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Abstract

Predicting reservoir storage capacities is an important planning activity for effective conservation and water release
practices. Weather events such as drought and precipitation impact water storage capacities in reservoirs. Predictive
insights on reservoir storage levels are beneficial for water planners and stakeholders in effective water resource
management. A deep learning (DL) neural network (NN) based reservoir storage prediction approach is proposed that
learns from climate, hydrological, and storage information within the reservoir’s associated watershed. These DL
models are trained and evaluated for 17 reservoirs in Texas, USA. Using the trained models, reservoir storage
predictions were validated with a test data set spanning 2 years. The reported results show promise for longer-term
water planning decisions.

Impact Statement

Extreme climate hazards and the increased scarcity and demand for fresh water necessitates improvements in
reservoir storage prediction. The research goal is to provide water resource managers with improved ability to
make informed decisions about water usage that minimize impacts to local communities and businesses. This
paper demonstrates 14-day short-term reservoir predictions as a building block for developing better models that
incorporate weather predictions, soil moisture, and statistical weather data for reservoir prediction out to 90 days
or longer. This project leverages expertise in data science, software engineering, signals processing, meteor-
ology, and climate science to produce promising results.

1. Introduction

Water resource management plays an important role in a community’s climate resilience. Reservoirs can
be used to supply water resources to nearby communities, generate clean hydroelectric energy, allow
aquatic recreation in inland areas, or provide habitats for marine life. Reservoirs also account for weather-
induced changes in the local water balance. During dry periods, reservoirs provide water that sustains
nearby agricultural practices. During heavy rain events, reservoirs with excess storage can accept extra
runoff, thereby mitigating and/or reducing the effects of flash floods.
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Resource managers must be able to predict near-term reservoir levels to maintain optimal operating
conditions and prevent unnecessary risks, such as surface water scarcity, in their communities. The
complexity of reservoir predictionmakes development of predictive tools difficult, so few systems exist to
help these managers make such decisions. Non-linearities associated with processing data from episodic
natural phenomena, time lags caused by the flow of water through drainage basins, and uncertainties
introduced by the inclusion of weather forecast data all contribute to the difficulty of prediction. As a
result, most reservoir management strategies tend to be reactive to the local weather conditions (Tounsi
et al., 2022). Creation of forecasting solutions, such as those developed by Tounsi et al. (2022) and Shiri
et al. (2016), allows for more proactive reservoir management strategies. Better reservoir level forecasts
also improve resource managers’ abilities to plan for extreme climate events such as drought and floods.
Most applications of artificial intelligence (AI) on water resource management focus on water demand
forecasting and are typically catered toward water utility companies (such as Antunes et al., 2018).
Applications of AI-based technologies in water infrastructure and water management systems are
growing and are expected to continue to grow as technology develops (Mehmood et al., 2020; Niknam
et al., 2022).

Existing reservoir prediction models use statistical techniques to predict future reservoir levels. A
common implementation involves the autoregressive integrated moving average (ARIMA) family of
models, which enhances the investigation of time series data by comparing data against time-lagged
versions of itself. Sabzi et al. (2016) created a set of ARIMA models to predict reservoir inflow and
develop operations strategies for reservoirs in southern New Mexico, USA. Similarly, Valipour et al.
(2012) developed models to predict inflow to Iranian reservoirs. Patle et al. (2015) developed models to
analyze groundwater usage in Haryana, India. The work of Musarat et al. (2021) forecasts discharges on
the Kabul River in Pakistan.

Technological advancements have contributed to the development of more intricate computational
techniques for analyzing complex problems. Developments in fields such as machine learning (ML) have
shifted the burden of data analysis from manual, human-centric techniques toward automated, compu-
terized techniques. These ML methods allow for improved data analysis, particularly in situations where
data are highly dimensional and show few meaningful correlation patterns to the human eye. ML also
allows for faster model prototyping and development. Niu et al. (2019) took advantage of these advances
in computation by showing that multipleML techniques outperformed standardmultiple linear regression
(MLR) when predicting reservoir levels in China. Similarly, Shamim et al. (2016) showed that localized
linear ML models are capable of predicting reservoir levels in Pakistan. Qie et al. (2022) analyzed
reservoir outflow for two sites in Illinois, USA and showed promising results using multiple different
statistical techniques. ML models are also frequently used in water quality research, including recent
studies in Vietnam (Nguyen et al., 2021), Hong Kong (Deng et al., 2021), and Ghana (Ewusi et al., 2021).

One particular ML algorithm used in hydrological domains is the Artificial Neural Network (ANN).
Originally devised by McCulloch and Pitts (1943), the ANN is designed to mimic human brain
functionality by implementing a series of logical decision gates, known as neurons, to perform data
analysis. Different types of ANN can be formed by altering the decision function at each gate and/or the
internal architecture of the network. Das et al. (2016) applied Bayesian probabilistic analysis at each logic
gate to produce a model that outperformed both ARIMA and traditional ANNs for predictions at a
reservoir in Jharkhand, India. Chang and Chang (2006) and Unes et al. (2017) implemented fuzzy logic at
neural gates to achieve similar levels of success at predicting reservoir status in Taiwan and Turkey,
respectively.

Continued research on ANNs has led to the creation of specialized network structures for particular
implementations. One such structure is the Recurrent Neural Network (RNN), which loops data through
the network multiple times before “forgetting” the data. These loops allow for the analysis of recent
history, making the RNN a particularly useful tool for analyzing sequential data, such as time series-based
data (Hewamalage et al., 2021). To combat mathematical peculiarities that may arise during calculation,
Hochreiter and Schmidhuber (1997) developed the long short-term memory (LSTM) extension to the
RNN theory. Zhang et al. (2019) showed that RNN models enhanced with LSTM outperformed other
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neural models in modeling reservoir outflow at a hydropower station on the Jinsha River in China.
Similarly, Liu et al. (2022) used LSTM to augment hydrological simulations to improve forecast accuracy
by as much as 6% for streamflow predictions at a hydropower station in Guangxi, China.

A common thread linking previous research is that almost all projects focus on implementing one or
more statistical techniques at a single station, drainage basin, or limited set of reservoirs (often just one or
two). The work outlined is a broader predictive analytics approach to model reservoirs across multiple
basins and variations in climate in Texas, USA. Successful ML models would predict levels at selected
sites in Texas, with 7-day forecasts having no more than 5% error. The reservoirs span a wide range of
climate divisions in the state and are selected based on continuous data availability and length of period of
record. Successful model development within the study area indicates potential for expansion to other
reservoirs across the USA and the world. The novelty of the proposed technique lies in the applicability of
deep learning (DL) models across a broad swath of reservoirs, that spanned varying climatological and
hydrological conditions.

2. Methodology

2.1. Study area and time period

This project focuses on 17 reservoirs in the state of Texas, USA. The 17 sites are listed in Table 1 and
mapped in Figure 1. The 17 reservoirs are located in 16 different watersheds, as defined by 8-digit United
States Geological Survey (USGS) Hydrologic Unit Code. Joe Pool Lake and Lake Weatherford share a
watershed. The reservoirs also span nine of the 10 climate divisions in Texas. Some reservoirs lie on the
boundary between climate divisions.

The selected reservoirs are spread across most of Texas east of the Pecos River. Reservoir data for sites
west of the Pecos River are not available through the chosen data sources. The geographic diversity of the
study area requires the models to be robust against a bevy of potential weather inputs and operational use
cases, including warmer and wetter conditions near the Gulf of Mexico and drier and colder reservoir
conditions in the Texas panhandle. Reservoir level and/or storage data are publicly available through the
United States Geologic Survey’s stream gage network. The Texas Water Board provides elevation-area-
capacity (EAC) rating curve information in a machine-readable format, allowing for rapid conversion
from gage height to reservoir storage capacities. For each reservoir, historical stream gage data and
climatological information are collected.

2.2. Training/validation/test data splits

Data from January 1, 2010 to December 31, 2020 are used for training while data from January 1, 2021
to December, 2022 are used for testing the trained models. The rationale for the training and test splits
was that the sequential division of the dataset preserves autocorrelation within the data to the greatest
extent possible. Additionally, the last 30% of the training set, or December 2017 to December 2020, is
used for validation during training to track model performance between epochs. The Parameter-
elevation Regressions on Independent Slopes Model (PRISM) dataset (Daly and Bryant, 2013)
provides gridded precipitation and temperature data during the study period. Values from multiple
gridpoints were spatially averaged to produce a single value for a watershed. Linear interpolation
techniques were used to fill any missing values in the dataset. Factors leading to this division of data
include uniformity and completeness. The date ranges were chosen such that the same date ranges were
applied to each reservoir in the study area. The studied reservoirs all had data for the same period of
record, keeping the dates uniform across all models. Should the authors decide to add new reservoirs
with different periods of record, then the authors may amend the data division protocols. Additionally,
the 70/30 split betweenmodel training and validation data was chosen such that 3 years of data would be
captured in the validation set. This increases the likelihood of capturing extreme precipitation and
drought events in the validation set. For similar reasons, the test set was chosen to include 2 years
of data.
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Table 1. List of reservoirs with USGS station identifiers (USGS ID) and climate division (CD)

Reservoirs studied

USGS ID Reservoir CD USGS ID Reservoir CD

07227900 Lake Meredith, Sanford, TX 1 08099000 Leon Reservoir, Ranger, TX 3
07335600 Lake Crook, Paris, TX 3 08104650 Lake Georgetown, Georgetown, TX 3
08022060 Martin Lake, Tatum, TX 4 08110470 Lake Limestone, Marquez, TX 3 and 4
08045800 Lake Weatherford, Weatherford, TX 3 08118000 Lake J.B. Thomas, Vincent, TX 2
08049800 Joe Pool Lake, Duncanville, TX 3 08131200 Twin Buttes Reservoir, San Angelo, TX 6
08061550 Lake Ray Hubbard, Forney, TX 3 08164525 Lake Texana, Edna, TX 8
08067600 Lake Conroe, Conroe, TX 4 08167700 Canyon Lake, New Braunfels, TX 7
08080910 White River Reservoir, Spur, TX 1 08210500 Lake Corpus Christi, Mathis, TX 7 and 9
08082800 Millers Creek Reservoir, Bomarton, TX 2 and 3
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2.3. Model construction

Based on the literature review and the applicability of DL for the task at hand, a RNN that incorporates
LSTM was used for training a model for each reservoir. Each model uses historical temperature,
precipitation, and reservoir storage data within the associated watershed. Reservoir levels exhibit time
series behavior and correlate well withmeteorological time series in the local watershed. Additionally, the
LSTM element allows for the inclusion of recent weather phenomena in the analysis.

The trained model predicts daily changes in reservoir storage given a 14-day history of reservoir
storage, temperature, and precipitation. Model performance is then evaluated using data in the test range.
Multi-day forecasts are generated by iterating model outputs over the desired length of the forecast.
Seven- and 14-day forecasts are generated for every date in the test range, and then compared to observed
reservoir storage, to generate accuracy metrics such as the root mean squared error (RMSE) and mean
absolute percent error (MAPE).

Figure 2 traces the flow of data from the individual datasets through the modeling effort.
The RNN consists of two main parts: an LSTM structure (where the recurrence occurs) and a densely

connected structure. Figure 3 provides a visual representation of theRNNschema. The LSTMstructure is a
single layer of 50 nodes. Data are fed through the LSTM repeatedly until the nodes “forget” about the data.
The models were defined such that data older than 14 days are “forgotten.” The dense structure contains
four layers of 50 nodes each. Nodes in neighboring layers all connect, though not all connections may be
active during a calculation. The LSTM structure uses a sigmoidal activation function while the densely
connected layers use hyperbolic tangent activation functions. A learning rate of 10�4 is used for training.

Figure 1. Map of reservoirs studied in this project.
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Each model predicts the next day’s change in reservoir levels for its associated reservoir. Performance is
estimated after each epoch by using a subset of the training data known as the validation set. The model
with the smallest validation error is saved and considered to be the trained model for that site.

A separate model, using the same methodology, is trained for each reservoir in the study area. Each
reservoir is influenced locally by its surrounding hydrological and weather conditions, so it makes sense
to train individual models at a local level. In future work, the authors aim to show that the process applies
across reservoirs outside of the study area. Implementation at other reservoirs requires availability of long-
term reservoir digital data records, additional data collection and model training, including the collection
of additional EAC data, which is not always easy to find. Future studies will investigate model
performance at new reservoirs that are not present during this initial study. Development of a single
model for all reservoirs may also occur in future work.

2.4. Hindcasting and forecasting

To validate the models, an iterative hindcasting process is deployed. The reservoir storage for the first day
is predicted using a training data matrix containing the previous 14 days of storage, temperature, and
precipitation readings. Once a forecasted (or predicted) value is obtained, the oldest storage, temperature,

Figure 2. Deep learning-based model schema.
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and precipitation values are removed from the data matrix. Then, the forecasted storage, next temperature
value, and next precipitation value are appended to the data matrix. This maintains 14 days of data in the
data matrix. Thus, the data matrix for the second day’s forecast would contain the previous 13 days of
observed data, the first day’s storage forecast, and the first day’s temperature and precipitation values. The
temperature and precipitation values used during hindcasting are the historically observed data for future
dates obtained from the PRISM dataset.

To convert to a forecasting environment, the samemethodology can be applied. Data observations are no
longer available, so use of a forecastmodel, such as theNational Oceanic andAtmosphericAdministration’s
(NOAA) Global Forecast System (GFS) model is required for the meteorological component.

This iterative hindcast/forecast process provides an added benefit of highlighting models that are
consistently biased toward over-prediction or under-prediction. Over the course of a 14-day output period,
prediction error for each error could potentially compound. Therefore, any potential biases would continu-
ally stack and become noticeably evident. For example, if a model for a particular site is biased toward
overprediction, then the residual errors produced by the hindcast process would also be biased toward
overprediction. With 730 samples (one for each day in the 2-year test set), biases would be clearly shown.

2.5. Evaluation

Twometrics are used to evaluate the performance of the predictions: RMSE andMAPE. Thesemetrics are
computed separately for each reservoir and the hindcast time period.

RMSE generally is not comparable across reservoirs since the reservoirs vary in capacity and operating
range. For example, Lake Ray Hubbard is one of the bigger reservoirs in this study with a minimum storage
during the study period of roughly 257,000 acre-feet and a storage capacity of roughly 452,000 acre-feet.
Meanwhile, LakeWeatherford is one of the smallest reservoirswith aminimumstorage of roughly 9,300 acre-
feet and a storage capacity of roughly 17,800 acre-feet. The differences in reservoir characteristics justifies the
use of MAPE to weight model performance relative to the characteristics of the reservoir. However, it is still
useful to have absolute error statistics since these errors also represent changes in reservoir height.

3. Results

Once models were trained, hindcast outputs were calculated for each day within the 2-year test period.
TabulatedMAPE andRMSE for 7-day and 14-day hindcasts are provided in Table 2. From these results, it
is clear that the models are capable of predicting reservoir storage within the established benchmarks.
Eight of the 17 reservoirs had MAPE rates below 1% for 7-day hindcasts. Additionally, eight of the
17 reservoirs had MAPE rates below 2% for 14-day hindcasts. Lake Weatherford achieved the 1%
threshold for 7-day hindcasts but not the 2% threshold for 14-day hindcasts while Joe Pool Lake showed
the opposite behavior.

Figures 4 and 5 plot the 7- and 14-day predictions, respectively, compared to the observed reservoir
storage over a 2-year span at Lake Meredith, Lake Corpus Christi, Joe Pool Lake, and Twin Buttes
Reservoir. For these graphs, the x-axis represents the date hindcasted, meaning that a 7-day hindcast
initiated with observed storage up to April 1, 2022would appear as the value for April 8, 2022. That value
would be compared against the observed storage value for April 8, 2022.

Included in Figures 4 and 5 is the daily precipitation over the 2-year test period. This data is used to
better understand trends in the reservoir storage levels, especially extreme weather events that cause sharp
changes in reservoir storage over the course of a few days.

4. Discussion

Among the 17 reservoirs, the best-performing reservoir was LakeMeredith, which posted a 7-dayMAPE of
0.32% and a 14-dayMAPE of 0.54%. This success may be attributed to the consistency of LakeMeredith’s
storage levels. Its lowest storage valueswere around 192,000 acre-feet while the highest storage valueswere
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around 232,000 acre-feet, representing a 17.2% difference between highest and lowest readings. Canyon
Lake was the next best performing model with a 7-day MAPE of 0.42% and a 14-day MAPE of 0.86%.
Interestingly, over the period of study, the reservoir storage fluctuates between 286,000 and 546,000 acre-
feet, a 47.6% difference. However, over the test period, Canyon Lake only fluctuated between 302,000 and
380,000 acre-feet. Consistency in the test dataset appears to drive test set accuracy metrics.

On the other hand, the worst-case scenario for prediction occurred at Lake J.B. Thomas, which lagged
behind its peers by posting a 7-day MAPE of 2.10% and a 14-day MAPE of 3.84%. These errors may be
due to large fluctuations in reported reservoir levels. One such instance occurred prior to September 2014,
when the reservoir storage maintained a level lower than 16,000 acre-feet. In April 2013, the level went
below the dead pool capacity of 673 acre-feet. During the test period, J.B. Thomas achieved its minimum
storage onMay 15, 2021 of approximately 22,700 acre-feet. By July 14, 2021, J.B. Thomas had reached a
storage of approximately 98,570 acre-feet. This 77% difference in values is abnormal among studied
reservoirs. Despite these fluctuations, the prediction results are still well within the established 5% error
benchmark. Visually, the hindcasted storage values align with the observed storage values. This is
particularly evident for the 7-day hindcasts in Figure 4, where model predictions correspond to large
fluctuations in storage caused by the presence or absence of precipitation within the watershed. This is
particularly true during May 2021, when Joe Pool Lake’s storage increased by over 26.5% in response to
large precipitation events. Similarly, Lake Corpus Christi increases from 238,000 acre-feet to
302,000 acre-feet over a span of 11 days from May 13 to 24, 2021. Then, the reservoir jumps up another
48,000 acre-feet to 350,000 acre-feet by June 10, 2021. These events are hindcasted accurately, and the
model output is reacting accordingly to strong rain events.

In some cases, the 7- and 14-day forecasts in Figures 4 and 5 show a potential for over-sensitivity to
precipitation. For example, observing LakeCorpus Christi over the same periods inMay and June, 2021, a
cause-and-effect due to rain events are seen with sharp upward spikes in the hindcast. This is also seen for
Joe Pool Lake in May and July, 2022. For longer-term hindcasts, the models are less sensitive to rapid

Table 2. Seven- and 14-day MAPE and RMSE values for predicted storage values of reservoirs in the
study

Reservoir

7-day 14-day

MAPE (%) RMSE (ac-ft) MAPE (%) RMSE (ac-ft)

Meredith 0.32 786 0.54 1,339
Weatherford 0.95 203 2.04 353
Joe Pool 1.01 3,331 1.83 5,883
Martin 0.84 1,146 1.40 1,731
Ray Hubbard 0.81 4,985 1.29 7,186
Conroe 0.75 5,435 1.09 7,073
Georgetown 1.55 535 3.16 955
White River 1.85 263 3.14 377
J.B. Thomas 2.10 3,975 3.84 6,380
Corpus Christi 1.92 8,720 3.17 13,876
Texana 1.37 3,232 2.31 4,797
Limestone 1.36 3,340 2.11 4,961
Twin Buttes 1.18 1,572 2.33 2,519
Millers Creek 0.82 305 1.49 458
Crook 1.52 214 2.07 261
Canyon 0.42 2,402 0.86 4,020
Leon 0.97 531 1.64 699
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declines in reservoir levels. An example of this is June 10–27, 2021 for Joe Pool Lake. The reservoir has a
steady decline of roughly 2900 acre-feet per day. This occurs because the reservoir is well above its
conservation storage capacity of 175,000 acre-feet, and reservoir managers significantly increase reser-
voir outflow to return the reservoir to capacity. The current models do not incorporate inflow and outflow
data because of the lack of historical data availability. However, the models may significantly improve
with the inclusion of this data which the authors are currently investigating.

5. Conclusion and Future Work

Anovel AI-based, climate resilient methodology has been proposed for water planning. The trainedmodels
and hindcast results meet predictive accuracy benchmarks, allowing reservoir managers to accurately
predict reservoir levels up to 14 days in the future. Potential future work includes incorporating additional
data such as inflow, outflow, cloud cover, soil moisture, and other related meteorological parameters as well
as expansion to other reservoirs in the USA and other countries. Extending the prediction range to 30 days
and beyond may be possible by training models to predict reservoir changes over multiple days instead of
incrementing each day. To make the trained models useful to water managers, the proposed models can be
deployed in a forecasting environment. By changing the test data set to forecast “future” scenarios, one can
replace historical climate data from the hindcast model with forecasted meteorological data using a global
forecast model, such as the NOAA GFS model. This work demonstrates an important first step toward
developing a water resource prediction product for water resource managers.

Figure 4. Plots of reservoir storage 7-day hindcast, observed reservoir storage, and observed daily
precipitation over the test period.
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