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Fluid entering the periphery of a steadily rotating cylindrical tank exits through an off-axis
drain hole, located in the tank’s base at the half-radius. Experiments show that, though
a concentrated vortex forms over the drain, it soon advects around the tank in what is
at first a circular path. Though inviscid vortex dynamics predicts continued motion, our
experiments show that the vortex moves inwards from the predicted circular path, finally
coming to rest at approximately 50◦ from the drain. In this final state, the vorticity is
concentrated in a thin shear layer bounding an irrotational core, which passes over the
drain. The broadening of the vortex structure and eventual steady-state formation are
believed to be due to the growing boundary layer on the outer wall.
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1. Introduction

Concentrated vortices are ubiquitous in natural and man-made fluid motions, and are
observed on widely differing scales. Spanning these characteristic scales between 10−2 m
and 105 m, examples include the familiar vortex observed in an emptying bathtub (Shapiro
1962; Trefethen et al. 1965), damaging weather events such as tornadoes (Hoecker 1960)
and solar whirlpools created by downdraughts of cooling plasma returning to the Sun’s
interior (Bonet et al. 2008). Hence, concentrated vortices have been studied extensively,
and a number of exact solutions of the Navier–Stokes equations reported, including the
Burgers vortex, the Batchelor vortex (Batchelor 1964) and Long’s vortex (Long 1961).
Concentrated vortices are often associated with rotating systems where the Coriolis force
is dominant, sometimes leading to complicated vortex-core structures (Lundgren 1985). To
better understand these structures, attention has focused more recently on examining the
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vortex above a constant-discharge drain hole in a rotating tank (Lundgren 1985; Andersen
et al. 2006; Chen et al. 2013; Foster 2014).

In the axisymmetric case, with the drain located on the rotation axis (through the tank’s
centre), it is well known that a concentrated vortex forms above the drain and throughout
remains positioned on the drain, with the steady state established on the so-called ‘spin-up
time’ – provided the Rossby number based on the volumetric flow rate is sufficiently small.
The flow structure is as follows: Fluid enters the tank at its outer rim, and flows radially
inwards in the lid and base Ekman layers, thereby inducing a potential vortex in the fluid’s
interior by vortex stretching. When that inward-moving fluid arrives at the tank’s centre,
it erupts out of the Ekman layers and into the outer 1/4-Stewartson layer surrounding the
vertical vortex core, moves radially inwards into the interior 1/3-Stewartson layer, and
then flows downwards into the drain. Observational and theoretical details may be found
in Andersen et al. (2006), Chen et al. (2013) and Foster (2014).

Much of the laboratory work and theoretical models of concentrated vortices of which
we are aware have assumed axial symmetry. In the real world, however, there is no such
axisymmetry, so we determined to explore a drain-hole vortex in a situation without
axisymmetry. We performed a series of experiments in a rotating cylindrical tank with the
drain hole inducing the vortex located at an off-axis location in the cylinder’s base. The
temporal evolution of the flow is remarkable. A concentrated vortex initially forms above
the drain hole, where the fluid leaves the tank, having entered at the tank’s periphery. In a
relatively short time, the vortex migrates off the drain, moving under self-induction. As it
advects around the tank, the core broadens, and the vortex ultimately comes to rest, with
a steady structure. In this paper, we report for the first time the details of this motion. We
find that the vortex advection away from the drain, and its eventual slowing to rest, occurs
in a way that is described by the influence of an inviscid ‘image vortex’ at early times,
and that the final position of the vortex is relatively insensitive to the value of the Rossby
number, so long as it is small. Further, the vortex core broadens during that advection
in such a way that the final steady structure of the vortex is a hollow-core vortex, with
the vorticity concentrated in a ring surrounding the vortex centre, and passing over the
drain-hole location.

A complete theoretical description of all processes involved is beyond the scope of this
short paper. Here, we have focused on reporting experimental observations and details of
the inviscid ‘image vortex’ model. The experimental results presented here were obtained
with the drain located at the mid-radius of the cylinder’s base, although other drain
locations were considered and are briefly discussed in § 5. However, the data presented
here are wholly representative of the general flow patterns and structures observed.

We also acknowledge the previous studies that have reported source/sink-driven flows
in a rotating container which give rise to non-axisymmetric effects (see, for example, Kuo
& Veronis 1971; van Heijst 1984). However, these studies are generally of steady-state
behaviour and describe flows that are very different from the sorts of vortical motion
described here.

2. Experiments

2.1. Apparatus and set-up
The set-up (see figure 1) consisted of an outer tank (42 cm × 42 cm × 19.5 cm) containing
an inner cylindrical working section (radius b = 17 cm, depth h = 17.5 cm), with its open
bottom suspended 0.5cm above the tank’s base. The tank was mounted centrally on a
turntable, with the vertical axis of the cylinder aligned with the turntable’s rotation axis.
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Figure 1. Sketch of the experimental set-up (not to scale): (I) lid; (II) outer tank; (III) cylindrical working
section (radius b = 17 cm, height h = 17.5 cm); (IV) drain hole (diameter 2a = 0.3 cm) located at the
mid-radius r∗

0 = b/2; (V) pump; and (VI) return flow to the outer tank. All the apparatus is mounted on a
turntable that is rotating with constant angular frequencyΩ .

The tank was filled to a level just above the cylinder’s top edge with a salt-water solution
of density ρ = 1.03 g cm−3, which was uniformly seeded with small tracer particles to
facilitate measurement of the fluid’s velocity; the velocity measurements are described
in more detail below. The salt used was NaCl. With the set-up complete, the cylinder’s
open top was sealed with a transparent acrylic lid and the turntable set in rotation
(anticlockwise) and slowly brought to a constant angular frequency of Ω = 0.6 rad s−1

(5.7rpm), and left for at least 1h to allow the water to reach solid-body rotation.
The vortex was generated by using a pump to withdraw the water at constant discharge

Q through a drain hole (diameter 2a = 0.3 cm) located in the tank’s base at radius
r∗

0 = b/2 from the central rotation axis. In all cases considered, the discharge Q was
sufficiently small for there to be no adverse effects induced by the pump’s start-up, which
was effectively instantaneous. The withdrawn water was returned to the outer tank via
a 3/8-inch fitting installed at a height 12 cm ≈ 0.7h in one of the tank sidewalls (see
figure 1). The inner cylindrical section was resupplied with water from the outer tank
through the narrow gap of height 0.5cm between the cylinder’s open bottom and the tank’s
base, which was entirely open to resupply apart from where six small feet were located (of
diameter 0.5cm and height 0.5cm) on which the cylinder was mounted. That is, the outer
tank acted as a reservoir to both receive the return flow and to resupply the cylindrical
section. In all cases considered, the return flow entering the outer tank was weak and had
no discernible affect on the flow inside the cylindrical section.

2.2. Measurements and notation
Measurements of the fluid’s horizontal velocity components (in the rotating reference
frame) were obtained using two-dimensional, two-component particle image velocimetry
(PIV). The seeding particles suspended within the water column were illuminated by a
thin horizontal light sheet directed through the tank’s mid-height plane, with the in-plane
particle motion recorded using a digital video camera positioned above the tank. Both the
lighting unit and camera were mounted on the turntable to record images in the co-rotating
reference frame. The velocities were calculated relative to the right-handed coordinates
(x∗, y∗, z∗) (shown in figure 1), with the drain located at (x∗, y∗, z∗) = (0, −r∗

0, 0);
we denote the corresponding velocity components by (u∗, v∗, w∗). Applying the PIV
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algorithm to the captured images returned measurements of u∗ and v∗ and of the
corresponding vertical-vorticity component, ζ ∗, in the horizontal mid-height plane z∗ =
0.5h.

In some experiments, velocity and vorticity measurements were also obtained at the
1/4-height and 3/4-height planes of the tank. These data displayed no discernible evidence
of any height dependence in the bulk flow (i.e. away from boundary-layer regions and the
vortex core). Therefore, as expected for rapidly rotating flows of this nature, the bulk flow
is primarily two-dimensional, as predicted by the Taylor–Proudman theorem.

The Ekman and Rossby numbers are defined as E = ν/Ωh2 and Ro = U/Ωb,
where U = Q/2πh2E1/2 (Foster 2014). Experiments were performed for Ro = 0.023
(Q = 3.3 cm3 s−1), Ro = 0.034 (Q = 4.8 cm3 s−1) and Ro = 0.064 (Q = 10 cm3 s−1),
with E = 5.4 × 10−5 in each case. Here we focus on presenting measurements and
observations for the case Ro = 0.034, which are representative. The data for Ro = 0.023
and Ro = 0.064 are used in § 5 to illustrate and discuss the effect of Ro on the vortex track.

Henceforth we use dimensionless time, coordinates and velocity defined by

t = Ωt∗, (x, y, z) = b−1(x∗, y∗, z∗), (u, v, w) = U−1(u∗, v∗, w∗), (2.1a–c)

with the start of fluid withdrawal at t = 0. We also use T = t/2π to denote the number of
rotation periods and r0 = r∗

0/b = 0.5 the dimensionless drain position. The flow features
are best described and analysed in terms of polar coordinates (r, θ, z), with the polar
velocity components (ur, uθ ) calculated from (u, v) using standard transformations.

3. Observations and discussions

The flow evolution for the case when the drain hole is off-axis is very different from that
described in § 1 for the axisymmetric case (i.e. r0 = 0), and is illustrated by the measured
vorticity fields shown in figure 2. The constant discharge stretches the background vorticity
and causes the vortex to initially form above the drain. However, after a short period, the
vortex moves off the drain along a curved cyclonic trajectory, under the influence of an
anticyclonic image vortex located outside the tank’s perimeter at r = 1/r0 along the radius
through the drain hole (Milne-Thomson 1955). Figure 2(a) shows the initial formation of
the vortex at T = 1.3, but there is no discernible movement off the drain at this early
time. The Ekman layers are fully established at this time, and carry the radial inward flux
towards the drain. However, the Stewartson-layer structure reported in Foster (2014) has
not had time to establish at T = 1.3. Instead, the inward flux through the base Ekman layer
exits straight down the drain hole; the fluid carried by the lid Ekman layer exits vertically
downwards via a narrow core, located above the drain hole, with width comparable to 2a.

At time T = 8 (figure 2c), the vortex has clearly moved off the drain. During this
period, the vorticity remains concentrated and initially continues to increase in magnitude,
indicating that the downward vertical flux through the vortex core persists at these
times. At times T = 12 and 18 the movement of the vortex has slowed, as its structure
changes markedly. The narrow core, where vorticity is initially concentrated, broadens
and eventually becomes empty of vorticity. Eventually, the final state is reached where
the structure is essentially stationary and the vorticity is concentrated in a thin shear layer
that bounds the irrotational core (i.e. a hollow-core vortex). This final state is shown in
figure 2( f ); note how the shear-layer structure passes over the drain.

The crosses in figure 2( f ) show the cyclonic track of the vortex, which is best presented
in polar form, here denoted (rc, θc). That is, (rc, θc) denotes the instantaneous location
of the vertical axis through the vortex. The measurements of rc and θc/π are plotted in
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(e)

(b)(a) (c)

(d ) ( f )

–0.015 –0.008 0 0.008 0.015

Figure 2. Measurements of vertical vorticity, ζ , at dimensionless times T = t/2π: (a) 1.3, (b) 4.0, (c) 8.0,
(d) 12, (e) 18 and ( f ) 27. The colour scale for ζ is shown. The black dot shows the location (but not the size)
of the drain hole. The black arrow in (a) indicates the direction of the tank’s rotation. The black crosses in
( f ) show the trajectory taken by the vortex (the red arrow indicates the direction of travel). See supplementary
movies available at https://doi.org/10.1017/jfm.2021.1098 for a more detailed time-lapse video.

figure 3(a) against time T . To show how the track is related to the initial growth of the
vortex, measurements of the peak flow speed inside the vortex structure, denoted uθ,max,
are plotted in figure 3(b) against time T . Also, figure 3(c) shows measurements of uθ , along
the radial ray through the centre of the vortex structure (i.e. θ = θc), at various times (see
legend). For 0 � T < 6, the vortex moves off the drain in the cyclonic direction (i.e. θc
increases) and follows a circular track, indicated by rc = r0 = 0.5 during this period. The
vortex retains its ‘traditional’ structure during this period (evident in figure 3c), and grows
steadily in intensity, as indicated by the monotonic growth of uθ,max. The peak value of
uθ,max occurs at T ≈ 5.8, which corresponds to when the vortex stops moving on a circular
track. At subsequent times, the vortex begins to spiral radially inwards towards the rotation
axis (i.e. rc decreases) and the structure of the vortex starts to gradually change. Figure 3(a)
shows that the vortex track starts to slow at T ≈ 12 (i.e. dθc/dt decreases), with the
near-final state established at T ≈ 17, with rc ≈ 0.3 and θc ≈ 1.75π, which corresponds to
approximately 50◦ from the drain. A measurement of uθ taken through the steady vortex
structure at time T = 27 is shown by the red profile in figure 3(c), and clearly shows the
irrotational core (uθ ≈ 0) bounded by a shear layer.

It is of interest to also consider how the flow evolves immediately above the drain.
As the vortex moves off the drain, fluid no longer exits the vortex core vertically
downwards through the drain. Instead, a no-penetration condition is imposed at the base
of the vortex, by the tank floor. The result is dramatic, as illustrated by figure 4, which
shows a dye-visualisation sequence. Here, fluorescein dye introduced at the bottom of
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Figure 3. (a,b) Measurements of (rc, θc/π) and uθ,max plotted against dimensionless time T = t/2π. The solid
red line shows (4.13b), using f = 0.5 and r0 = 0.5. (c) Measurements of the azimuthal velocity, uθ , along the
radial ray through θ = θc, plotted against r, at various times (see legend). The red profile corresponds to the
steady state (at T = 27).

0 1 2 3 4 5 cm

(e)
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Figure 4. Dye visualisation photographs taken at dimensionless times T = t/2π: (a) 1.3, (b) 2.0, (c) 2.5,
(d) 3.2, (e) 4.2 and ( f ) 6.4. The yellow dot indicates the position (but not the size) of the drain hole. The
scale shown in (a) applies to each image. See supplementary movies for a more detailed time-lapse video.

the cylindrical section is advected by the base Ekman layer towards the drain hole and
photographed.

Figure 4(a) corresponds to early time, where the dye simply marks the radial Ekman
flux, spiralling inwards, then exiting the drain. There are clearly no Stewartson layers
present around the vertical vortex core. When the vortex moves off the drain, the downward
vertical flux through the core is redirected horizontally by the tank’s floor, in the process
carrying entrained dye with it. Figure 4(b–d) shows the local flow produced swirls around
the vortex core and vertically upwards, forming a series of concentric sheets. The sheet
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structure forms relatively quickly and is largely complete by T ≈ 4, with the structure
having attained a height ≈ 0.3h above the tank floor. (In fact, this upward, inward and then
downward motion of the fluid through the vortex is consistent with the time-developing
Stewartson-layer structures, but details are not shown here.) As the vortex moves further
from the drain, the dyed fluid marks the gradual broadening of the initially narrow vortex
core (figure 4e–f ).

The development and advection of the vortex is a complicated matter when one attempts
to understand the mechanisms in play. First, the circulation about the vortex develops due
to the stretching of the background vorticity, caused by Ekman inflow that results from the
constant discharge through the drain. Details of that process may be quantified by means of
a generalised Kelvin theorem, as shown in § 4. Secondly, the vortex moves off the drain,
finding its way to a near-steady-state location on the time scale E−1/2Ω−1. As already
noted, the initial motion of the vortex is due to the influence of an image, anticyclonic
vortex, located at r = 1/r0 along the radius through the drain (Milne-Thomson 1955).
Superposing the vortices at the two indicated locations gives a streamfunction which
satisfies the impermeability condition on r = 1. This inviscid model predicts that the
vortex would continue to move around the container on a circular path with rc = r0, under
the influence of that image vortex. Clearly, then, the fact that it comes to rest, with an
altered structure, is evidence of effects of viscosity.

There seem to be two such influences. First, as the motion develops, nonlinear boundary
layers form on the circular container wall, with consequent asymmetric distribution of
anticyclonic vorticity, which appears to retard the cyclonic advection of the vortex, so
that it comes finally to a steady location. Evidence of that asymmetry can be seen
in the plot of displacement thickness shown in figure 5(a), determined by a standard
boundary-layer computation (Munro, Hewitt & Foster 2015), at T = 10.4. Qualitatively,
one can think of the wall boundary layer as thickening ahead of the vortex location, causing
the vortex to move inwards. The second matter has to do with a peculiarity of inviscid,
small-Rossby-number flows, for which the inviscid Taylor–Proudman theorem indicates
that it is impossible for the fluid to flow out of the tank in a hole in its floor. Hence, such an
outflow can occur only in a zone in which viscous forces are important. At small Ekman
numbers, such a zone is one with high vorticity. Initially, the outflow occurs under the
narrow vortex core over the drain. However, as the motion evolves, and the vortex moves
off the drain, the outflow constraint requires high vorticity over the drain. What appears to
happen, then, is that the vortex core broadens, becoming ultimately a hollow-core vortex,
with a segment of the narrow ring of vorticity always constrained to pass over the drain.
As noted earlier, that pattern is very evident in figure 2 (see also the time-lapse video of
vorticity maps in the supplementary movies).

One might expect that the structure of the vortex core would be essentially that worked
out in Foster (2014), but advected along the vortex path, However, that is not the case,
and the reasons for that may be understood in terms of time scales. Linear Stewartson
layers provide good agreement with experiments in these problems (see Foster 2014, for
example), so their dynamics provides some insight into the mechanisms at play here. The
inner ‘third layer’ develops on a relatively short scaled time T1/3 ∼ E−1/3/(2π), whereas
the inviscid flow away from the vortex and, significantly, the outer ‘quarter layer’, develop
on the time scale T1/4 ∼ E−1/2/(2π). For our experiments, T1/3 = 4.2 and T1/4 = 22. So,
that means that by the time the vortex is at the stage shown in figure 4(e) (or figure 2b), the
third layer is quasi-steady, but the outer quarter layer is still in the early stages of formation.

However, as we shall see below, the distance of the advecting vortex away from
the drain scales like Ro E1/2t2 for short times, so when that distance is order one,
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Figure 5. (a) Boundary-layer displacement thickness, δ+, as a function of azimuth, θ/π, for T = 10.4. The
actual dimensionless thickness is E1/4δ+. The broken line indicates the drain location. (b) Measurements of Γ

obtained from the experiments (see legend), plotted against dimensionless time T = t/2π and compared with
(4.8) (red line).

T ∼ (Ro E1/2)−1/2/(2π) ∼ 11, as can be seen in figure 3(a). In fact, if that distance is
of the order of the quarter-layer thickness, T ∼ (Ro E1/4)−1/2/(2π) ∼ 2.9, so even at very
short times, when the quarter layer has only just begun to form, the vortex is no longer
centred over the drain within that layer, so the quarter-layer structure is already strongly
asymmetric as well as being unsteady. We conclude that it is therefore very unlikely that
the sort of vortex-core structures found by Foster (2014) could ever arise in this case, even
in some quasi-steady sense.

Actually, for our Ekman number, if the quarter layer were to be fully developed before
the vortex advection begins, then we would require Ro � E3/4 = 0.0006, a value totally
impossible to achieve in the laboratory. Actually, the movement of the core off the drain
and its widening in time lead to significant complications in any asymptotic analysis since
the core is no longer ‘thin’ in any sense beyond T values of 12. Such analysis is beyond
the scope of this paper.

4. An inviscid model

The dimensionless inviscid equation of motion in the rotating frame is

ut + 2k × u + Ro(u · ∇)u + ∇p = 0. (4.1)

Taking the curl of this equation, with ω = ∇ × u, gives

ωt − 2wzk + Ro[(u · ∇)ω − (ω · ∇)u] = 0. (4.2)

The horizontal components of this equation suggest that the horizontal components of
vorticity are of order Ro, which is small in our experiments, so the (ω · ∇w) term in the
vertical component of this equation is negligible, and all the more because w itself is small
as well, of order E1/2, due to Ekman pumping. Then, the approximate vertical component
of (4.2) is

ζt + Ro(u · ∇)ζ − 2wz = 0, (4.3)

provided both Ro, E � 1, with ζ ≡ ω · k. Note that the terms neglected in this equation
are O(Ro E1/2, Ro2). The term ‘−2wz’ can be understood to be the stretching of the vortex
lines of the background rotation.
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At small Rossby numbers, it follows from the Taylor–Proudman theorem that wzz = 0
in the interior flow, and since there is outflow at the drain, we can write

wz = E1/2

r0
2πδ(r − r0)δ(θ + π/2). (4.4)

However, away from the drain itself, there is also inflow/outflow from the Ekman layers on
both top and bottom walls, and so we can modify this equation to account for that effect,
using the standard Ekman suction law, giving

wz = E1/2

r0
2πδ(r − r0)δ(θ + π/2) − 1

H
E1/2ζ, (4.5)

where H = h/b. Substitution into (4.3) gives

ζt + Ro(u · ∇)ζ + 2
H

E1/2ζ = 4π

r0
E1/2δ(r − r0)δ(θ + π/2). (4.6)

Note that we have entitled this section ‘An inviscid model’, which is a little misleading,
but it is meant to note that no viscous terms are retained in (4.1), but effects of friction on
top and bottom walls are indeed included in (4.6).

If we define Γ as the circulation around a material path, C, that lies in the horizontal
plane that is mid-way between the upper and lower boundaries, then, as the flow evolves,
that path deforms and moves in a fashion so as to always contain all of the vorticity due to
the outflow. Integration of (4.6) over the interior of C, following the standard derivation of
the Kelvin theorem (see Lamb 1932), leads to its generalisation in this sink-driven, rotating
flow,

Γt + 2
H

E1/2Γ = E1/24π, Γ ≡
∮
C

u · d�, (4.7a,b)

and its solution is

Γ = 2πH[1 − exp(−2E1/2t/H)]. (4.8)

This result is shown in figure 5(b), plotted alongside measurements of Γ obtained from the
experimental data by integrating the vorticity. The excellent agreement appears to confirm
the validity of this analysis.

According to Milne-Thomson (1955), if we model this motion by the placement of a
vortex of strength Γ ′ at location r = rc(t), θ = θc(t), then placement of an ‘image’ vortex
of equal and opposite strength at r = 1/rc, along the same ray from the origin, assures
that r = 1 is a streamline for the inviscid motion. The third of the Helmholtz vortex laws
(Lamb 1932) states that vortex lines move with the fluid, so that the vortex at r = rc moves
under the influence of the image vortex. The scaled velocity component at the primary
vortex due to the image is

uθ,c = Γ ′

2π(1/rc − rc)
. (4.9)

Since this induced velocity is normal to the ray through rc, there is no radial velocity
component in this inviscid theory (i.e. ur,c = 0), so we conclude that the radial location is
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unchanged, and hence
rc ≡ r0. (4.10)

Replacing rc by r0 everywhere, the azimuthal speed of the vortex is

uθ,c = Γ ′r0

2π(1 − r2
0)

. (4.11)

With Γ ′ as a function of time, this equation may be integrated to give an expression for
the motion of the vortex.

At first, one would think of putting Γ ′ = Γ , but that is naive and incorrect, because
in fact the Helmholtz vortex law is not obviously applicable. The reason for that is, as
noted on page 3, that one edge of the advecting vortex must remain tethered to the drain,
so the vortex itself is not ‘free’ to move under the influence of the image. We have found
that writing Γ ′ = f Γ , with f = 0.5, gives excellent agreement with vortex-track data. The
justification for this choice is beyond the scope of this paper, and will be reported later.
Suffice it to say that the choice f = 0.5 gives remarkable agreement with vortex-track data
over the range of parameters tested, as discussed in § 5 below.

Recalling that the starred quantities are dimensional,

r∗
0

dθc

dt∗
= Uuθ,c =⇒

dθc

dt
= Ro

r0
uθ,c = Ro

Γ ′

2π(1 − r2
0)

= f HRo

1 − r2
0

[1 − exp(−2E1/2t/H)]. (4.12)

Integration gives

rc(t) = r0, θc(t) = 3π

2
+ f HRo

1 − r2
0

(
t − H

2E1/2 [1 − exp(−2E1/2t/H)]
)

. (4.13a,b)

Equation (4.13b), with f = 0.5, is shown by the solid red line in figure 3(a), where
agreement with the data up to T ≈ 10 is evident.

We have seen that the growth of the circulation predicted by (4.8), and the motion
of the vortex given in (4.13), occur on the time scale t ∼ O(E−1/2). One might wonder
about the presence of inertial-gravity waves in this flow, which correspond to t ∼ O(1).
Comments in Greenspan (1968) about spin-up problems suggest that such waves, though
present, have very small amplitudes, and we certainly find no evidence of these waves in
our experimental record. In the problem at hand, and in those discussed by Greenspan,
such waves play no role in the flow evolution. If present at all, they are passive.

5. Final remarks

We have reported here the details of the vortex evolution for Ro = 0.034 and r0 = 0.5. It
is not possible in this brief paper format to present the same level of detail for the range
of parameters tested; we leave that for a subsequent, longer paper, which will also include
mathematical modelling of the phenomena observed. However, we have found that all
of the underlying phenomena described in § 3 occur over a wider range of small Rossby
numbers, Ro, and r0 values, and so here we summarise the key observations that result
when these two parameters are varied.

Figure 6(a) shows measurements of (rc, θc) obtained for r0 = 0.5 and Ro = 0.023, 0.034
and 0.064, plotted against a dimensionless time TRo, and compared with (4.13b), again
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Vortex evolution in a rotating tank with an off-axis drain
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Figure 6. (a) Measurements of (rc, θc/π) for r0 = 0.5, obtained for different Ro, plotted against dimensionless
time TRo. The red lines show (4.13b), using f = 0.5. Data are shown for Ro = 0.023 (�, broken line), 0.034
(◦, solid line) and 0.064 (∇, dot-dashed line). The error bars shown for Ro = 0.034 are representative. (b,c)
Measurements of (rc, θc/π) for r0 = 0.25 (left) and r0 = 0.75 (right), plotted against time TRo. These data are
for Ro = 0.034. The red lines show (4.13b), using f = 0.5.

with f = 0.5. These data show that initially (for TRo � 0.2 to 0.3) the circular track of the
vortex predicted by (4.13) describes the motion well. However, at later times viscous effects
are significant as we have already noted – evidently causing the vortex to move radially
inwards, slow and finally come to rest, with rc ≈ 0.3 and θc/π ≈ 1.75, approximately 50◦
from the drain. Perhaps surprisingly, these data indicate that the vortex track at later times,
and hence the final steady-state location, are independent of Ro, to within experimental
uncertainty.

Two key points emerge from other experiments performed with r0 = 0.25 and r0 = 0.75.
First, we observed that reducing r0 reduces the actual distance the vortex moves from the
drain, and its final core size is smaller. Both features may be understood in terms of inviscid
vortex dynamics: Since r0 is smaller, the image location 1/r0 is further away, and so the
speed of the vortex is reduced, coming to rest closer to the drain. Since one edge of the
vortex remains tethered to the drain, the core is much smaller; the ‘hollow core’ vortex
that we see for r0 = 0.5 and 0.75 does not occur for r0 = 0.25.

Secondly, there are interesting results for the steady-state vortex location. The final
steady value for rc is dependent r0, as illustrated by the data in figures 6(b) (for
r0 = 0.25) and 6(c) (for r0 = 0.75). That is, we found that rc → 0.15, 0.3 and 0.4 for
r0 = 0.25, 0.5 and 0.75, respectively. However, in all cases we observed, we found that the
steady-state value of θc is independent of r0. In fact, θc/π → 1.75 to within experimental
uncertainty.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2021.1098.
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