2012)).

In summary, the switching GPLFM can take into account three different sources of uncertainty in the
nonlinear system identification process:

• Nonlinear forcemodel uncertainty. The lack of knowledge of the functional form of the nonlinear
term in Equation (1) is addressed bymodeling, for eachmotion regime, the unknown nonlinear force
as a zero-mean temporal GPwith a stationary kernel, which is then updated in a Bayesian manner by
using the available response measurements and the relationship between nonlinear force and
response determined by the physics-based model. The choice of the number of latent force models
to be included in the SLDS, their mathematical formulation and the selection of appropriate kernel
functions are here based on the available physical knowledge of the nonlinear system. For instance,
in the case of a dry friction oscillator, two different latent force models can be used to model the
dynamic behavior of the system in sliding and sticking motion regimes, respectively, and a further
resetting model can be included in the SLDS to enable the presence of discontinuities in the
identified nonlinear force; this is further detailed in Section 3.2. If no prior information is available
regarding the type of nonlinearity, a standard GPLFM can used for a preliminary investigation of the
nonlinear term. In fact, the identified latent force could give indications regarding the presence of
multiple motion regimes and/or discontinuities, as in the example shown in Figure 1.

• Measurement uncertainty. As in standard GPLFMs, the measurement noise is here assumed to
follow a Gaussian distribution of covariance R; different covariance matrices can be considered
across the different latent force models. While here a zero-mean Gaussian distribution is assumed,
the presence of a measurement bias could also be accounted for in the procedure; further details can
be found in Barber (2006). In the proposed approach, the measurement noise covariance is inferred
along with GP hyperparameters (see Section 2.4).

• Regime transitions uncertainty. One of the main advantages of this approach is its ability to infer
the unknown switches between the different latent force models, and therefore motion regime
transitions and discontinuities. The prior knowledge about regime transitions is modeled by the
Markov model introduced in Equation (4) and updated by using the response measurements, along
with the latent states and forces.

The implementation of the proposed approach is schematically shown in Figure 2. In order to build the
SLDS fromEquation (3), it is firstly necessary to derive the state-space formulations of the system andGP
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latent forces, according to the procedure introduced in Section 2.2. Inference can finally be performed on
the so-defined probabilistic model to retrieve the optimal GP hyperparameters and the posterior distri-
butions for the latent states and nonlinear force, along with the sequence of motion regimes and
discontinuities occurring in the time evolution. This is explained in Section 2.3.

2.2. State-space formulation

Let us assume that, in Equation (1), the nonlinear term is expressed by a set of S�1 latent forces.
According to the switching GPLFM formulation, one or more of these forces can be active at each time
step. Each latent force can be formulated as a zero-mean temporal GPwith a stationary kernel, as indicated
in Equation (2). As demonstrated by Hartikainen and Särkkä (2010), these GPs can be expressed as
LGSSMs. Referring for simplicity to a single latent force f , this state-space representation can be
expressed as follows:

_f tð Þ=Ac,f f tð ÞþLc,f w tð Þ (5)

where the vector f = f , f ,…, f β�1ð Þ
h i

is constructed by taking the latent force and its derivatives, and:

Ac,f =

0 1

⋱ ⋱
0 1

�a0 … �aβ�2 �aβ�1

2
6664

3
7775, Lc,f =

0

⋮
0

1

2
6664
3
7775 (6)

Following the procedure described in Hartikainen and Särkkä (2010), the coefficients a0,…,aβ�1, the
spectral density q of the white noise process w tð Þ and the dimensionality β of the vector f can be assigned
so that the latent force f corresponds to the prior of a GPwith the desired covariance function. TheMatérn

Input:
• Noisy measurements
• Driving force
• System parameters

Posterior distribu�ons:
• States (displacement, velocity)
• Nonlinear force
• Mo�on regime transi�ons/discon�nui�es

Se�ngs:
• Kernel choice
• No. of LFMs
• No. of Gaussians in

ADF and EC

Inference of Gaussian process 
hyperparameters by VBMC

Implementa�on of the state-
space matrices 

Assumed Density FIltering (ADF)
• Filtered distribu�ons of latent states and 

force for each Latent Force Model (LFM)
• Log marginal likelihood

Expecta�on Correc�on (EC) smoothing
• Smoothed distribu�ons of latent states

and force for each LFM
• Likelihoods (weights) of each LFM

Switching GPLFM

Hyperparameters op�misa�on

Figure 2. Schematic representation of the switching GPLFM.

e18-6 Luca Marino and Alice Cicirello

https://doi.org/10.1017/dce.2023.12 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2023.12


covariance functions are particularly suitable for this implementation, since they have an analytical state-
space representation. The general form of this class of functions can be written as follows:

κ t, t0ð Þ= σ2f
21�ν

Γ νð Þ

ffiffiffiffiffi
2ν

p

l
jt� t0j

� �ν

Kν

ffiffiffiffiffi
2ν

p

l
jt� t0j

� �
(7)

where Kν and Γ are the modified Bessel and the Gamma functions respectively. σf and l are two
hyperparameters, the first controlling the amplitude of the function, the second the lengthscale of the
time variability. The smoothness parameter ν can be selected to choose the degree of smoothness of the
covariance function, ranging from the exponential (ν= 1=2) to the squared exponential ()ν!∞ covari-
ances. State-space representations have also been derived for different covariance functions, including
periodic and quasi-periodic kernels (Solin and Särkkä, 2014) and even some non-stationary kernels
(Benavoli and Zaffalon, 2016). In this paper, without loss of generality, the exponential covariance
function (corresponding to Matérn 1/2) will be used. In this case, Equation (5) reduces to:

_u tð Þ= �1
l
u tð Þþw tð Þ (8)

where the white noise w is such that its spectral density is equal to 2σ2f =l.
The state-space representation of the GPFLMcan be obtained, as suggested byHartikainen and Särkkä

(2012), by coupling the state-space formulation of the zero-mean temporal GP, provided in Equation (5),
with that of the dynamical system, which can be derived from Equation (1) as

_z tð Þ=Ac,sz tð ÞþBc,s u tð Þ� f zð , _zÞð Þ=
0 1

� k
m

� c
m

2
4

3
5 z

_z

" #
þ

0

1
m

2
4

3
5 u tð Þ� f zð , _zÞð Þ (9)

Introducing the augmented state vector x= z⊤ f⊤
� 	⊤

, the coupling of Equations (5) and (9) results in the
augmented state-space model:

_x tð Þ=Acx tð ÞþBcu tð ÞþLcw tð Þ (10)

where:

Ac =
Ac,s Bc,f

0 Ac,f


 �
, Bc =

Bc,s

0


 �
, Lc =

0

Lc,f


 �
(11)

In particular, the matrix Bc,f is obtained by adding β�1 columns of zeros to the matrix �Bc,s. The above
stochastic differential equation (SDE) can finally be converted to a discrete-time dynamicmodel in the form:

xt =Axt�1þBut�1þwt�1, wt�1 �N ð0,QÞ (12)

where the transition matrix is obtained as A= expm AcΔtð Þ, being Δt the fixed time step, and
B=A�1 Ac� Ið ÞBc. The covariance matrix of the process noise in the discrete model can be written as

Q =

Z Δt

0
expm Ac Δt� τð Þð ÞLcqL⊤c expm Ac Δt� τð Þð Þ⊤dτ (13)

where q the spectral density of the process noise in the continuous model. A more practical implemen-
tation of equation (13) is

Q =P∞�AP∞A
⊤ (14)

where P∞ is the steady-state solution to the SDE describing the time evolution of the covariance of the
state vector z and can be retrieved by solving the Lyapunov equation (Särkkä and Solin, 2019):

AcP∞þP∞A
⊤
c þLcqL

⊤
c = 0 (15)

Finally, the transition model from Equation (12) is coupled with the observation model:

yt =CxtþDutþvt, vt �N ð0,RÞ (16)
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to recover a full LGSSM, In the above equation, y is the observation vector, C and D the observation
matrices and R the measurement noise covariance matrix. The choice of observation matrices
depends on the typology of sensor used to perform the measurements: if displacements are measured
the matrices will be C = 1 0 0 … 0½ � and D = 0, while for accelerations that would be
C = �k=m �c=m �1=m 0 … 0½ � and D = 1=m. If only a single quantity is measured, the matrix
R will coincide with the variance σ2n of its measurement noise. Differently, if more typologies of
sensors are used, the main diagonal of Rwill include the variances of each measurement noise, while
the off-diagonal elements will represent the measurement noise covariances and will be equal to zero
if noise sources are uncorrelated. The elements of the matrix R can either be inferred along with the
GP hyperparameters or estimated by using different techniques (see, e.g., Bilbao et al. (2022)). The
first approach will used in this paper.

The LGSSM in Equations (12) and (16) has been formulated, for simplicity, by referring to the
standard GPLFM case, which is retrieved from the more general formulation from Equation (3) for
S= 1. The procedure for deriving the state-space model of the GPLFM is substantially the same when
more latent force models are considered. In fact, in the switching GPLFM, all the matrices of the
LGSSM can be derived as described above for each latent force model st. In general, since the state-
space formulations of the different latent force models are obtained independently of each other, there is
no requirement for the latent forces to share the same dimensionality across the different models,
implying that different kernel functions can be used in the GP priors. Moreover, not only the latent
force, but also the governing equations of the system can differ for different values of st; this will be
shown in more detail in Section 3.2. Finally, the implementation of the resetting model (st = S),
necessary to introduce discontinuities in the latent force, is achieved by formulating the transition
matrix as A Sð Þ= blkdiag expm Ac,sΔtð Þ,0ð Þ and the covariance matrix of the process noise as
Q Sð Þ= blkdiag P∞�AsP∞A⊤

s ,P0
� �

, being P0 the prior covariance selected for the latent force. This
formulation, proposed by Hartikainen and Särkkä (2012), enables the resetting of the latent force to its
prior distribution when a discontinuity occurs without introducing discontinuities in the time evolution
of displacement and velocity. It is worth underlying that, if a SDOF system is considered, only a single
latent force can be included in each latent force model. The case ofMDOF systems, where multiple, and
possibly correlated, latent forces can be considered within the same model st, would require more
complex approaches, which are beyond the scope of this contribution.

2.3. Inference of latent states and nonlinear force

Exact inference in the SLDS formulated in Equations (3) and (4) is not computationally tractable since its
complexity scales exponentially with time (Bar-Shalom et al., 2001; Lerner, 2002). Therefore, the filtered
and smoothed posterior distributions can only be inferred in an approximated form.

In this paper, approximated inference will be performed by implementing the approach proposed by
Barber (2006). In this approach, the filtered and the smoothed distributions of the state of each model st,
are approximated by Gaussian mixtures of I and J components, respectively. The number of mixture
components can be chosen by the user according to the computational budget and will generally be
significantly smaller than St, which is the number of Gaussian components of the exact posterior
distribution at the time instant t.

In Barber’s procedure, the filtered distributions are computed via assumed density filtering (ADF)
(Alspach and Sorenson, 1972). The result of ADF at the time step t is the Gaussian mixture:

p xtjst,y1:t,u1:tð Þffi
XI
it = 1

W t it,stð Þ �N xtjμt∣t it,stð Þ,Pt∣t it,stð Þ� �
(17)

for the states of each model st and an approximated expression for the corresponding model probability
p stjy1:t,u1:tð Þ. In the above expression, the weights W t are obtained as W t it,stð Þ= p itjst,y1:t,u1:tð Þ.
Each step of ADF requires running IS2 Kalman filters. In a similar fashion, the smoothed distributions
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are obtained by implementing an expectation correction (EC) algorithm, resulting in the Gaussian
mixture:

p xtjst,y1:T ,u1:Tð Þffi
XJ
j = 1

~W t jt,stð Þ �N xtjμt∣T jt,stð Þ,Pt∣T jt,stð Þ� �
(18)

where ~W t = p jtjst,y1:t,u1:tð Þ, and an approximated expression for p stjy1:T ,u1:Tð Þ. The EC algorithm
performs IJS2 RTS smoothers at each time step, and is therefore more computationally expensive then
ADF. Nonetheless, it is worth mentioning that the evaluation of the marginal likelihood p y1:Tð Þ, which is
required for estimating the optimal hyperparameters of the latent functions, is performed within the ADF
algorithm. A detailed description of ADF and EC implementation can be found in Barber (2006).

2.4. Inference of GP hyperparameters

The performances of switching latent force models are not only affected by the choice of appropriate
kernels for the GP latent forces, but also from the selection of the system parameters and GP hyperpara-
meters. While an estimation procedure for uncertain system parameters will be introduced in Section 3.6,
the problem of determining the optimal values for the hyperparameters in GPLFMs is addressed in what
follows.

A common approach for selecting the optimal hyperparameters of the kernel function is to use
maximum likelihood estimation (see, e.g., Ghahramani and Hinton (1996); Nayek et al. (2019)).
However, the algorithms used for determining the maximum of the likelihood function are not guaranteed
to find the global maximum (Petersen et al., 2022) and do not give information about the posterior
distribution of the parameters. For this reason, different approaches have been proposed over the years.
Zou et al. (2022) and Bilbao et al. (2022) determine the optimal hyperparameters by minimizing the
Hellinger distance between the empirical distribution of the measurements and the modelled Gaussian
prior on the observed states; nonetheless, this approach can only be used when the response distribution is
well-approximated by a Gaussian. Finally, Rogers at al. (2018), Rogers et al. (2020a), Rogers and Friis
(2022) recover the full posterior distribution of the parameters by using Markov Chain Monte Carlo
(MCMC). In fact, while computationally more expensive, MCMC offers the advantage of a guaranteed
convergence to the true posterior distribution (Gelman et al., 2013).

In this paper, hyperparameters inferencewill be performed by using theVariational BayesMonte Carlo
(VBMC) method developed by Acerbi (2018, 2020). VBMC combines variational inference and active-
sampling Bayesian quadrature to perform approximate Bayesian inference, leading to a reduced com-
putational cost compared to MCMC. Specifically, VBMC simultaneously computes an approximate
posterior distribution of the model parameters and the estimated lower bound (ELBO) of the marginal
likelihood. The reader is referred to the papers by Acerbi (2018, 2020) for a detailed description of the
VBMCmethod. In VBMC, the evaluation of the ELBO requires an iterative computation of the marginal
likelihood of the SLDS, which is obtained as a by-product of ADF. Therefore, as schematically shown in
Figure 2, each iteration requires the implementation of the LGSSMmatrices by using the current values of
the hyperparameters and the application of ADF. The optimal hyperparameters are finally obtained as the
mean of the posterior distribution computed byVBMCand used for inferring the latent state and nonlinear
force via ADF and EC.

3. Numerical Case-Study: A Dry-Friction Oscillator

Identifying the friction forces generated by contacts in mechanical systems is a critical challenge in
engineering. In fact, information extracted by experimental data is essential for developing and updating
friction models, as well as for making predictions about the dynamic behavior of these systems. This
section presents an application of the switchingGPLFM to the identification of the nonlinear friction force
acting in a simulated dry friction oscillator. In particular, it is shown how the proposedmethodology is not
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only able to identify the time evolution of the friction force, but can also be used to: (i) estimate the
physical parameters of the system; (ii) reconstruct the friction force–velocity relationship; (iii) estimate
the static value of the friction force. The estimated system parameters and reconstructed friction model
enable the prediction of the system response to an assigned input force.

3.1. Simulated system

Let us consider the SDOF system ofmassm = 1 kg, viscous damping coefficient c= 5Nsm�1 and stiffness
k = 500 Nm�1 shown in Figure 3a. A friction contact occurs between the mass and a ground-fixed wall,
governed by a rate-dependent friction law, and a driving force u tð Þ is directly applied to the mass. The
governing equation of this system can be formulated as:

m€zþ c_zþ kzþFf z, _zð Þ= u tð Þ (19)

In particular, a steady-state version of the Dieterich–Ruina’s law (Dieterich, 1979; Rice and Ben-Zion,
1996), in the formulation proposed by Cabboi et al. (2022):

Ff z, _zð Þ= F∗þa ln
∣_z∣þ ε
V∗

� �
þb ln cþ V∗

∣_z∣þ ε

� �
 �
sgn _zð Þ, if _z ≠ 0

u tð Þ� kz, otherwise

8><
>: (20)

has been used to model the friction force. The values selected for the parameters of the Dieterich–Ruina’s
law are reported in Table 1. The driving force u tð Þ is a random phase multisine whose amplitude is
generated from the JONSWAP spectrum (Hasselmann et al., 1973; Vazirizade, 2019):

S ωð Þ= 320 Hs

T2
p

 !2

� 1
ω5

exp �1:25
ωp

ω

� 4� �
�3:3

exp � 1
2σ2p

1� ω
ωp

� 2
� �

(21)

in the frequency rangeω= 0:02 : 0:02 : 100ð ÞHz, using the parameters indicated in Table 2. The resulting
input force is depicted in Figure 3b.
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Figure 3.Mass-spring-dashpot system with a friction contact between mass and ground-fixed wall (a) and
its simulated response (in red) to a random phase multisine excitation (in black, divided by the stiffness) (b).

Table 1. Selected parameters for the steady-state Dieterich-Ruina’s law.

F∗ (N) a b c V ∗ (m/s) ε(m/s)

1 0.07 0.09 0.022 0.003 10�6
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It is assumed that noisy measurements of the mass displacement are available to be used as
experimental observations in the GPLFM. To obtain these synthetic measurements, the dynamic response
of the system has been simulated by using the event-driven variable-step Runge–Kutta (4,5) algorithm
developed by Marino and Cicirello (2022), between the initial time instant t = 0 and the specified final
time t = tf . In the simulation, the initial conditions formass position and velocity have been set to zero. The
resulting displacements, shown in Figure 3b, have then been resampled by using linear interpolation
according to a fixed-step time vector, whose time step is obtained from the selected sampling frequency f s
as Δt = 1=f s. Finally, the resulting displacement values have been polluted with artificial white noise
according to a selected signal-to-noise ratio (SNR).

In the remaining of this section, the performances of the proposed switching GPLFM approach are
firstly investigated and compared to the standard latent restoring force model in Section 3.2, assuming a
specified set of tf , f s and SNR values and known physical parameters of the system. A parameter
estimation approach is then proposed in Section 3.3, while the performances of the switching GPLFM for
varying noise levels, observation times, and sampling frequencies are investigated in Section 3.4.

3.2. Probabilistic model for dry friction oscillators

In order to apply the proposed switching GPLFM approach to the above numerical case-study, a
probabilistic model has been implemented by considering three different latent force models (S= 3).

• A first model is introduced to describe the dynamic evolution of the systemduring the sliding phases.
The implementation of this model is carried out as described in detail in Section 2.2, with the sliding
friction force modeled as a zero-mean GP with an exponential (Matérn 1/2) kernel function, In fact,
while the suitability of Matérn kernels for state-space implementation has been already discussed in
Section 2.2, it has been verified that similar predictions are obtained if different values of the
smoothness parameter (such as 3/2 and 5/2) are considered. Hence, the exponential covariance
function has been selected to reduce the dimensionality of the augmented state-space model and,
consequently, the computational burden.

• The secondmodel aims at describing the system behavior during the sticking phases. In this case, the
response of the system is simply characterized by constant displacement and zero velocity, while the
friction force is related to displacement and forcing function as described by Equation (20). This
physical knowledge of the sticking behavior can be used to determine the prediction density as
follows:

p xtjy1:t�1,ut�1, it�1,st�1,st = 2ð Þ=N xtjμt∣t�1 it�1,st�1ð Þ,Pt∣t�1 it�1,st�1ð Þ� �
(22)

where:

μt∣t�1 it�1,st�1ð Þ= E zt�1∣t�1 it�1,st�1ð Þ� �
,0,ut�1� k �E zt�1∣t�1 it�1,st�1ð Þ� �� 	⊤

(23)

and Pt∣t�1 it�1,st�1ð Þ=Pt�1∣t�1 it�1,st�1ð Þ. If a different kernel from Matérn 1/2 is considered, zeros
can be added at the end of μt∣t�1 it�1,st�1ð Þ to obtain the required dimensionality. It is worth
underlying that the prediction density from Equation (22) can be directly filtered and smoothed
in the present form, without need of defining the matrices A stð Þ and B stð Þ for the sticking model.

• The third model is the resettingmodel, which is implemented as explained in Section 2.2, setting the
prior covariance of the latent force to P0 = 0:05. When activated, this model resets the latent friction

Table 2. Selected parameters for the JONSWAP spectrum.

Hs (m) Tp (s) ωp (Hz) σp ω<ωp

� �
σp ω≥ωp

� �
10 0.5 2π=Tp 0.07 0.09
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force to zero, with P0 as covariance), while leaving displacement and velocity unaltered. Since, as
described by Equation (4), this model can only remain active for a single time step, the result is that
the values assumed by the friction force immediately before and after the reset will not directly affect
each other. This allows for the presence of a discontinuity in the friction force, either between a
sticking and a sliding phases or between two sliding phases with different velocity sign.

Finally, the model transitions are governed by the Markov model introduced in Equation (4), where ρ has
been set to 0.92.

3.3. Inference of latent states and nonlinear force with known system parameters

Nonlinear force identification has firstly been performed by considering the simulated dynamic response
of the system introduced above for tf = 5 s and f s = 500 Hz. The mass displacement has been corrupted
with artificial white noise by using the AWGN function of Matlab (2023), setting SNR = 80. The
so-produced white noise has a standard deviation of 7:8623× 10�3 mm, corresponding to a variance
σ2n = 6:1815× 10

�5mm2.
In this example, the system parameters have been assumed as known a priori and set to their true values

indicated at the beginning of this section. The posterior distributions of the hyperparameters σ2f , l and σ
2
n,

whose assigned priors are reported in Table 3, have been inferred by usingVBMC. The prior and posterior
distributions of the hyperparameters are shown in Figure 4, while the convergence of the ELBO is
reported in Figure 5. As specified in Section 2.3, in the iterative evaluation of the ELBO, the log marginal
likelihood is obtained as by-product of the ADF. Once the optimal GP hyperparameters have been
estimated as the mean values of their posterior distributions, the latent states and nonlinear restoring force
have been inferred by implementing ADF and EC. The number of Gaussian mixture components in the
filtering and smoothing passes has here been set to I = J = 3. The estimated displacement, velocity, friction
force and regime transitions are reported, along with the ground truth, in Figures 6 and 7. The agreement
between the mean of the inferred distribution and the ground truth can be quantified by evaluating the
normalized mean squared error (NMSE), which can be defined as

Table 3. Prior distributions for the GP hyperparameters used in the numerical case-study.

σ2f (N
2) l (s) σ2n (mm2)

N 20,100ð Þ N 20,100ð Þ N 2 × 10�5,10�10
� �
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Figure 4. Prior and posterior distributions of the GP hyperparameters inferred by VBMC in switching
GPLFM ðI = J = 3Þ.
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Figure 5. Convergence of the evidence lower bound (ELBO) in VBMC inference for switching GPLFM
ðI = J = 3Þ.
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Figure 7. Model probabilities estimated by switching GPLFM (I = J = 3). Models 1, 2, and 3 stand for
sliding, sticking, and resetting models, respectively.
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NMSE g½ �= 1
Tσ2g

XT
t = 1

gt�E ĝtð Þð Þ2 (24)

where gt andE ĝtð Þ are the ground truth and the estimatedmean value of a certain quantity g at the time step
t, respectively, σ2g is the variance of g and T is the number of data points. According to the above
definition, a value of zero corresponds to a perfect fit between true and estimated functions, while a unitary
value is obtained ifE ĝtð Þ is equal to themean value of the ground truth at every point. The very lowNMSE
scores reported in Table 4 for displacement and velocity confirm their excellent agreement with the
ground truth. The nonlinear force identification score is NMSE Ff

� 	
= 1:95%, which is generally con-

sidered a very good result. Also, the acceleration, which is determined as a linear combination of states
and friction force, presents a very good agreement with the ground truth (NMSE €z½ �= 0:46%), despite the
presence of discontinuities in its time evolution. Finally, in the bottom frame of Figure 6, it can be noted
that most discontinuities and regime transitions are well captured by themodel transitions in the switching
GPLFM. Among the seven stops occurring in the observed time window, only the second has been
missed; however, it can be noted that this sticking phase is particularly short and does not affect
significantly the friction force value. Similarly, spikes corresponding to the resetting model activation
can be observed every time that discontinuities occur between the sliding stages. It is worth remembering
that the switching GPLFM frameworks allows for more latent force models to be active simultaneously
and, therefore, the blue line in Figure 6 is only referred to the predominant model at each time step. A full
picture of the model probabilities is instead provided in Figure 7. Here, it can be seen that the resetting
model is also activated in the transitions between sliding and sticking phases, although its probability does
not always overcome that of the sticking model.

3.4. Comparison between standard and switching GPLFMs

In this subsection, the performance of the switching GPLFM in latent states and nonlinear force
identification are investigated for varying number of Gaussian mixture components. For simplicity, the
same number of Gaussians is used for ADF and EC I = Jð Þ, although the EC implementation, as proposed
by Barber (2006), also allows for a smaller number of Gaussians in the smoothed distribution (J < I). The
standard GPLFM, which can simply be seen as a particular case of switching GPLFM for S= 1, I = 1 and
J = 1, will be here considered as a reference case. In this case, ADF and EC will automatically reduce to
Kalman filtering and RTS smoothing, respectively.

The latent states and nonlinear force identification errors obtained by using standard and switching
GPLFMs (with 3, 5, 7, and 9 Gaussian components) are reported in Table 4, along with the optimal GP
hyperparameters. Among the error scores, the normalized mean variance (NMV) index has been
introduced as:

Table 4. Latent states, acceleration and nonlinear force identification error scores, and optimal
hyperparameters for standard and switching GPLFMs with a varying number of Gaussian mixture

components. The ground truth for the measurement noise variance is σ2n = 6:182× 10
�11m2.

NMSE
[z]

NMSE
[_z]

NMSE
[€z]

NMSE
[Ff ]

NMV
[Ff ] σ̂2f l̂ σ̂2n

(‱) (%) (%) (%) (%) (N2) (s) (10�11m2)

Standard 0.0107 0.0024 0.7665 3.2705 2.8473 3.6567 0.4169 7.188
Switching ðI = J = 3Þ 0.0111 0.0223 0.4561 1.9507 0.5393 10.19 27.02 6.531
Switching ðI = J = 5Þ 0.0114 0.0198 0.3863 1.6552 0.4722 4.373 52.77 7.218
Switching ðI = J = 7Þ 0.0119 0.0200 0.3886 1.6627 0.5097 1.051 51.51 6.948
Switching ðI = J = 9Þ 0.0115 0.0188 0.4754 2.0348 0.6963 3.860 73.93 7.079
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NMV g½ �= 1
Tσ2g

XT
t = 1

V ĝtð Þ (25)

According to this definition, a zero value is obtained if the variance of the predicted function is zero at
every point, while a unitary NMV corresponds to a predictive function whose variance at every time step t
is equal to the overall variance of the ground truth. The identified nonlinear forces are also shown in
Figure 8, where they are graphically compared to the true friction force in the time domain; a small
section of the observed time window is enlarged on the right to illustrate how the different GPLFM
approaches perform at discontinuities.

Figure 8a shows a good overall agreement between true and identified friction force obtained by using
standard GPLFM. While discontinuities cannot be captured by a single latent force, the mean prediction
follows quite closely the ground truth, resulting in an identification error of NMSE Ff

� 	
= 3:27%. On the

other hand, it can be observed that the confidence bounds around the mean prediction remain quite large
(NMV Ff

� 	
= 2:85%). The optimal hyperparameters reported in Table 4 suggest that the good agreement
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Figure 8. Nonlinear friction force inferred by standard and switching GPLFMs for varying number of
Gaussian components in ADF and EC (I = J) vs ground truth.
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between the inferred and true friction force has been obtained by reducing the length-scale hyperpara-
meter of the kernel function. In fact, small values of l allow for faster variations of the latent function,
increasing its capability to adapt to the sharp variations of the friction force. Therefore, this partially
compensate the inability of a single GP latent force to model discontinuities and different motion regimes
(i.e., sliding and sticking phases). Nonetheless, short length-scales are also associated with well-known
downsides, such as the increase of model complexity and a more pronounced tendency to overfitting,
particularly if noisy inputs are considered (Rasmussen and Williams, 2006; Beckers, 2021).

In the remaining frames of Figure 8, it can be observed that the introduction of the sticking and resetting
models enable the capture of most discontinuities and transitions between different motion regimes in the
friction force. This leads to a significant improvement of the nonlinear force identification performance:
as reported in Table 4, the NMSE score associated with the friction force drops to 1:95% when three
Gaussian components are considered and even to 1:66%when I = J = 5. Nonetheless, further increases in
the number of components do not appear to lead to further improvements andNMSE has been observed to
increase above I = J = 7. A possible explanation of this trend can be found in the presence of some
increasingly irregular transition betweenmotion regimes as the number of Gaussians is increased (see, for
example, the transition at tffi 2:4 s). This result is also reflected by the NMV score; nonetheless, the
standard deviations of the friction force are overall significantly smaller compared to the case of the
standard GPLFM. Finally, looking at the optimal hyperparameters, it can be noted that the length scales
obtained by introducing the switching GPLFM are significantly larger compared to the value obtained for
the standard latent restoring force model, while overall good performances are observed in the measure-
ment noise estimation independently of the number of Gaussian components.

3.5. Nonlinear friction force characterization

In the previous subsections, the application of the switching GPLFM to the simulated response of the dry
friction oscillator has enabled the identification of the time evolution of the nonlinear friction force, state,
and regime transitions. One of the advantages of GPLFMs is that no specific assumptions are required
regarding the functional form of the latent nonlinear force. In this case-study, basic physical constraints
have been considered in the implementation of the sticking regime, by imposing that stops are charac-
terized by a constant displacement and zero velocity. However, no assumptions have beenmade about the
dependence of the friction force on displacement and velocity in sliding conditions. Here it is shown how
the identified friction force and state, along with the inferred stick–slip regime transitions, can be used to
reconstruct the underlying friction law. This law, along with a correct estimation of the system parameters
(dealt with in Section 3.6), enables the implementation of a robust forward model which can be used to
predict the response of the dry friction oscillator to different inputs. The reconstruction of the friction
model includes the determination of (i) the friction force–velocity relationship in sliding conditions and
(ii) the value of the static friction force. These two steps are presented in what follows (Figure 9).

The characterization of the friction force–velocity relationship, or more in general of the sliding
friction model, can simply be performed by fitting the latent force-latent states estimates, as shown in
Figure 9. Several different approaches may be used for fitting; for instance, the parameters of an existing
friction model can be estimated by minimizing the least squared error, or a black-box approach, such as a
neural network or a further GP, can be considered. For instance, in Rogers and Friis (2022), where a
standard GPLFM is used for the identification of a Duffing oscillator, the nonlinear term is characterized
by using a Bayesian Information Criterion to establish the most likely polynomial order of the nonlinear
force–displacement relationship. Here, it has been chosen to fit the nonlinear force–velocity estimates
inferred by the switching GPLFM (I = J = 5) with the steady-state Dieterich-Ruina’s law introduced in
Equation (20a). This choice is motivated by the flexibility of this friction model in describing, for varying
parameters, both the velocity-weakening and velocity-strengthening behaviors typically observed in
experimental tests (Cabboi et al., 2022); obviously, different laws or functions could be considered. The
optimal values of the parameters a, b, c and F∗ have been determined by minimizing the least squared
error, while V∗ and ε have been set to the values reported in Table 1. The resulting fitted friction force-
velocity curve is illustrated in Figure 9b.
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While the above fitting procedure could also be applied to estimates from the standard GPLFM, the
information provided by the switching GPLFMabout regime transitions also enables the estimation of the
static friction force. In fact, it is well-known that the transitions from sticking to sliding regime take place
when the instantaneous absolute value of the friction force value equates to the static friction force (see
Cabboi et al. (2022) for reference). Therefore, following the model sequence illustrated in Figure 6, it is
possible to use the absolute values of the latent force in correspondence of these transitions as estimates of
the static friction force. To finalize the procedure, the mean and the standard deviation of these estimates
are evaluated, as graphically shown in Figure 10. The estimated static friction force F̂s can be included in
the fitted friction model by imposing Ff z,0ð Þ= F̂s in Equation (20a). This position results in the
constraint:

b= aþ F̂s�F∗

ln V∗ð Þ� ln εð Þ (26)

leaving only a, c and F∗ as independent parameters of the fitting model. Figure 10 illustrates the
comparison of the estimated static friction force, reported along with its confidence bounds, and the true
value selected in the numerical simulation. It can be observed how those values, reported for I = J = 5 are
very close, with the ground truth fallingwell within the bounds. It is worth underlining that the accuracy of
this procedure strongly depends on the observed number of stops; in a continuously sliding motion, it will
not be possible to make any predictions on the static friction value.

3.6. Parameter estimation

In the previous analyses, the mass, the viscous damping coefficient and the spring stiffness of the system
have been assumed as known. However, it is often the case in experimental contexts that the values of
these physical parameters are not exactly known. In several applications of the GPLFM to mechanical
systems (see, e.g., Rogers et al., 2020a, 2020b), the uncertain system parameters are inferred, along with
the GP hyperparameters, by using sampling approaches such as MCMC. This approach also requires to
provide a prior distribution for these parameters, which is usually specified based on engineering and
physical knowledge. Nonetheless, as highlighted by Rogers and Friis (2022), the presence of a latent
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Figure 9. Nonlinear friction force vs mass displacement (a) and velocity (b): comparison between
simulated (in red) and inferred (in blue) values. The fitted friction force–velocity curve is also reported

(in green) in (b).
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nonlinear force can introduce a bias in the parameter estimation. For instance, the presence of a Duffing-
type nonlinearity is likely to lead to incorrect linear stiffness estimates. In return, incorrect parameter
estimates will also alter the identified nonlinear force.

In the case of a dry friction oscillator, it has been observed that parameter inference, performed by using
VBMC, does not lead to accurate estimates when either standard or switching GPLFM is applied, even if
informative prior distributions are provided. Therefore, it can be concluded that, in this case, there is no
real advantage in performing parameter inference rather than simply assuming initial guesses based on
engineering insights. A procedure for correcting these initial guesses, based on the inferred latent force
and the physical knowledge of the system, is presented in what follows.

Let us denote withm, c, k the true values of the system parameters, and with m̂, ĉ, k̂ the initial guesses,
so that:

m = m̂þΔm c= ĉþΔc k = k̂þΔk (27)

By substituting Equation (27) into Equation (19), it can be seen how using incorrect parameter values will
introduce additional linear forces in the governing equation of the system:

m̂€zþ ĉ_zþ k̂zþFf þΔm �€zþΔc � _zþΔk � z|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
FL

= u tð Þ (28)

Therefore, if the latent states z, _z and the latent forceFL are inferred by considering incorrect initial guesses
as system parameters, these additional forces will become part of the latent force, alongside the nonlinear
friction force. The acceleration €z, which is not directly inferred when applying the GPLFM, can be
retrieved, from the above equation, as

€z=
1
m̂

u tð Þ� k̂z� ĉ_z�FL
� �

(29)

Substituting Equation (29) into the expression of the latent force FL and rearranging, it is obtained that:

FL =
m̂

m̂þΔm

� �
Ff þ m̂

m̂þΔm
Δk� Δm

m̂þΔm
k̂

� �
zþ m̂

m̂þΔm
Δc� Δm

m̂þΔm
ĉ

� �
_zþ Δm

m̂þΔm

� �
u (30)

The above equation highlights how incorrect physical parameters introduce a linear dependency of the
inferred latent force on the inferred states and known forcing function. In particular, it is worth noting that,
if a correct estimate is provided for the mass (Δm = 0), the viscous damping and stiffness errors would
simply introduce an additional linear trend in the latent force–velocity and latent force–displacement,
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Figure 10. Estimation of the static friction force from the switching GPLFM results.
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respectively. Differently, the presence of a mass error term not only alters these linear trends, but also
introduce a dependency on the forcing function and a scaling effect of the friction force.

The latent states and force have been inferred for the dry friction oscillator by considering the incorrect
parameters m̂, ĉ and k̂ reported in Table 5. The relationships between the latent force estimates and the
displacement, velocity and forcing function are illustrated in Figure 11, respectively. In these figures, the
presence of the aforementioned linear trends can be observed, along with a general alteration of the latent
force patterns due to the presence of a significant mass error. To quantify the linear dependencies
expressed in Equation (30), the latent force can be fitted with a multidimensional linear function, whose
coefficients can be retrieved by using a least squared error approach. In order to use all the available data,
the symmetry of the friction force Ff , and consequently of the latent force FL, with respect to the origin
(z= 0, _z= 0, u= 0) can be exploited for superposing its positive and negative branches, so that they can
finally be fitted with the linear function:

FL =A0þA1zþA2 _zþA3u (31)

By comparing Equations (30) and (31), it is possible to relate the parameter errors to the evaluated linear
coefficients as

Δk =
A1þA3k̂
1�A3

Δc=
A2þA3ĉ
1�A3

Δm=
A3m̂
1�A3

(32)

The estimated parameter errors can finally be added to the initial guesses as indicated in Equation (27) to
retrieve the true parameters of the system. The corrected parameter estimates for the dry friction oscillator
case-study are reported in Table 5. At this stage, the friction force can be retrieved from the latent force as

Ff =
1

1�A3
FL�A1z�A2 _z�A3uð Þ (33)

However, it is worth noting that, after the correction of the system parameters, the optimal GP
hyperparameters might be different from those initially estimated from VBMC. Therefore, depending
on the available computational budget and the relevance of the parameter corrections, it might be
preferable to newly infer the optimal hyperparameters and thus the latent states and nonlinear force.
This latter approach has been followed in this paper. The inferred friction force is plotted in Figure 12
as a function of the displacement, velocity, and driving force, respectively, and presents a very good
agreement with the ground truth. As reported in Table 5, the residual relative errors between the
corrected and true parameters are all negligible, despite the very large initial errors. The viscous
damping coefficient is the only parameter whose residual error is above 1%. Although this error would
be acceptable for most applications, it is worth mentioning that this slight overestimation is related to
the assumed rate-dependent friction model. In fact, as shown in Figure 12b, the selected Dieterich-
Ruina’s law exhibits an increasing trend with the sliding velocity, which has been identified as an
additional viscous damping term.

Table 5. True, guessed and corrected values of the physical parameters m, c and k of the dry friction
oscillator. The relative errors of guessed and corrected parameters are referred to the true value.

Initial guess Corrected

Parameters True value Value Rel. err. Value Rel. err.

Mass (kg) 1 1.2 20% 0.9550 0.50%
Viscous damping (Nsm�1) 5 6 20% 5.0643 1.29%
Stiffness (Nm�1) 500 520 4% 500.70 0.14%
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3.7. Performance analysis for varying noise levels, observation times, and sampling frequencies

In the previous subsections, the nonlinear system identification performances of the switching GPLFM
application to a dry friction oscillator have been investigated by considering a set of observations with a
specific level of measurement noise and a fixed number of samples. Therefore, a further step of this
investigation consists in analyzing how the proposed approach performs when different noise levels, signal
durations, or sampling frequencies are taken into account. The switching GPLFM is thus applied to the case
study investigated in this section for varying σn, tf and f s, assuming the initial guess reported for the system
parameters in Table 5 and selecting I = J = 3. The following performance estimators are considered:

• the nonlinear force identification error is evaluated as the NMSE of the identified friction force with
respect to the ground truth (see Equation (24));

• the prediction error aims at evaluating the predictive capabilities of the forward model implemented
by considering the best-fitting Dieterich’s–Ruina friction law and the corrected parameters esti-
mates. It is calculated as the NMSE of themass displacement obtained numerically from the forward
model with respect to the ground truth;

• the motion regime identification error is calculated as the relative error between the true and the
identified motion regimes. The most probable latent force model is considered as active model at
every time step;
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Figure 12. Nonlinear friction force vs displacement (a), velocity (b), and driving force (c): comparison
between ground truth (in red) and values inferred by using the corrected physical parameters (in blue).
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Figure 11. Nonlinear friction force vs displacement (a), velocity (b), and driving force (c): comparison
between ground truth (in red) and values inferred by using incorrect physical parameters (in blue).
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• the parameter estimation errors are the relative errors between estimated and true physical
parameters.

The switching GPLFM performances have been investigated for seven different levels of measurement
noise (SNR = [60, 70, 80, 90, 100, 125, and 150] dB) and for a noise-free measurement (SNR =∞), while
maintaining the final time and the sampling frequency of the observations set to tf = 5 s and f s = 500 Hz.
The corresponding values of the standard deviation σn are reported in Table 6. The performance indexes
are plotted in Figure 13. In this figure, it is possible to observe that switching GPLFM presents similarly
good performances with respect to all the measured errors when the signal-to-noise ratio is equal or above
to 80 dB. For higher noise levels, the main effect appears to be a decrease of the motion regime
identification accuracy, which also leads to lower identification scores. Nonetheless, all the scores
maintain generally acceptable value for SNRs larger than 60 dB.

A further performance analysis has been carried out maintaining the noise levels and the sampling
frequency set to SNR = 80 dB and f s = 500Hzwhile varying the simulation time between 2 and 20 s. The
resulting error indexes, reported in Figure 14, are substantially constant across different observed times.
Therefore, it can be deduced that the switching GPLFM can offer stable performances for a varying
number of samples, as long as the time step among the observations is maintained constant.

Table 6. Conversion between signal-to-noise ratio and standard deviation values for the measurement
noise.

SNR (dB) 60 70 80 90 100 125 150

σn (mm) 0.0786 0.0249 7:862 × 10�3 2:486 × 10�3 7:862 × 10�4 4:421 × 10�5 7:862 × 10�3
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Figure 13. Nonlinear system identification performances of the switching GPLFM (I = J = 3) applied to
the dry friction oscillator case-study for tf = 5s, f s = 500 Hz and varying measurement noise levels.
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The last investigation has been performed by varying the sampling frequency of the measurements
between 100 and 2000Hz; this corresponds to a variation of the fixed time step between 0.0005 and 0.01 s.
The SNR and time span of the measurements have been set to 90 dB and 5 s, respectively. Observing the
resulting scores, illustrated in Figure 15, it is clear that the sampling frequency has a larger impact on the
performances than the simulation time. While large errors are displayed for most of the investigated
parameters when f s = 100 Hz, indicating that the switching GPLFM cannot perform well at very low
sampling frequencies, very good scores are obtainedwhen the sampling frequency is increased to 250Hz.
At the other of the investigated range, it is very interesting to observe that the nonlinear force identification
error increases significantly at high sampling frequency, indicating the oversampling issues might occur
when applying theGPLFM.On the other hand, the prediction,motion regime identification and parameter
estimation errors do not appear to be affected by oversampling.

4. Experimental Case Study: Single-storey Frame with a Brass-to-Steel Contact

The applicability of the switching latent restoring force model is further investigated by considering an
experimental case-study involving a harmonically base-excited single-storey frame with a metal-to-metal
contact. The goal is the identification of the nonlinear friction force generated in the contact under the
action of a normal load and the reconstruction of the friction force–velocity relationship for varying
normal load amplitudes.

4.1. Test rig and mechanical model

The experimental tests have been carried out on the rig shown in Figure 16a, which is briefly described in
what follows. The main structure is a single-storey frame made up of two metal plates connected by four
doubly-bolted thin metal bars. The bottom plate is excited by the alternate motion of a shaft, which is
connected to an electric motor through a Scotch-yoke mechanism. This results in an approximatively
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Figure 14. Nonlinear system identification performances of the switching GPLFM (I = J = 3) applied to
the dry friction oscillator case-study for SNR = 80 dB, f s = 500 Hz, and varying simulation times.
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harmonic base excitation, whose driving frequency can be specified by selecting the rotation speed of the
motor. A brass disc is placed on the top steel plate to create a friction contact. The disc is mounted on a
counterweight system pinned to the external frame, so that the normal force exerted on the top plate, and
therefore the friction force amplitude, can be adjusted by shifting the weights along the counterweight
axis. The displacement of the two plates is measured by laser position sensors, thus providing input and

(a)

m

kc

Ff

u(t)

(b)

Figure 16. Picture (a) and mechanical model (b) of the test rig: base-excited single-store frame with a
brass-to-steel contact.
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Figure 15. Nonlinear system identification performances of the switching GPLFM (I = J = 3) applied to
the dry friction oscillator case-study for SNR = 80 dB, tf = 5 s and varying sampling frequencies.
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output measurements during the tests. A more detailed explanation of the setup and testing procedure can
be found in Marino and Cicirello (2020).

In the above publication, it was shown that the dynamic behavior of the single-storey frame is well
reproduced by the single-degree-of-freedommass-springmodel shown in Figure 16bwhen driving frequen-
cies up to at least 8 Hz are considered. Moreover, the experimental results obtained byMarino and Cicirello
for the dynamic response of this structure agree well with the theoretical results obtained analytically and
numerically by considering the Coulomb friction model. Since Coulomb’s law introduces a discontinuity in
the friction force at zero sliding velocity, it is reasonable to assume that the single-storey frame behaves as a
discontinuous nonlinear system, thus representing a suitable case-study for the proposed method.

The governing equation of the mechanical system schematized in Figure 16b can be written as

m€zþ c_zþkzþFf z, _zð Þ= ku tð Þþ c _u tð Þ (34)

where u tð Þ and _u tð Þ are the displacement and velocity of the base. Differently from the mechanical
system investigated in Section 3, where the known driving force was directly applied to the mass, the
input term of Equation (34) is made up of two terms, both dependent on generally unknown physical
parameters, and the derivative of input base excitation must also be provided. The probabilistic model
implemented in Section 3.2 can be easily adapted to deal with a base-excited oscillator. Specifically:

• in the state-space model of the system, the input vector will be written as u= u _u½ �⊤ and the
matrix Bc,s will be formulated as

Bc,s =
0 0

� k
m

� c
m

2
4

3
5 (35)

• in the predicted mean value of the latent restoring force from Equation (23), the term ut�1 will be
replaced by kut�1þ c _ut�1.

Nonetheless, while the formulation of the switching latent force model is not heavily affected by the
presence of the base excitation, difficulties may arise regarding the estimation of the physical parameters
and input vector.

The first problem is related to the non-identifiability of the mass. In fact, rewriting Equation (34) as:

€z=
k
m
u tð Þþ c

m
_u tð Þ� k

m
z� c

m
_z� 1

m
Ff z, _zð Þ (36)

it can be observed that, in the right-hand side, all the terms except the unknown friction force are
multiplied by either k=m or c=m. Therefore, if the mass value is changed from its true value m to an
incorrect estimate m̂while keeping these ratios constant, the only effect on the identified states and latent
force is that the latter would be scaled by a factor m̂=m. Obviously, since the friction force amplitude is
unknown, this scaling factor cannot be determined from the identified latent force. In conclusion,
independently of the system identification approach considered, it is not possible to identify the mass
parameter of a base-excited system from its base and mass displacements. In this contribution, the value
m = 3:0799 kg will be assigned to the mass. This value has been obtained by performing a hammer test on
the top plate of the frame after removing the counterweight system and, therefore, the friction contact. The
experimental frequency response function has thus been fitted with that of a mass-spring-damper system
in the frequency range 0–6 Hz, retrieving the optimal parameters of the system with a least squares
method. The so-obtained physical andmodal parameters of the system are reported in Table 7, where they
are compared to the parameters estimated by fitting the identified latent force with the linear function:

FL =A0þA1 z�uð ÞþA2 _z� _uð Þ (37)

and correcting the initial estimates by adding Δk =A1 and Δc=A2, according to the procedure from
Section 3.3.
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A further issue in the application of the switching GPLFM to this experimental case-study is that the
base displacement and velocity must be provided as an input. However, although the fundamental
frequency of the base excitation is selected by the user, only noisy measurements of the bottom plate
displacements are available from the laser sensors. To recover the driving functions u tð Þ and _u tð Þ, the
following state-space model has been implemented from Newton’s laws of motion:

ut

_ut

" #
=

1 Δt

0 1

" #
ut�1

_ut�1

" #
þ

1
2
Δt2

Δt

2
4

3
5at�1, at�1 �N 0,σ2a

� �
38að Þ

yu,t = 1 0½ �
ut

_ut

" #
þ vu,t, vt �N 0,σ2u

� �
38bð Þ

8>>>>>><
>>>>>>:

by assuming that an unknown constant acceleration at, modelled as a zero-mean normal distribution with
variance σ2a, acts between the time steps t and tþ1. The above state-space model has then been computed
via Kalman filtering and RTS smoothing, by considering the optimal values of the hyperparameters
inferred byVBMC. It is worthmentioning that, while the proposed procedure can be conveniently applied
in the assumption that the basemotion is not affected by either the dynamic response of the structure or the
friction force, a more general approach would consist in coupling the above state-space model with the
augmented state-space representation of the latent force models.

4.2. Inference and results

Nonlinear system identification has been performed by applying the proposed switching GPLFM
(I = J = 3) to the experimental data obtained by setting a fundamental driving frequency of 1 Hz and a
normal force equal to 5.5 N. The displacements of the two plates, reported in Figure 17, have been
recorded for 10 s with a sampling frequency of 250 Hz.

The estimated physical andmodal parameters are listed in Table 7. In particular, the estimated stiffness
and natural frequency agree well with the measured values from hammer testing, while the estimated

Table 7. Physical and modal parameters of the single-storey frame: estimated values from hammer
testing vs initial guess and corrected values in the identification procedure.

Parameters Hammer test Initial guess Corrected

Mass (kg) 3.0799
Viscous damping (Nsm�1) 0.3004 5 0.6691
Stiffness (Nm�1) 1197 1250 1191
Natural frequency (Hz) 3.1374 3.2063 3.1298
Modal damping ratio 0.0018 0.0403 0.0055
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Figure 17. Measured displacements of the bottom and top plates of the single-storey frame under
harmonic excitation. The driving frequency is set at 1 Hz and a normal load of 5.5 N is applied to the top

plate.
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viscous damping and the corresponding damping ratio are slightly overestimated. Nonetheless, viscous
damping has negligible values in both cases, in agreement with the results presented by Marino and
Cicirello (2020).

The identified latent states and friction force are reported in Figure 18, along with the sequence of
model probabilities. In this figure, it is possible to observe that the estimated displacements present an
excellent agreement with the experimental observations, scoring an NMSE equal to 4.889 × 10�6. The
displacement of the top plate is a quite regular two-stops stick–slip motion. As shown in the bottom frame
of Figure 18, the transitions between the sliding and sticking phases are generally well captured by the
switching latent force model. Nonetheless, during the stops occurring at z< 0 in the top plate motion, slow
variations can be observed before the onset of the subsequent sliding phases. This particular behavior
clearly renders more difficult the identification of the motion regime, leading to the presence of grey areas
in the model probabilities corresponding to these stops. The identified friction force does not appear to be
affected by the larger uncertainty that characterizes negative stops; in fact, regular patterns are observed
during each sticking phase. The sliding friction force is also characterized by generally regular behaviors,
with a slight decrease in amplitude during each sliding phase. This trend can also be visualized in the latent
friction force–velocity point estimates reported (with magenta dots) in Figure 19.

The friction force–velocity estimates have been fitted with the steady-state Dieterich-Ruina’s law
introduced in Equation (20a); the value of the static friction force has been determined as described in
Section 3.5. In Figure 19, it can be observed that both branches of the friction force–velocity curve follow
a monotonic behavior, characterized by a decrease of the friction force amplitude for increasing absolute
values of the sliding velocity. This particular pattern, known in the friction literature as Stribeck effect, is
reproduced by the Dieterich–Ruina’s law due to the very small identified values for the parameters a and c
(see also Cabboi et al. (2022)).
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Figure 18. Latent states, acceleration, nonlinear friction force, and model probabilities inferred by
switching GPLFM (I = J = 3). Models 1, 2, and 3 stand for sliding, sticking, and resetting models,

respectively.
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To evaluate the predictive capabilities of the switching GPLFM, the dynamic response of the
system has been simulated numerically by considering the fitted friction model and the estimated
physical parameters (see Table 7). Themeasured and simulated mass displacements present a very good
agreement, also visible in the top frame of Figure 18; their comparison yields an NMSE score of
0.4316%.

Finally, the proposed approach has been applied to experimental data obtained for different normal
force levels, ranging from 2.5 to 5.5 N. The obtained friction force–velocity estimates, along with the
corresponding fitted friction laws, are reported in Figure 19. It can be observed that the friction force–
velocity curves present similar trends across the different applied normal forces. In addition, the curves are
almost equally spaced, suggesting that the friction force amplitude increases linearly with the normal
force, as expected. The predictive performances of the fitted friction models do not present significant
variations are substantially maintained for the different values of N, with NMSE scores never exceeding
1% among the observed cases.

5. Conclusion

The work presented in this paper demonstrates that switching GPLFMs can be effectively used for
identifying complex dynamical systems with discontinuous nonlinearities and/or multiple motion
regimes. By using a set of noisy observations of the system’s response to a known input force, GPLFMs
can infer the time histories of the latent states and the nonlinear force, without requiring prior knowledge
of the functional form of the latter. Nonetheless, standard GPLFMs, where the latent nonlinear force is
modeled by a single GP, cannot easily handle discontinuous nonlinear forces, such as those generated by
frictional contact. In this paper, this identification problem has been tackled by introducing a switching
GPLFM,where multiple GP latent forces can be used tomodel the nonlinear force across different motion
regimes, and their priors can be updated using assumed density filtering and an expectation-correction
smoothing algorithm. Additionally, a resetting model has been included among the latent force models to
achieve discontinuities in the nonlinear force. The model transitions are also inferred in a Bayesian
manner, along with the latent states and nonlinear force, by using the state-of-the-art methodology for
switching linear dynamical systems. The proposed switching GPLFM has been applied to two case
studies, including a simulated dry friction oscillator and an experimental setup consisting of a single-
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Figure 19. Friction force vs velocity for varying applied normal loads: points estimates (dots), fitted
friction laws (continuous lines) and ± 3σ confidence intervals (shaded areas).
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storey frame with a brass-to-steel contact. In both cases, excellent results were obtained in terms of the
identified nonlinear and discontinuous friction force for varying (i) normal load amplitudes in the contact;
(ii) measurement noise levels, and (iii) number of samples in the datasets.

The switching GPLFM can offer several advantages over pure data-driven approaches for nonlinear
system identification. By embedding noisy observations and a partially-known physics-based model in
the probabilistic model, a physics-enhanced machine learning model is obtained. This method allows not
only the recognition of discontinuities in the time series, but also the introduction of physical constraints
into the model, such as those imposed during the sticking phases in dry friction oscillators. Therefore, this
approach is highly interpretable, since it yields transparent predictions based on the explicit inclusion of a
large amount of information deriving from physical and engineering knowledge. Most importantly, even
in the presence of a limited dataset, the proposed switching GPLFM yields an increased generalization
performance with respect to extrapolation and observational biases, by enforcing explicitly causal
relationships and physics-based constraints. Further, physically inconsistent or implausible predictions
can be easily detected by employing the identified discontinuous nonlinear force (e.g., the identified
friction force–velocity curves and static friction force values estimates for the dry friction problem) in a
forward model under input data not included in the training dataset, to assess discrepancies with the
corresponding output measurements. Most importantly this approach is explainable, since the results
obtained are easy to understand by humans. They can be expressed in terms of robust physics-based
features, such as the friction force–velocity relationship, and the results also include an assessment of the
remaining uncertainty in the robust features and on the system states predictions.

The proposed approach is generally applicable to the analysis of engineering systems subject to a
single nonsmooth nonlinearity that can be approximated by a single degree-of-freedom model. Future
work will focus on: (1) extending the current formulation to multi degree-of-freedommodels, particularly
those where contacts and/or other nonlinearities may occur simultaneously on different masses, and
(2) accounting formore complex frictionmodels, characterized by dependencies on further state variables
(internal states, temperature, etc.) and/or by a time-evolution of the states in sticking regime. It is also
worthmentioning that switching GPLFM requires the introduction ofmultiple latent forcemodels and the
use of Gaussianmixtures. Therefore, it requires a larger computational cost compared to the application of
a standard GPLFM. Nonetheless, the performance analysis presented in this paper has shown that a small
number of Gaussian components is often sufficient to obtain significant improvements in the identifica-
tion accuracy of discontinuous nonlinear force.
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