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Abstract

In this paper we consider a one dimensional stochastic system described by an elliptic
equation. A spatially varying random coefficient is introduced to account for uncertainty
or imprecise measurements. We model the logarithm of this coefficient by a Gaussian
process and provide asymptotic approximations of the tail probabilities of the derivative
of the solution.
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1. Introduction

In this paper we consider the tail event that arises naturally from a differential equation when
employed in various applications. Very often microscopic heterogeneity or uncertainty in the
parameters exist such that the system cannot be completely characterized by a deterministic
differential equation. Stochastic models are usually employed, in combination with differential
equations, to account for such heterogeneity and/or uncertainty. In this paper we are interested
in one specific differential equation concerning a real-valued solution v(x)

(a(x)v′(x))′ = p(x), x ∈ [0, L], (1)

where a(x) and p(x) are real-valued functions. This equation has applications to several
subfields of physics and also has a close connection to stochastic differential equations.

In this paper we adopt the formulation that the process a(x) is a spatially varying stochastic
process and thus the corresponding solution v(x) is itself (as a function of a(x)) also a stochastic
process. In a physical model the process a(x) is constrained to be positive. A natural modeling
approach is to accept that a(x) is a log-normal process,

a(x) = e−σξ(x), σ > 0, (2)

where ξ(x) is a Gaussian process living on [0, L]. We are interested in developing sharp
asymptotic approximations of the tail probabilities associated with v(x), in particular,

w(b)
d= P

(
max

x
|v′(x)| > b

)
as b → ∞.

Such tail probabilities serve as a risk measure for the material failure of an elastic body under
the maximum strain (i.e. v′(x)) criteria [10].
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Under the Dirichlet boundary condition, u(0) = u(L) = 0, and with representation (2),
equation (1) has a closed form solution

v(x) =
∫ x

0
F(t)eσξ(t) dt −

∫ x

0
eσξ(t) dt

∫ L

0
F(s)eσξ(s) ds

/∫ L

0
eσξ(s) ds,

where F(x)
d= ∫ x

0 p(t) dt and its derivative is

v′(x) = eσξ(x)

{
F(x) −

∫ L

0 F(t)eσξ(t) dt∫ L

0 eσξ(t) dt

}
. (3)

In this paper we present the derivation of closed form sharp asymptotic approximations
of w(b) as b → ∞. In particular, we discuss two situations: (i) p(x) is a constant and (ii)
|p(x)| admits one unique maximum in the interior of [0, L]. In addition to the asymptotic
approximations of w(b) this analysis also implies qualitative descriptions of the most likely
sample path along which maxx |v′(x)| achieves a high level. Firstly, if p(x) is a constant then
the maximum of |v′(x)| is likely to be obtained at either end of the interval and is unlikely
to be obtained in the interior. Secondly, if |p(x)| admits one unique interior maximum at
x∗ = arg maxx |p(x)|, then the maximum of |v′(x)| is likely to be obtained at either of the three
locations, 0, L, or close to x∗, depending on the specific values of p(0), p(L), and p(x∗).

By considering max |v′(x)| as a functional of the input Gaussian process ξ(x) the analysis
presented here is consistent with the published literature concerning rare-event analysis for
Gaussian processes (see, for example, [1]–[9], [11]–[14]). The analysis combines an under-
standing of physics, which helps with guessing the most probable sample path of ξ(x) given
the high excursion of |v′(x)|, and random field techniques to derive approximations of w(b).

The rest of this paper is organized as follows. In Section 2 we present the main results and
in Section 3 we prove the theorems. Supplementary material is provided at [15], while a more
comprehensive manuscript is available at [16] containing more discussions on the applications
of our results.

2. Main results

We consider the differential equation (1) that has the Dirichlet condition. The gradient of the
solution of (1) is given by (3). The random coefficient a(x) takes the form of (2), where ξ(x)

is a Gaussian process living on [0, L]. Next we list a set of technical conditions concerning the
input process ξ(x) and the function p(x).

Assumption 1. The process ξ(x) is strongly stationary with E[ξ(x)] = 0 and E[ξ2(x)] = 1.

Assumption 2. The process ξ(x) is almost surely three-time differentiable. The covariance
function admits the following expansion cov(ξ(0), ξ(x)) = C(x) = 1− 1

2�x2 + 1
24Ax4 − Bx6

+ o(x6), as x → 0. In addition, for each x, C(λx) is a nonincreasing function of λ ∈ R
+.

Assumption 3. The function p(x) is at least twice continuously differentiable. In addition, it
falls into either of the two cases.

Case 1. |p(x)| admits its unique interior global maximum x∗ = arg max |p(x)| and x∗ ∈
(0, L). Furthermore, |p(x)| is strongly concave (meaning that the second derivative is
strictly negative) in a sufficiently small neighborhood around x∗.

Case 2. p(x) is constant.
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Assumption 2 is an important assumption for the entire analysis. In particular, three-time
differentiability implies that the covariance function is at least six-time differentiable and that
the first, third, and fifth derivatives when evaluated at the origin are all zero. The coefficients �

and A are known as the spectral moments, and these are discussed further in the later analysis.
InAssumption 3, if |p(x)| has more than one (interior) global maximum or the global maximum
is at the boundary then the analysis can be adapted.

In the following we first consider Assumption 3, Case 1 where |p(x)| admits one unique
maximum. Let x∗

d= arg maxx∈[0,L] |p(x)| be the unique interior maximum in (0, L). Without
loss of generality we assume that p(x∗), p(0), and p(L) are all positive. For the case that some,
or all, of them are negative then the analysis is completely analogous. This will be mentioned
in later remarks.

We define three variables u, u0 and uL that depend on the excursion level b. They are all
approximately on the scale of (log b)/σ . For each b > 0, let u be the solution to the nonlinear
equation

p(x∗)H(γ∗(u), u)eσu = b, (4)

where
H(x, u) � |x|e−�σux2/2, (5)

and γ∗(u)
d= arg supx>0 H(x, u) = 1/(

√
u�σ). Identity (4) can be further simplified to give

(p(x∗)/
√

σ�u) exp (1/
√

σu)) = b. We introduce the notation γ∗(u) and H because they arise
naturally in the derivation and they have geometric and probabilistic interpretations that will
be given in the proof of our main theorems.

For each b > 0, let u0 be the solution to

eσu0

√
�σu0

sup
{(x,ζ ) : x≤ζ }

H0(x, ζ ; u0) = b,

where

H0(x, ζ ; u)
d= e−x2/2

E

[
p(0)(x − Z) + p′(0)

2
√

�σu
(x − Z)2

∣∣∣∣ Z ≤ ζ

]
. (6)

Z is a standard Gaussian random variable independent of any other randomness in the system
and where E[· | Z ≤ ζ ] denotes the conditional expectation with respect to Z given by Z ≤ ζ .
We provide further explanations of H0. The second term inside the expectation (6) is o(1) and
thus H0(x, ζ ; u) ≈ p(0)exp (−x2/2)(x −E[Z | Z ≤ ζ ]). The last term in the definition of H0
is important in order to obtain a sharp approximation of the tail probabilities. More properties
of H0 are included in Remark 1. Similarly, we define uL by

eσuL

√
�σuL

sup
{(x,ζ ) : x≤ζ }

HL(x, ζ ; uL) = b, (7)

where HL(x, ζ ; u) is defined in a similar way as in (6) except replacing p(0) and p′(0) by p(L)

and −p′(L), respectively.
Function F(x) is bounded and the factor, F(x) − ∫ L

0 F(t) exp(ξ(t)) dt/
∫ L

0 exp (ξ(t)) dt , is
also bounded. In fact, this factor converges to zero under the conditional distribution given
the high excursion of |v′(x)|. Thus, if |v′(x)| exhibits a high excursion then ξ(x) must also
achieve a high excursion level. The variable u is interpreted as the level that ξ(x) needs to
achieve so that |v′(x)| achieves the level b around x∗. Similarly, u0 and uL correspond to the
high excursion levels of ξ(x) at the two ends.
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For each ζ , u0, and uL, maximizing log(|H0|) and log(|HL|) over x ∈ (−∞, ζ ] gives us the
definitions of the following functions:

G0(ζ ; u0)
d= sup

x≤ζ

log |H0(x, ζ ; u0)| and GL(ζ ; uL)
d=sup

x≤ζ

log |HL(x, ζ ; uL)|.
Define the maximizers of the G-function as

ζ0
d= arg max

ζ
G0(ζ ; u0) and ζL

d= arg max
ζ

GL(ζ ; uL).

Note that ζ0 depends on u0 and ζL depends on uL. To simplify the notation we omit the
indices u0 and uL in the notation ζ0 and ζL when there is no ambiguity. The second derivatives
of the G-functions, evaluated at their maximizers, are �0

d= − limu0→∞ ∂2
ζ G0|ζ=ζ0,u=u0 , and

�L
d= − limuL→∞ ∂2

ζ GL|ζ=ζL,u=uL
, respectively. Finally, we define the constant

κ0
d= Aζ0

24�2σ
− A × E[Z4 | Z ≤ ζ0]

24�2σ

+ E[(p′′(0)/(6σ�))(ζ0 − Z)3 + (Ap(0)/(24�2σ 2))Z4(ζ0 − Z) | Z ≤ ζ0]
p(0)E[ζ0 − Z | Z ≤ ζ0] , (8)

as well as κL, which is similar to the above, by replacing ζ0 with ζL. The main results are
summarized in the following theorems.

Theorem 1. Suppose that ξ(x) is a Gaussian process satisfying Assumptions 1 and 2 and Case
1 of Assumption 3. For all x ∈ [0, L], let v′(x) be given as in (3). Let u, u0, and uL be
defined as above. If p(x) is nonnegative at x = 0, x∗, and L, then P(supx∈[0,L] |v′(x)| >

b) ∼ (D/
√

u) exp (−u2/2) + (D0/u0) exp (−u2
0/2) + (DL/uL) exp (−u2

L/2), where D, D0,
and DL are constants defined as

D =
√

� exp[(A/(24σ 2�2)) + (p′′(x∗)/(6p(x∗)σ 2�)]
(2π)3/2

√
A − �2

×
∫

exp

{
− 1

2

[
�2z2

A − �2 − z

σ
− y2z

�
+ Ay4

4�4 + Ay2

2σ�3 − p′′(x∗)y2

p(x∗)σ�2

]}
dy dz,

D0 =
√

� exp (κ0/σ)

(2π)3/2
√

A − �2

∫
exp

(
− 1

2

(
�2z2

A − �2 − z

σ
+ �0

�
y2

))
dy dz,

DL =
√

� exp (κL/σ)

(2π)3/2
√

A − �2

∫
exp

(
− 1

2

(
�2z2

A − �2 − z

σ
+ �L

�
y2

))
dy dz.

If p(x) attains its maximum at multiple interior points x1, . . . , xk , then the approximation be-
comes P(supx∈[0,L] |v′(x)| > b) ∼ ∑k

j=1 D(j)(1/
√

u) exp (−u2/2) + D0u
−1
0 exp (−u2

0/2)+
(DL/uL) exp (−u2

L/2), where D(j)’s are defined similarly as D except by replacing x∗ with
xk . If the maximizer x∗ is attained on the boundary, then the term (D/

√
u) exp (−u2/2) should

be removed from the approximation.
The theorem assumes that p(x) is positive at the important locations. In the case when

p(x∗) < 0, we simply define u through |p(x∗)| exp (σu + H(γ∗(u), u)) = b. The definitions
of other variables remain. Similarly, if p(0) is negative we should generally define that

H0(x, ζ ; u)
d= sgn(p(0))e−x2/2 × E

[
p(0)(x − Z) + p′(0)

2
√

�σu
(x − Z)2

∣∣∣∣ Z ≤ ζ

]
,
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Figure 1: Function GL(ζ, uL = ∞).

where ‘sgn’ is the sign function. The same treatment can be applied to HL when p(L) is
negative. The rest of the definitions remain. To simplify the notation we assume that p(0) and
p(L) are positive and do not include the sgn term.

Remark 1. There are several features of the functions H0 and HL that are important in the
analysis. As uL → ∞, we have that HL(x, ζ ; uL) → p(L) exp (−x2/2)(x−E[Z | Z ≤ ζ ]) >

0 and ζL ≈ 0.48. In addition, for ζ ≤ 0.84, we have ((∂|HL|)/(∂x))|(x,ζ )=(ζ,ζ ) > 0, and thus
maxx∈(−∞,ζ ] log |HL(x, ζ )| is solved at x = ζ , that is, GL(ζ ; uL) = log |HL(ζ, ζ ; uL)|. This
calculation is important in the technical derivations and it ensures that the maximum of |v′(x)| is
attained precisely at x = L if maxL−ε<x≤L |v′(x)| > b. To assist understanding we numerically
compute the function GL for ζ > 0 by setting uL = ∞. This is shown in Figure 1 for p(L) = 1.

Now we proceed to the approximation of w(b) when p(x) ≡ p0 > 0. The approximation is
very similar to Theorem 1, except that we do not have the term D × (1/

√
u) exp (−u2/2) and

all the derivatives of p(x) vanish. To state the theorem we need the following notation. We
define a similar H–function and G–function as Hh(x, ζ ) = p0 exp (−x2/2)E[x −Z | Z ≤ ζ ],
and Gh(ζ ) = supx≤ζ log |Hh(x, ζ )|. Furthermore, we define constants ζh = arg supζ Gh(ζ ),

�h = −∂2
ζ Gh(ζh),

Dh = � exp (κh/σ )

(2π)3/2
√

A − �2

∫
exp

{
− 1

2

[
�2z2

A − �2 − z

σ
+ �h

�
y2

]}
dy dz,

κh = Aζ 4
h

24�2σ
− AE[Z4 | Z ≤ ζh]

24�2σ
+ AE[Z4(ζh − Z) | Z ≤ ζh]

24�2σ 2E[ζh − Z | Z ≤ ζh] .

Theorem 2. Suppose that the random field ξ(x) satisfies the Assumptions 1 and 2 and Case 2
of Assumption 3. In addition, the external force p(x) ≡ p0 is a positive constant. For each
b > 0, let uh

exp (σuh)√
�σuh

sup
{(x,ζ ) : x≤ζ }

Hh(x, ζ ) = b.

Then, we have the closed form approximation

P( sup
x∈[0,L]

|v′(x)| > b)∼ 2(Dh/uh) exp (−u2
h/2).
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The proof of Theorem 2 is very similar to that of Theorem 1. We present it in the supplemen-
tary material [15], [16]. We further provide intuitive interpretations of the previous asymptotic
approximations. In particular, we focus mostly on the case when p(x) is not a constant.

The approximation in Theorem 1 consists of three terms. The first term (D/
√

u) exp (−u2/2)

corresponds to the probability that the maximum of |v′(x)| is attained close to the interior point
x∗ = arg maxx∈[0,L] |p(x)| where the terms (D0/u0) exp (−u2

0/2) and (DL/uL) exp (−u2
L/2)

correspond to the probabilities that the excursion of |v′(x)| occurs at the two boundary points
x = 0 and x = L, respectively. Thus, this three-term decomposition of w(b) suggests that the
conditional probability

P

(
max

x∈[ε,x∗−ε]∪[x∗+ε,L−ε] |v
′(x)| > b

∣∣∣ max[0,L] |v
′(x)| > b

)
→ 0,

as b → ∞ for any ε > 0. It is unlikely that the maximum is attained at any location other
than the two ends or at x∗. As for which of the three locations is most likely to exhibit a high
excursion, it depends on the specific functional forms of p(x). Note that all the three terms
decay exponentially fast with u2, u2

0, or u2
L. Therefore, the smallest value among u, u0, and

uL corresponds to the most likely location. Note that u0 and uL take the same form. Thus, we
only need to compare |p(0)| and |p(L)|. The larger one corresponds to a smaller u-value and
therefore yields a more likely high excursion. To compare the boundary case and the interior
case we need to compare u and u0 (or uL). We take u0 as an example. Note that both u and
u0 are defined by b implicitly through the equations having similar forms. Therefore, it is
sufficient to compare among the two terms

|p(x∗)eH(γ∗,u)| = |p(x∗)| e−1/2

√
σ�u

,

and
supx≤ζ H0(x, ζ, u0)√

σ�u0
∼ |p(0)| supx≤ζ e−x2/2

E[x − Z | Z ≤ ζ ]√
σ�u

.

Furthermore, we consider the ratio

r
d= supx≤ζ e−x2/2

E[x − Z | Z ≤ ζ ]√
σ�u

/ e−1/2

√
σ�u

= sup
(ζ,x),s.t. x≤ζ

e(1−x2)/2
E[x − Z | Z ≤ ζ ].

Note that r is a universal constant strictly greater than 1. If |p(x∗)| > r|p(0)|, then x∗ is a
more probable location to observe a high excursion but if |p(x∗)| < r|p(0)|, then zero is a
more probable location. If p(x) is a constant, then u > u0 = uh. This is why the maximum of
v′(x) is not attained in the interior for this case.

3. Proof of Theorem 1

In order not to overcomplicate the discussion, we present the proof of all supporting propo-
sitions and lemmas in the supplementary material, see [15], [16]. The proof in Theorem 1 is
based on the following inclusion–exclusion equation

3∑
i=1

P(Ei ) −
2∑

i=1

3∑
j=i+1

P(Ei ∩ Ej ) ≤ P

(
max[0,L] v

′(x) > b
)

= P

( 3⋃
i=1

Ei

)
≤

3∑
i=1

P(Ei ),
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where

E1 =
{

max
x∈[u−1/2+δ, L−u−1/2+δ]

|v′(x)| > b
}
,

E2 =
{

max
x∈[0,u−1/2+δ]

|v′(x)| > b
}
, and

E3 =
{

max
x∈[L−u−1/2+δ, L]

|v′(x)| > b
}
,

for some δ > 0 sufficiently small but independent of b. The main body is to derive the
approximations for P(Ei ). In addition, from the following detailed derivation of P(E1) and
P(E3), it is straightforward to write

P(E1 ∩ E2) + P(E1 ∩ E3) + P(E2 ∩ E3) = o(P(E1) + P(E2) + P(E3)). (9)

Thus, we complete the proof of Theorem 1 by the inclusion–exclusion equation. In the following
analysis we will use both x and t to denote the spatial index. In particular, we use t for the
index when performing integration and use x when taking the supremum.

3.1. Approximation for P(E1)

Consider the following change of variables from (ξ(x∗), ξ ′(x∗), ξ ′′(x∗)) to (w, y, z) that
depend on the variable u, w

d= ξ(x∗) − u, y
d= ξ ′(x∗), and z

d= u + ξ ′′(x∗)/�. Additionally
we write P(· | ξ(x∗) = u + w, ξ ′(x∗) = y, ξ ′′(x∗) = −�(u − z)) = P(· | w, y, z) and obtain

P(E1) = �

∫
P(E1 | w, y, z)h(w, y, z) dw dy dz, (10)

where h(w, y, z) is the density function of (ξ(x∗), ξ ′(x∗), ξ ′′(x∗)) evaluated at (u+w, y, −�(u

− z)). The following proposition localizes the event to a region that is convenient for a Taylor
expansion on ξ(x).

Proposition 1. Under the conditions in Theorem 1, consider

Lu = {|w| < u3δ} ∩ {|y| < u1/2+4δ} ∩ {|z| < u1/2+4δ}.

Then, for any δ > 0, we have that P(Lc
u; E1) = o(u−1e−u2/2).

This proposition localizes the event E1 to a region where the maximum of v′(x) is achieved
around x∗. The above proposition suggests that we only need to consider the event on the set
Lu, that is, �

∫
Lu

P(E1 | w, y, z)h(w, y, z) dw dy dz.

Conditional on (ξ(x∗), ξ ′(x∗), ξ ′′(x∗)), we write the process in the following representation
ξ(x) = E(ξ(x) | w, y, z) + g(x − x∗). The process g(x − x∗) represents the variation of ξ(x)

when ξ(x∗) and its first two derivatives have been fixed. Thus, g(x−x∗) is a mean-zero Gaussian
process almost surely three-time differentiable. Using conditional Gaussian calculations and a
Taylor expansion we have that var(g(x−x∗)) = O(|x−x∗|6), that is, g(x−x∗) = Op(|x−x∗|3)
as g is the remainder term after conditioning on ξ(x∗) and the first two derivatives. Note that
the distribution of g(x) is free of (w, y, z). Let Ē(x; w, y, z)

d=E(ξ(x) | w, y, z). By means
of the conditional Gaussian calculations [2, Chapter 5.5], we have that ∂Ē(x∗; w, y, z) = y,
∂2

Ē(x∗; w, y, z) = −�(u − z), ∂3
Ē(x∗; w, y, z) = −(A/�)y, and ∂4

Ē(x∗; w, y, z) = Au +
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O(z), where ‘∂’ is the partial derivative with respect to x. We perform a Taylor expansion on
Ē(x; w, y, z). Using the notation ϑ(x) = O(u1/2+4δx4 + ux6), we obtain that on the set Lu

ξ(x) = u + w + y(x − x∗) − �(u − z)

2
(x − x∗)2

− A

6�
y(x − x∗)3 + Au

24
(x − x∗)4 + g(x − x∗) + ϑ(x − x∗)

= u + w + y2

2�(u − z)
− �(u − z)

2

(
x − x∗ − y

�(u − z)

)2

− A

6�
y(x − x∗)3 + Au

24
(x − x∗)4 + g(x − x∗) + ϑ(x − x∗). (11)

For δ > 0, we further localize the event by the following proposition.

Proposition 2. For each δ, δ′ > 0 chosen to be small enough and δ′ > 24δ, we have that

P

(
sup

|x|>u−1/2+8δ

(|g(x)| − δ′ux2) > 0 or sup
|x|≤u−1/2+8δ

|g(x)| > u−1/2+δ′
, Lu

)
= o(u−1e−u2/2).

With this proposition, let

L′
u = Lu ∩

{
sup

|x|>u−1/2+8δ

[|g(x)| − δ′ux2] < 0
}

∩
{

sup
|x|≤u−1/2+8δ

|g(x)| < u−1/2+δ′}
.

We further reduce the event to �
∫
Lu

P(E1, L
′
u | w, y, z)h(w, y, z) dw dy dz.

Step 1: v′(x)

It is necessary to be reminded that the derivations are on the set L′
u. Consider the change

of variable that s = s(x) : x → √
�(u − z)(x − x∗ − (y/�(u − z))). We insert s into the

expansion in (11) and obtain

ξ(x) = u + w + y2

2�(u − z)
− Ay4

8�4(u − z)3 − s2

2
− Ay3

3�7/2(u − z)5/2
s

− Ay2

4�3(u − z)2 s2 + A

24�2(u − z)
s4 + g(x − x∗) + ϑ(x − x∗) + o(s4u−5/4).

Initially we are interested in approximating

F(x) −
∫ L

0 F(t)eσξ(t) dt∫ L

0 eσξ(t) dt
=

∫ L

0 (F (x) − F(t))eσξ(t) dt∫ L

0 eσξ(t) dt
. (12)

To compute the integration it is convenient to write the terms in the above expansion formula
for ξ(x), which do not include x (or equivalently s), as

c∗
d= σ

[
u + w + y2

2�(u − z)
− Ay4

8�4(u − z)3

]
.

We first consider the denominator∫ L

0
eσξ(x) dx = ec∗

∫ L

0
exp

{
σ

[
− s2

2
− Ay3

3�7/2(u − z)5/2
s − Ay2

4�3(u − z)2 s2

+ A

24�2(u − z)
s4 + g(x − x∗) + ϑ(x − x∗)

]}
dx,
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and separate it into two parts∫ L

0
eσξ(x) dx =

∫
|x−x∗|<u−1/2+8δ

eσξ(x) dx +
∫

|x−x∗|≥u−1/2+8δ

eσξ(x) dx = J1 + J2.

According to Assumption 2 and on the set {sup|x|>u−1/2+8δ [|g(x)| − δ′ux2] ≤ 0} (δ′ can be
chosen arbitrarily small), there exists some ε0 > 0 so that the minor term

J2 =
∫

|x−x∗|≥u−1/2+8δ

exp(σξ(x)) dx

≤
∫

|x−x∗|≥u−1/2+8δ

exp(c∗ − 2ε0u(x − x∗)2)

≤ exp(c∗ − ε0u
16δ).

We now proceed to the dominating term J1. Note that, on the set |x − x∗| < u−1/2+8δ ,
ϑ(x − x∗) = o(u−1). Then, we obtain

J1 = ec∗+o(u−1)

√
�(u − z)

eω(u)

∫
|x−x∗|<u−1/2+8δ

exp

{
σ

[
− s2

2
− Ay3

3�7/2(u − z)5/2
s

− Ay2

4�3(u − z)2 s2 + A

24�2(u − z)
s4

]}
ds,

where ω(u) = O(sup|x|≤u−1/2+8δ |g(x)|). Since var(g(x)) = O(|x|6) it is helpful to keep in
mind that ω(u) = Op(u−3/2+24δ).

Lemma 1. On the set L′
u, we have that∫

|x−x∗|<u−1/2+8δ

exp

(
σ

[
− s2

2
− Ay3

3�7/2(u − z)5/2
s

− Ay2

4�3(u − z)2 s2 + A

24�2(u − z)
s4

])
ds

=
√

2π

σ
exp

(
− Ay2

4�3(u − z)2 + A

8�2σu
+ o(u−1)

)
.

We substitute the result of the above lemma into the expression for the J1 term, combine the
J1 and J2 terms, to obtain that, on the set L′

u∫ L

0
eσξ(x) dx =

√
2π

σ�(u − z)

× exp

{
c∗ − Ay2

4�3(u − z)2 + A

8�2σ(u − z)
+ ω(u) + o(u−1)

}
. (13)

We now proceed to the analysis of (12). Let τ∗ = x∗ + γ∗, where γ∗ = u−1/2�−1/2σ−1/2. For
each x−τ∗ = O(u−1/2+16δ), we define a change of variable so that γ = x−x∗−(y/�(u−z)).

Note that ξ(x) is approximately a quadratic function with a maximum at x∗ + (y/�(u − z)).
Thus, γ is approximately the distance to the mode of ξ(x). Similar to the derivations of Lemma
1 and using the results in (13) the following lemma provides an approximation of (12).
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Lemma 2. On the set L′
u, we have that

F(x) −
∫ L

0 F(t)eσξ(t) dt∫ L

0 eσξ(t) dt
= p(x)γ exp

{
− p′(x)

2p(x)γ

(
γ 2 + 1

σ�(u − z)

)

+ p′′(x)

6p(x)

(
γ 2 + 3

σ�(u − z)

)
+ Ay3

3�4(u − z)3γ

+ o(u−1) + ω(u)

}
. (14)

We apply the change of variable γ = x − x∗ − (y/�(u − z)) to the representation of ξ(x) in
(11) and obtain that

ξ(x) = u + w + y2

2�(u − z)
− �(u − z)

2
γ 2 − A

6�
y

(
γ + y

�(u − z)

)3

+ Au

24

(
γ + y

�(u − z)

)4

+ g(x − x∗) + ϑ(x − x∗). (15)

We now combine (14) and (15) and obtain that for |x − x∗| ≤ u−1/2+8δ

v′(x) = exp

(
σu + σw + σy2

2�(u − z)

)
× p(x)γ exp

(
− σ�u

2
γ 2

)

× exp

{
σ�z

2
γ 2 − σA

6�
y

(
γ + y

�(u − z)

)3

+ σAu

24

(
γ + y

�(u − z)

)4

− p′(x)

2p(x)γ

(
γ 2 + 1

σ�(u − z)

)
+ p′′(x)

6p(x)

(
γ 2 + 3

σ�(u − z)

)

+ Ay3

3�4(u − z)3γ
+ o(u−1) + ω(u)

}
. (16)

Step 2: the event E1 = {maxx∈[u−1/2+δ,L−u−1/2+δ] |v′(x)| > b}
By the definition of u and the analytic form of (16), we have that

v′(x) ≥ b = p(x∗)γ∗eσu−(�σu/2)γ 2∗

if and only if γ > 0 and

σw + σy2

2�(u − z)
+ σ�z

2
γ 2 − σA

6�
y

(
γ + y

�(u − z)

)3

+ σAu

24

(
γ + y

�(u − z)

)4

− p′(x)

2p(x)γ

(
γ 2 + 1

σ�(u − z)

)
+ p′′(x)

6p(x)

(
γ 2 + 3

σ�(u − z)

)

+ Ay3

3�4(u − z)3γ
+ log H(γ, u) − log H(γ∗, u) + log

p(x)

p(x∗)
≥ o(u−1) − ω(u), (17)

where H is defined as in (5) and γ∗ = (1/
√

σ�u). We write the left-hand side of the above dis-
play asR(γ )+log H(γ, u)−log H(γ∗, u). Note that ∂2

γ log H(γ∗, u) = −2�σu and the deriva-
tive of the remainder term is ∂γ R(γ∗) = o(1)+O(zγ∗). Thus, log H(γ, u) dominates the vari-
ation. In particular, the left-hand side of (17) is maximized at γ = γ∗ + o(u−1)+O(zγ∗/u) =
(1/

√
u�σ + o(u−1) + O(zγ∗/u), equivalently, at x = x∗ + γ∗ + y/�(u − z) + o(u−1) +
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O(zγ∗/u).Therefore, max|γ |≤u−1/2+8δ R(γ )+log H(γ, u)−log H(γ∗, u) = R(γ∗) + o(u−1)+
O(z2/u2). This is interpreted as max|x−x∗|≤u−1/2+8δ v′(x) ≥ b if and only if

A
d= σw + σy2

2�(u − z)
+ σ�z

2
γ 2∗ − σA

6�
y

(
γ∗ + y

�(u − z)

)3

+ σAu

24

(
γ∗ + y

�(u − z)

)4

− p′(x)

2p(x)γ∗

(
γ 2∗ + 1

σ�(u − z)

)

+ p′′(x)

6p(x)

(
γ 2∗ + 3

σ�(u − z)

)
+ Ay3

3�4(u − z)3γ∗

+ log
p(x∗ + γ∗ + �−1(u − z)−1y)

p(x∗)
+ O(z2/u2)

≥ o(u−1) − ω(u).

Note that on the region |x − x∗| > u−1/2+8δ we need to consider the variation of g(x − x∗).
On the set L′

u, the variation of v′(x) is dominated by log H(γ, u). In particular, on the set
|x − x∗| > u−1/2+8δ we have log H(γ, u) − log H(γ∗, u) ≤ −ε0u(γ − γ∗)2. Furthermore, on
the set L′

u, we have that sup|x|>u−1/2+8δ (|g(x)| − δ′ux2) < 0. We can choose δ′ < ε0/2, then
2|g(x)| < log H(γ∗, u) − log H(γ, u) for all |x − x∗| > u−1/2+8δ . Thus, on the set L′

u, the
maximum of v′(x) is attained on |x − x∗| ≤ u−1/2+8δ , i.e. max[u−1/2+δ,L−u−1/2+δ] v′(x) > b if
and only if A > o(u−1) − ω(u). The following lemma simplifies the analytic form of A.

Lemma 3. The expression A can be simplified to

A = σw + σy2

2�u
+ σ

2�u2 y2z + z

2u
+ A

24σ�2u

+ p′′(x∗)
6p(x∗)σ�u

− σAy4

8�u3 + y2

u2

(
− A

4�3 + p′′(x∗)
2p(x∗)�2

)
+ o(u−1 + y2u−2) + O(z2/u2).

With exactly the same development we have maxx∈[u−1/2+δ,L−u−1/2+δ][−v′(x)] ≥ b if and
only if A ≥ o(u−1)+ω(u). In fact, from the technical proof of Lemma 3, we basically choose
γ = −γ∗+o(u−1)+O(zγ∗/u) and all the other derivations are the same. We omit the repetitive
details. Thus, the event E1 occurs if and only if A ≥ o(u−1) + ω(u).

Step 3: evaluation of the integral in (10)

Lemma 4. The density of (ξ(x), ξ ′′(x), ξ ′′(x)) evaluated at (u + w, y, −�(u − z)) is

h(w, y, z) = e−S(w,y,z)/2

(2π)3/2
√

�(A − �2)
,

where

S(w, y, z) = u2 + w2 + �2(w + z)2

A − �2 + 2u

(
w + y2

2�u

)
.

The proof of the above lemma is elementary and therefore is omitted; see also Chapter 5.5
in [2].
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We insert the expression of A in Lemma 3 to the exponent of the density function

S(w, y, z) = u2 + w2 + �2(w + z)2

A − �2 + 2u

[
A

σ
− y2z

2�u2 − z

2σu
− A

24σ 2�2u

− p′′(x∗)
6p(x∗)σ 2�u

+ Ay4

8�4u3 − y2

u2

(
− A

4σ�3 + p′′(x∗)
2p(x∗)σ�2

)

+ o(u−1 + y2u−2) + O(z2/u2)

]
. (18)

The following lemma provides a lower bound of S(w, y, z) for the dominated convergence
theorem.

Lemma 5. On the set L′
u

S(w, y, z) ≥ u2 + 2uA/σ + �2

A

(
A

2�3

y2

u
− z

)2

+ 1 + o(1)

σ

(
A

2�3

y2

u
− z

)
− p′′(x∗)

p(x∗)σ�2

y2

u
+ O(1).

It is useful to keep in mind that p′′(x∗) < 0. Let Au = uA. Note that for each fixed
(Au, y, z), w → 0 as u → ∞. Furthermore, note that ω(u) = O(sup|x|≤u−1/2+8δ |g(x)|) =
Op(u−3/2+24δ). We consider a change of variable from (w, y, z) to (Au, y, z). The dominated
convergence theorem and (18) yield that

�

∫
Lu

P(E1, L
′
u | w, y, z)h(w, y, z) dw dy dz

=
√

�

(2π)3/2
√

A − �2
×

∫
Lu

P(A > ω(u), L′
u | w, y, z)e−(1/2)S(w,y,z) dw dy dz

∼
√

�

(2π)3/2
√

A − �2
×

∫
Lu

I (Au > 0)e−(1/2)S(w,y,z) dAu

σu
dy dz.

For the last step we use the fact that P(L′
u | w, y, z) → 1 and P(A > ω(u), L′

u | w, y, z) →
I (Au > 0) as u → ∞. We insert the expression S(w, y, z) from (18) and set w = 0 (by the
dominated convergence theorem and the fact that for fixed Au, y, and z, we have w → 0 as
u → ∞), giving

∼
√

�

(2π)3/2
√

A − �2
u−1 exp

(
− u2/2 + A

24σ 2�2 + p′′(x∗)
6p(x∗)σ 2�

) ∫ ∞

0

1

σ
e−Au/σ dAu

×
∫

exp

(
− 1

2

[
�2z2

A − �2 − z

σ
− y2z

�u
+ A

4�4

y4

u2

− y2

u

(
− A

2σ�3 + p′′(x∗)
p(x∗)σ�2

)])
dy dz.

We apply the change of variable that yu = (y/
√

u) for the integration, giving

∼ Du−1/2e−u2/2. (19)

This corresponds to the first term of the approximation in the statement of the theorem.
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3.2. The approximation of P(E3)

The analysis of P(E2) and P(E3) are analogous. We only need to derive P(E3). The
difference between the analyses of P(E3) and P(E1) is that the integrals in the factor (12) are
truncated by the boundary and therefore most of the calculations are related to conditional
Gaussian distributions. We redefine some notation. Let uL and ζL be defined as in Section 2
prior to the statement of the theorem. We first define tL = L − (ζL/

√
�σuL) as the location

where ξ(x) is likely to have a high excursion given that v′(x) has a high excursion at the right
boundary L. We will perform a Taylor expansion by conditioning on the field at tL. We redefine
the notation (w, y, z) as ξ(tL) = uL+w, ξ ′(tL) = y, and ξ ′′(tL) = −�(uL − z). Furthermore,
we consider the following change of variables ‘γ ’ and ‘s’

x = γ + tL + y

�(uL − z)
, t = tL + y

�(uL − z)
+ s√

�(uL − z)
. (20)

With some simple calculations we arrive at t ≤ L if and only if

s ≤
√

(1 − z/uL)

σ
ζL − y√

�(uL − z)
.

Furthermore, it is useful to keep in mind that v′(x) is maximized when γ is of order (1/
√

uL).
Let g(x) be the remainder process such that ξ(x) = E(ξ(x) | w, y, z) + g(x − tL). Similar to
the analysis of P(E1), we first localize the event via the following proposition.

Proposition 3. Using the notation in Theorem 1, under Assumptions 1 and 2, consider

CuL
= {|w| > u3δ

L } ∪ {|y| > u
1/2+4δ
L } ∪ {|z| > u

1/2+4δ
L }

∪
{

sup
|x|>u

−1/2+8δ
L

[|g(x)| − δ′uLx2] > 0
}

∪
{

sup
|x|≤u

−1/2+8δ
L

|g(x)| > u
−1/2+δ′
L

}
.

Then, for any δ > 0 and δ′ > 24δ, we have that P(CuL
; E3) = o(u−1

L e−u2
L/2).

Let L∗
uL

= Cc
uL

and we only need to consider P(L∗
uL

, E3). With a similar derivation as that
for P(E1), the following lemma provides an estimate of

∫ L

0
(F (x) − F(t))e(σξ(t)) dt

/∫ L

0
e(σξ(t)) dt .

Lemma 6. On the set L∗
uL

, we have that

∫ L

0 (F (x) − F(t))eσξ(t) dt∫ L

0 eσξ(t) dt

= 1√
�σuL

exp

(
z

2uL

− A

24�2σuL

E[Z4 | Z ≤ ζL] + λ(uL) + ω(uL)

)

×
{

E

[
p(x)(γ

√
σ�(uL − z) − Z) − p′(x)

2
√

σ�uL

(γ
√

σ�(uL − z)

− Z)2
∣∣∣∣ Z ≤

√
1 − z

uL

ζL −
√

σ

�(uL − z)
y

]
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+ E

[
p′′(x)

6σ�uL

(γ
√

σ�uL − Z)3 + Ap(x)

24�2σ 2uL

Z4(γ
√

σ�uL

− Z)

∣∣∣∣ Z ≤
√

1 − z

uL

ζL −
√

σ

�(uL − z)
y

]}
, (21)

where

λ(uL) = O(y3/u
5/2
L + y2/u2

L + y/u3/2) + o(u−1
L + u−1

L z),

ω(u) = O
(

sup
|x|≤u−1/2+8δ

|g(x)|
)
,

and Z is a standard Gaussian random variable.

Inside the ‘{}’ of the above approximation, the first expectation term is the dominating term
and the second term is of order o(u−1). The next lemma presents an approximation of v′(x).

Lemma 7. On the set L∗
uL

, we have that

v′(x) = exp

(
λ(uL) + o(yu−1

L
) + O(y2zu−2

L
) + ω(uL) + σuL + σw + σy2

2�uL
+ AσuL

24
γ 4

)

× 1√
�σuL

exp

(
z

2uL
− A

24�2σuL

E[Z4 | Z ≤ ζL]
)

× HL,x

(
γ
√

σ�(uL − z),

√
1 − z

uL
ζL −

√
σ

�(uL − z)
y; uL

)

× exp

{
E[(p′′(x)/(6σ�uL))(γ

√
σ�uL − Z)3 + (Ap(x)/(24�2σ 2uL))Z4(γ

√
σ�uL − Z) | Z ≤ ζL]

p(x)E[γ√
σ�uL − Z | Z ≤ ζL]

}
,

where

HL,y(x, ζ ; u)
d= e−(x2/2) × E

[
p(y)(x − Z) − p′(y)

2
√

�σu
(x − Z)2

∣∣∣∣ Z ≤ ζ

]
.

Note that the definition of HL,y(x, ζ ; z, u) is slightly different from HL(x, ζ, u) defined as
in Section 2. In particular, if we let y = L, then HL,y(x, ζ ; u) = HL(x, ζ ; u). Furthermore,
according to the change of variable in (20), x ≤ L if and only if

γ
√

σ�(uL − z) ≤
√

1 − z

uL

ζL −
√

σ

�(uL − z)
y. (22)

Thus, the maximization of v′(x) (in choosing the variable γ ) is subject to the above constraint.
According the definition of uL in (7) and the notation GL(ζ ; uL) = supx≤ζ log |HL(x, ζ, uL)|,
we have that maxx∈[L−u−1/2+δ,L] |v′(x)| > b if and only if

max
x∈[L−u

−1/2+δ
L

,L]
λ(uL) + ω(uL) + o(yu−1

L
) + O(y2zu−2

L
)

+ σw + σy2

2�uL
+ AσuL

24
γ 4 + z

2uL
− AE[Z4 | Z ≤ ζL]

24�2σuL

+ log |HL,x(γ
√

σ�(uL − z),

√
1 − z

uL
ζL −

√
σ

�(uL − z)
y; uL)| − GL(ζL; uL)

+ E[(p′′/(6σ�uL))(γ
√

σ�uL − Z)3 + (Ap/(24�2σ 2uL))Z4(γ
√

σ�uL − Z) | Z ≤ ζL]
p(x)E[γ√

σ�uL − Z | Z ≤ ζL] > 0. (23)

We now proceed to the evaluation of P(E3) that consists of two cases.

https://doi.org/10.1239/jap/1421763325 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1421763325


Extreme analysis of a random ordinary differential equation 1035

We first consider the case that |√1 − (z/uL)ζL − √
σ/(�(uL − z))y − ζL | ≤ ε. Note that

the major variation of the left-hand-side of (23) is dominated by

log

∣∣∣∣HL,x

(
γ
√

σ�(uL − z),

√
1 − z

uL

ζL −
√

σ

�(uL − z)
y; uL

)∣∣∣∣.
Thanks to the discussion in Remark 1, the above expression is maximized at (subject to the
constraint (22)) γ

√
σ�(uL − z) = √

1 − (z/uL)ζL − √
(σ/(�(uL − z)))y, that is,

γ = ζL√
�σuL

− y

�(uL − z)
. (24)

Recall the change of variable in (20), this corresponds to x = L. That is, the maximum is
attained on the boundary x = L. Then, we can replace HL,x in (23) by HL,L = HL. Let
γL = ζL/

√
σ�uL. For the particular choice of γ in (24), we have that γ 4 = γ 4

L + o(y2/u2
L).

We have that max
x∈[L−u

−1/2+δ
L ,L] |v′

L(x)| > b if and only if A ≥ ω(uL) where

A
d= λ(uL) + o(yu−1

L
) + O(y2zu−2

L
) + σw + σy2

2�uL

+ AσuL

24
γ 4
L + z

2uL
− AE[Z4 | Z ≤ ζL]

24�2σuL

+ GL

(√
1 − z

uL
ζL −

√
σ

�(uL − z)
y; uL

)
− GL(ζL; uL)

+ E[(p′′(L)/(6σ�uL))(γL
√

σ�uL − Z)3 + (Ap(L)/(24�2σ 2uL))Z4(γL
√

σ�uL − Z) | Z ≤ ζL]
p(L)E[ζL − Z | Z ≤ ζL] .

Lemma 8. The expression A can be simplified to

A = λ(uL) + o(yu−1
L ) + O(y2zu−2

L ) + σw + σy2

2�uL

+ z

2uL

+ κL

uL

− �L + o(1)

2

(
ζLz

2uL

+
√

σ

�(uL − z)
y

)2

,

where κL is given as in (8).

With the above lemma, we rewrite S(w, y, z) as

S(w, y, z) = u2
L + w2 + �2(w + z)2

A − �2 + o(1) + o(y2)

+ 2uL

[
A/σ − z

2σuL

− κL

σuL

+ �L + o(1)

2σ

(
ζLz

2uL

+
√

σ

�(uL − z)
y

)2

+ λ(uL) + o(yu−1
L ) + O(y2zu−2

L )

]
.

Similar to the derivation of (19), by the dominated convergence theorem, we have that

P

(
max

x∈[L−u
−1/2+δ
L ,L]

|v′(x)| > b; L∗
uL

;
∣∣∣∣
√

1 − z

uL

ζL −
√

σ

�(uL − z)
y − ζL

∣∣∣∣ ≤ ε
)

∼
√

�

(2π)3/2
√

A − �2
u−1

L e−u2
L/2+(κL/σ)

∫
exp

(
− 1

2

(
�2z2

A − �2 − z

σ
+ �L

�
y2

))
dy dz

= DLu−1
L e−u2

L/2. (25)
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The following lemma presents the case that |√1 − (z/uL)ζL − √
σ/(�(uL − z))y − ζL| ≥ ε.

Lemma 9. Under the conditions in Theorem 1, we have that

P

(
max

x∈[L−u
−1/2+δ
L ,L]

|v′(x)| > b; L∗
uL

∣∣∣∣
√

1 − z

uL

ζL −
√

σ

�(uL − z)
y − ζL

∣∣∣∣ ≥ ε

)

= o(1)u−1
L e−u2

L/2.

Combining (25), Lemma 9, and the localization result in Proposition 3, we have that

P

(
max

x∈[L−u
−1/2+δ
L ,L]

|v′(x)| > b
)

∼ DLu−1
L e−u2

L/2.

Approximation of P(E2)

The analysis of P(E2) is completely analogous. In particular, we let t0 = ζ0/
√

�σu0,
ξ(t0) = u0 + w, ξ ′(t0) = y, and ξ ′′(t0) = −�(u − z) and further adopt the change of vari-
ables x = t0 + (y/�(u0 − z)) − γ and t = t0 + (y/�(u0 − z)) − (s/

√
�(u0 − z)). Then the

calculations are exactly the same as those of P(E3). Therefore, we omit the repetitive derivations
and provide the result that P(max

x∈[0,u
−1/2+δ
L ] |v′(x)| > b) ∼ (D0/u0) exp (−u2

0/2). With the
inclusion–exclusion formula and (9), we conclude the proof.
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