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Abstract. Nambu structures are a generalization of Poisson structures in Hamiltonian dynamics,
and it has been shown recently by several authors that, outside singular points, these structures
are locally an exterior product of commuting vector fields. Nambu structures also give rise to co-
Nambu differential forms, which are a natural generalization of integrable 1-forms to higher orders.
This work is devoted to the study of Nambu tensors and co-Nambu forms near singular points. In
particular, we give a classification of linear Nambu structures (integrable finite-dimensional Nambu-
Lie algebras), and a linearization of Nambu tensors and co-Nambu forms, under the nondegeneracy
condition.
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1. Introduction

LetV be ann-dimensional smooth manifold andC = C∞(V ) the space of smooth
functions onV . A Nambu structure of orderq onV is a multi-linear anti-symmetric
application5 from the direct product ofq samples ofC to C, and denoted by the
bracket{ }:

5:C × C × · · · × C → C, (f1, f2, . . . , fq) 7→ {f1, f2, . . . , fq}

which satisfies the following two conditions
(i) Leibnitz condition:

5f1,...,fq−1(fg) = f5f1,...,fq−1(g)+ g5f1,...,fq−1(f ) (1)

(ii) Jacobi condition:

5f1,...,fq−1({g1, . . . , gq}) =
q∑
i=1

{g1, . . . , gi−1,5f1,...,fq−1(gi), . . . , gq} (2)

for any f1, . . . , fq−1, g1, . . . , gq−1, f, g ∈ C, where5f1,...,fq−1 denotes the con-
traction of5 by f1, . . . , fq−1:5f1,...,fq−1(f ) := {f1, . . . , fq−1, f }.
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78 JEAN-PAUL DUFOUR AND NGUYEN TIEN ZUNG

The Leibnitz condition (together with the antisymmetricity of5)means that5
is given by an (anti-symmetric)q-vector field onV , which we will also denote by
5. Whenq = 1 the Jacobi condition is empty and we simply have a vector field
onV . Whenq = 2 the Jacobi condition is the usual condition for a 2-vector field
to be a Poisson structure in Hamiltonian dynamics. Thus, Nambu structures, which
are also called Nambu–Poisson structures, are a kind of generalization of Poisson
structures when the orderq is different from 2. They were introduced by Nambu
[14] in an attempt to generalize Hamiltonian mechanics.

Given a Nambu structure of orderq and a(q − 1)-tuple of functions(f1, . . . ,

fq−1) onV , one can associate to it aHamiltonianvector field, which is the vector
field corresponding to the derivation5f1,...,fq−1:C → C. The Jacobi condition
means that this Hamiltonian vector field preserves the Nambu structure, like in
usual Hamiltonian dynamics. From the definition it is evident that the contraction
5f1,...,fq−r of a Nambu structure5 of orderq with arbitraryq− r smooth functions
f1, . . . , fr(0 < r < q),5f1,...,fq−r (g1, . . . , gr) := 5f1,...,fq−1(g1, . . . , gr ) is again
a Nambu structure of orderr. In particular, whenq > 3 andr = 2, we get an
infinite family of Poisson structures.

Nambu structures were studied by many people in recent years, and one can
imagine various algebraic structures associated to them ([6, 17]). The most signi-
ficant result obtained, which is in fact also quite simple to prove, is the following
local normal form theorem, which was proved by Gautheron [6] and independently
by Nakanishi [13] and Alekseevsky and Guha [1]. Hereafter by aNambu tensorof
orderq we will mean anq-vector field associated to a Nambu structure.

THEOREM (Gautheronet al.). Let5 be a Nambu tensor of orderq > 3 on an
n-dimensional manifoldV , andO ∈ V a point in which5(O) 6= 0. Then in a
small neighborhood ofO one can find a local system of coordinates(x1, . . . , xn)

such that5 = ∂/∂x1 ∧ · · · ∧ ∂/∂xq in this neighborhood.

The above theorem is a kind of Darboux theorem for Nambu structures. It also
shows a big difference between Nambu structures of order> 3 and Poisson struc-
tures: the former ones are decomposable at nonzero points while the later ones are
not in general.

The above theorem prompts us to study singularities of Nambu structures. The
first obvious thing that we observe here is that each Nambu structure gives rise to an
associated singular foliation (in the sense of Stefan–Sussmann), whose distribution
is spanned by the Hamiltonian vector fields5f1,...,fq−1. Whenq > 3 the leaves
of this singular foliation is of dimension either 0 orq, while in case of Poisson
structures(q = 2) they may have any even dimension (see, e.g., [18, 19] for the
case of Poisson structures). These singular foliations give a geometric picture about
the Nambu structures themselves.

By a singularity of a Nambu structure5, or aNambu singularitywe mean a
small neighborhood of a pointO at which5(O) = 0. When5(O) = 0 at some
point O, then its linearization atO is well-defined and gives us a linear Nambu
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structures. Thus the study of linear Nambu structures is a natural first step in the
study of singularities of general Nambu structures. We have the following result
(cf. Corollary 3.3).

THEOREM 1.1. Every linear Nambu tensor5 of order q = n − p > 3 on an
n-dimensional linear spaceV belongs to one of the following two types:

Type 1: 5 =∑r+1
j=1±xj∂/∂x1 ∧ · · · ∧ ∂/∂xj−1 ∧ ∂/∂xj+1 ∧ · · · ∧ ∂/∂xq+1 +∑s

j=1±xq+1+j ∂/∂x1 ∧ · · · ∧ ∂/∂xr+j ∧ ∂/∂xr+j+2 ∧ ∂/∂xq+1 (with −1 6 r 6
q,06 s 6 min(p − 1, q − r)).

Type 2:5 = ∂/∂x1 ∧ · · · ∧ ∂/∂xq−1 ∧ (∑n
i,j=q b

i
j xi∂/∂xj )

We will call a Nambu singularityof Type 1if its linear part is of Type 1, andof
Type 2in the other case. The singularties of Type 1 and Type 2 are very different
geometrically, their corresponding foliations look very different, though they are in
some natural sensedual to each other (cf. Section 3). We have the following result
about the linearization of Nambu tensors near singular points (see Theorem 5.1,
Theorem 5.2 and Theorem 6.2 for the precise formulations):

THEOREM 1.2. Nondegenerate singularities of Type 1 of Nambu tensors of order
q > 3 are formally linearizable. They are, up to multiplication by a function,
C∞-linearizable if they are analytic, andCw-linearizable in the analytic (real or
complex) case. Nondegenerate singularities of Type 2 of Nambu tensors of order
q > 3 areC∞-linearizable under some nonresonance condition, and analytically
linearizable in the analytic case under some Diophantine condition.

For nonelliptic singularities of type 1 of classC∞, we have (see Section 5): In
the case of signatureq − 3 they are not continuously linearizable in general. If the
signature is different fromq − 3 then they are conjectured to beC∞-linearizable.
What we know is that in this case their associated singular foliations are homeo-
morphic to the ones given by the linear Nambu structures.

An important object which arises in the study of Nambu tensors are the so-called
co-Nambu forms, which are obtained by the contraction of Nambu tensors with
volume forms. For them we have some results analogous to the above theorem,
which complement the ones obtained by Medeiros [10], and are similar to some
results obtained before by Kupka [7], Reeb [20], Moussu [11, 12] and others for
integrable 1-forms. Thus one can think of co-Nambu forms as integrable differen-
tial forms of higher orders. In fact, they are calledintegrablep-forms in [10]. In
particular, we suspect that many results obtained by various authors for degenerate
singularities of integrable 1-forms can be also generalized to the case of co-Nambu
forms.

The rest of this paper is organized as follows: In Section 2 we give some prelim-
inary results concerning Nambu structures, most notably about co-Nambu forms.
In Section 3 we give a classification of linear Nambu structures, where we show
that they can be divided in two types. In Section 4 we prove a theorem about the
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decomposition of Nambu structures near nondegenerate singularities. Section 5
and Section 6 contain our main results concerning the linearization problem.

2. Preliminaries

Let� be a volume form on ann-dimensional manifoldV , and5 a q-vector field
on V , with n > q > 2. Putp = n − q and denote byω thep-form obtained by
contracting5 and�: ω = i5�. Then the condition for5 to be a Nambu tensor
can be rewritten in terms ofω:

PROPOSITION 2.1.With the above notations,5 is Nambu if and only ifω satisfies
the following two conditions:

iAω ∧ ω = 0, (3)

iAω ∧ dω = 0, (4)

for any(p − 1)- vectorA.

In casep = 1 the above conditions simply mean that dω ∧ ω = 0, i.e.ω is an
integrable 1-form.

The proof of the above proposition is based on the following two lemmas, which
follow directly from the Leibnitz and Jacobi conditions (1), (2) and the normal form
theorem of Gautheronet al.

LEMMA 2.2. 5 is a Nambu tensor if and only if it is so on the open setU = {x ∈
V,5(x) 6= 0} of points where it does not vanish.

LEMMA 2.3. Suppose thatq > 3. Then aq-vector field5 is Nambu if and only if
in a neighborhood of each pointO where5(O) 6= 0, we can find a local system of
coordinates(x1, . . . , xn) in which5 can be written as5 = ∂/∂x1 ∧ · · · ∧ ∂/∂xq .

Proof of Proposition 2.1.Let5 be a Nambuq-tensor withq > 3. In a neigh-
borhood of a pointO such that5(O) 6= 0 we have5 = ∂/∂x1 ∧ · · · ∧ ∂/∂xq
in some system of coordinates, according to the theorem of Gautheronet al. Since
� = f dx1 ∧ · · · ∧ dxn (with some nonzero functionf ), we have

ω = ±f dxq+1 ∧ · · · ∧ dxn and dω = ± df ∧ dxq+1 ∧ · · · ∧ dxn.

From here it is easy to verify that the Equation (3) and Equation (4) are satisfied
for any (p − 1)-vectorA, wherep = n − q. (At least they are satisfied at any
nonzero point of5, but then at any point, since zero points of5 are also zero
points ofω.)

Conversely, let5 be aq-vector such thatω = i5� satisfies the Equations (3)
and (4). Fix a pointO ∈ V such that5(O) 6= 0 (henceω(O) 6= 0). Then Equation
(3) implies thatω is decomposable in a neighborhood ofO: ω = α1 ∧ · · · ∧ αp,
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whereαi are independent 1-forms. One can find(p − 1)-vectorsA1, . . . , Ap such
that iAj ω = αj , j = 1, p in some neighborhood ofO. Hereafter1, p means
1,2, . . . , p. Then Equation (4) givesαj ∧ dω = 0 for j = 1, p in this neigh-
borhood. But

dω =
p∑
j=1

α1 ∧ · · · ∧ αj−1 ∧ dαj ∧ αj+1 ∧ · · · ∧ αp.

Thus we have dαj ∧ α1 ∧ · · · ∧ αp = 0 for j = 1, p. In other words,αj satisfy
the conditions of Frobenius theorem (see e.g. [2]), which says that in this case there
exists a local system of coordinates(x1, . . . , xn) such thatαj∧dxq+1∧· · ·∧dxn = 0
for j = 1, p. It follows thatω = f dx1 ∧ · · · ∧ dxp for some nonzero functionf ,
and5 = g∂/∂x1 ∧ · · · ∧ ∂/∂xq for some nonzero functiong. Replacingx1 by

x′1 =
∫ x1

t=0

dt

g(t, x2, . . . , xn)
,

we have5 = ∂/∂x1 ∧ · · · ∧ ∂/∂xq . Applying Lemma 2.3, we obtain that5 is a
Nambu structure 2

A simple corollary of Propositon 2.1 is that if5 is a Nambu tensor of order
q > 3 and iff is a smooth function, thenf5 is again a Nambu structure.

DEFINITION 2.4. A differentialp-form ω which satisfies the equations(3) and
(4) in Proposition 2.1 will be called aco-Nambu form(of orderp and co-orderq).

We have a bijection5 ↔ ω between Nambu tensors and co-Nambu forms (if
V is orientable). Of course, this bijection depends on the choice of a volume form
on V , so it is not unique, but unique up to multiplication by a nonzero function.
Thus the study of singularities of5 and that ofω are almost the same.

As a principle, when a structure vanishes at some point, then its linearization is
well-defined, and if its linearization also vanishes, then its quadratization is well-
defined, etc. It is also true for Nambu and co-Nambu structures. LetO ∈ V be
a point such that5(O) = 0, and(x1, . . . , xn) a local system of coodinates in a
neighborhood ofO. Then we have a Taylor expansion of5 atO:

5 = 5(1) +5(2) +5(3) + · · ·
where

5(i) =
∑

j16···6jq
P
(i)
j1...jq

∂/∂xj1 ∧ · · · ∧ ∂/∂xjq

with P (i)j1...jq being polynomials of orderi in x1, . . . , xn. It is easy to see from the

definition that5(1) is well-defined, and is also a Nambu structure. It is called the
linear part of5.
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Similarly (by putting� = dx1∧· · ·∧dxn)we haveω = ω(1)+ω(2)+ω(3)+· · · ,
with ω(k) = i5(k)� =

∑
j16···6jq ±P (k)j1...jq

dx1∧ · · · ∧ dx̂j1 ∧ · · · ∧ dx̂jq ∧ · · · ∧ dxn.

In particular, the linear partω(1) of ω is well-defined byω and is also a co-Nambu
form. Note thatω(1) is uniquely determined by5(1), up to multiplication by a
constant.

For co-Nambu 1-forms, Proposition 2.1 shows that they are nothing but in-
tegrable 1-forms. (This has been known to be true also for Poisson sturctures on
3-manifolds, cf. [5]). The singularities of integrable 1-forms have been extensively
studied (see e.g. [7, 8, 10, 11, 20]). In particular, there is the following so-called
Kupka’s phenomenon (see [7, 10]): IfO is a zero point of an integrable 1-formω
and dω(O) 6= 0, then locallyω is a pull-back of an 1-form on a plane. In [10] a
similar result is also proved for co-Nambu forms of higher orders.

3. Linear Nambu Structures

THEOREM 3.1. If ω is a linear co-Nambup-form of co-orderq = n−p > 3 on a
linear spaceV then there exist linear coordinates(x1, . . . , xn) such thatω belongs
to one of the following two types:

Type 1: ω = dx1 ∧ · · · ∧ dxp−1 ∧ α whereα is an exact 1-form of the type

α = d[∑p+r
j=p±x2

j /2+
∑s

i=1 xixp+r+i], with−16 r 6 q = n−p,06 s 6 q−r.
Type 2: ω = ∑p+1

i=1 ai dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxp+1 with ai =∑p+1
j=1 a

j

i xj , whereaij are constant. The matrix(aji ) can be chosen to be in Jordan
form.

Proof. Putω = ∑n
j=1 xjωj whereωj are constantp-forms. Thenω = ωj at

points(x1 = 0, . . . , xj = 1, . . . , xn = 0). At any pointω is either decomposable
(i.e. a wedge product of covectors) or zero, so doesωj since it is constant. Denote
byEj the span ofωj , i.e.

Ej = Span(ωj )
def= Span{iAωj , A is a(p − 1)− vector}

= Annulator{x ∈ V, ixωj = 0} ⊂ V ∗

Then dimEj = p if ωj 6= 0, because of decomposability. We have:

LEMMA 3.2. If ωi 6= 0 andωj 6= 0 for some indicesi andj , thendim(Ei∩Ej) >
p − 1.

Proof. Puttingxk = 0 for everyk 6= i, j , we obtain thatxiωi + xjωj = ω

is decomposable or null for anyxi, xj . In particular,ωi + ωj is decomposable. If
dim(Ei∩Ej) = d < p then there is a basis(e1, . . . , ed , f1, . . . , fp−d, g1, . . . , gp−d)
of Ei + Ej such thatωi = e1 ∧ · · · ∧ ed ∧ f1 ∧ · · · ∧ fp−d , ωj = e1 ∧ · · · ∧ ed ∧
g1 ∧ · · · ∧ gp−d and

ωi + wj = e1 ∧ · · · ∧ ed ∧ [f1 ∧ · · · ∧ fp−d +∧g1 ∧ · · · ∧ gp−d ].
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It follows easily that ifp− d > 2 then Span(ωi + ωj) = Ei +Ej ,dim Span(ωi +
ωj) > p andωi + ωj is not decomposable. 2
Return now to Theorem 3.1. We can assume thatE1, . . . , Eh 6= 0 andEh+1, . . . ,

En = 0 for some numberh. PutE = E1 ∩ E2 ∩ . . . ∩ Eh. Then there are two
alternative cases: dimE > p − 1 and dimE < p − 1.

Case 1. dimE > p−1. Then denoting by(x1, . . . , xp−1) a set ofp−1 linearly
independent covectors contained inE, and which are considered as linear functions
on V , we haveωi = dx1 ∧ dx2 ∧ · · · ∧ dxp−1 ∧ αi, i = 1, h for some constant
1-formsαi, and hence

ω = dx1 ∧ dx2 ∧ · · · ∧ dxp−1 ∧ α, (5)

whereα = 6xiαi is a linear 1-form.

Case 2. In this case, without loss of generality, we can assume that dim(E1 ∩
E2∩E3) < p−1. Then Lemma 3.2 implies that dim(E1∩E2∩E3) = p−2. For an
arbitrary indexi,3 < i 6 h, putF1 = E1∩Ei, F2 = E2∩Ei, F3∩Ei . Recall that
dimF1,dimF2,dimF3 > p−1 according to Lemma 3.2, but dim(F1∩F2∩F3) =
dim(E1∩E2∩E3∩Ei) < p−1, hence we cannot haveF1 = F2 = F3. Thus we can
assume thatF1 6= F2. Then eitherF1 andF2 are two different hyperplanes inEi , or
one of them coincides withEi . In any case we haveEi = F1+F2 ⊂ E1+E2+E3.
It follows that

∑n
1Ei =

∑h
1Ei = E1 + E2 + E3. On the other hand, we have

dim(E1 + E2 + E3) = dimE1 + dimE2 + dimE3 − dim(E1 ∩ E2) − dim(E1 ∩
E3)− dim(E2 ∩E3)+ dim(E1+E2+E3) = 3p − 3(p − 1)+ (p− 2) = p+ 1.
Thus

dim(E1 + E2+ · · · + En) = p + 1.

It follows that there is a system of linear coordinates(x1, . . . , xn) on V such that
(x1, . . . , xp+1) spanE1+ · · · + En and therefore

ωi =
p+1∑
j=1

γ
j

i dx1 ∧ · · · ∧ dxj−1 ∧ dxj+1 ∧ · · · ∧ dxp+1

Hence we have

ω =
∑

xiωi =
p+1∑
j=1

aj dx1 ∧ · · · ∧ dxj−1 ∧ dxj+1 ∧ · · · ∧ dxp+1 (6)

whereaj are linear functions onV .
To finish the proof of Theorem 3.1, we still need to normalize further the ob-

tained forms (5) and (6).
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Return now to Case 1 and suppose thatω = dx1 ∧ · · · ∧ dxp−1 ∧ α where
α = 6αj dxj with αj being linear functions. We can putαj = 0 for j = 1, p − 1
since it will not affectω. Then we haveα = 6j>p,i=1,nα

i
jxi dxj . Equation (4)

implies thatα ∧ dx1 ∧ · · · ∧ dxp−1 ∧ dα = 0. If we consider(x1, . . . , xp−1) as
parameters and denote byd ′ the exterior derivation with respect to the variables
(xp, . . . , xn), then the last equation meansα∧d ′α = 0. That is,α can be considered
as an integrable 1-form in the space of variables(xp, . . . , xn), parametrized by
(x1, . . . , xp−1). We will distinguish two subcases:d ′α = 0 andd ′α 6= 0.

Subcase (a). Suppose thatd ′α = 0. Then according to Poincaré Lemma we
haveαj = 6p−1

i=1 α
i
j xi+∂/∂xjq(2), whereq(2) is a quadratic function in the variables

(xp, . . . , xn). By a linear change of coordinates on(xp, . . . , xn), we haveq(2) =
6
p+r
j=p ± x2

j /2, for some numberr > −1, and accordingly

α =
p+r∑
j=p

(
±xj +

p−1∑
i=1

αijxi

)
dxj +

∑
i=1,p−1,j=p+r+1,n

αijxi dxj .

By a linear change of coordinates(x1, . . . , xp−1) on one hand, and(xp+r+1, . . . , xn)

on the other hand, we can normalize the second part of the above expression to
obtain

α =
p+r∑
j=p

(
±xj +

p−1∑
i=1

α̃ij xi

)
+

s∑
j=1

xj dxp+r+j

for some numbers(0 6 s 6 min(p − 1, n − p − r)).
Replacingxj (j = p, p + r) by newxj = xj ∓ α̃ij xi we haveω = dx1 ∧ · · · ∧

dxp−1 ∧ α where

α = d
p+r∑
j=p
±x2

j /2+
s∑
i=1

xixp+r+i


(with −16 r 6 q = n−p,06 s 6 q− r). These are the linear co-Nambu forms
of Type 1 in Theorem 3.1.

Subcase (b). Suppose thatd ′α 6= 0. Then sinced ′α is a constant coefficients,
we can change the coordinates(xp, . . . , xn) linearly so thatd ′α = dxp ∧ dxp+1+
· · · + dxp+2r ∧ dxp+2r+1 in these new coordinates, for somer > 0.

If r > 1, then considering the coefficients of the term dxp∧dxp+1∧dxi(i > p+
1),dxp∧dxp+2∧dxp+3 and dxp+1∧dxp+2∧dxp+3 in 0= α∧d ′α, we obtain that all
the coefficients ofα are zero, i.e.α = 0, which is absurd. Thusd ′α = dxp∧dxp+1,
and the conditionα ∧ d ′α = 0 implies thatα = α1 dxp + α2 dxp+1 with linear
functionsα1 andα2 depending only onx1, . . . , xp−1, xp, xp+1. In this Subcase (b),
ω = dx1 ∧ · · · ∧ dxp−1 ∧ α also has the form (6), as in Case 2.
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Suppose now thatω has the form (6), as in Case 2 or Subcase (b) of Case 1:

ω =
∑

xiωi =
p+1∑
j=1

ajdx1 ∧ · · · ∧ dxj−1 ∧ dxj−1 ∧ xj+1 ∧ . . . ∧ dxp+1.

There are also 2 subcases:
(a) ∂aj /∂xi = 0 for j = 1, p + 1, i = p + 2, n. In other words,

ω =
p+1∑
i,j=1

aij xi dx1 ∧ · · · ∧ dxj−1 ∧ dxj+1 ∧ · · · ∧ dxp+1

with constant coefficientsaij .
To see that(aij ) can be put in Jordan form, notice that the linear Nambu tensor

corresponding toω is, up to multiplication by a constant:

5 =
 p+1∑
i,j=1

±aij xi∂/∂xj
 ∧ ∂/∂xp+2 ∧ · · · ∧ ∂/∂xn.

The first term in5 is a linear vector field, which is uniquely defined by a linear
transformationRp+1 → Rp+1 given by the matrix(aij ), so this matrix can be put
in Jordan form.

(b) There isj 6 p + 1 andi > p + 2 such that∂aj/∂xi 6= 0. We can assume
that∂a1/∂xn 6= 0. PuttingA = ∂/∂x3∧ · · · ∧ ∂/∂xp+1 in 0= iAω ∧ dω we obtain

0 = (a1 dx2+ a2 dx1) ∧
∑

i=1,n,j=1,p+1

dxi∧

∧∂aj
∂xi

dx1 ∧ · · · ∧ dxj−1 ∧ dxj+1 ∧ · · · ∧ dxp+1.

Considering the coefficient of dx1 ∧ · · · ∧ dxp+1 ∧ dxn in the above equation,
we have

a1∂a2/∂xn − a1∂a1/∂xn = 0.

Since∂a1/∂xn 6= 0, it follows thata2 is linearly dependent ofa1. Similarly, aj
is linearly dependent ofa1 for any j = 1, p + 1. Thusω = a1ω1 whereω1 is
decomposable and constant:ω1 = dx1 ∧ · · · ∧ dxp in some linear system of
coordinates. Ifa1 is linearly independently on(x1, . . . , xp) then we can also assume
thata1 = xp+1. Thus also in this Subcase (b),ω is of Type 2 in Theorem 3.1. 2
The form ofω gives us a clear picture about the singular foliations associated to
linear Nambu structures: The foliation of a linear Nambu structure of Type 1 has
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p first integrals, namelyx1, . . . , xp−1 and
∑p+r

j=p±x2
j +

∑s
j=1 xjxp+r+j , and the

leaves of the foliation are uniquely determined by these first integrals. The singular
foliation of a linear Nambu structure of Type 2 is a Cartesian product of a foliation
given by a linear vector field in a linear space with (an 1-leaf foliation on) another
linear space.

Rewritting Theorem 3.1 in terms of Nambu tensors, we have:

COROLLARY 3.3. Every linear Nambu tensor5 of orderq = n− p > 3 on an
n-dimensional linear spaceV belongs to one of the following two types:

Type 1: 5 = ∑r+1
j=1±xj∂/∂x1 ∧ · · · ∧ ∂/∂xj−1 ∧ ∂/∂xj+1 ∧ · · · ∧ ∂/∂xq+1 +∑s

j=1±xq+1+j ∂/∂x1 ∧ · · · ∧ ∂/∂xr+j ∧ ∂/∂xr+j+2 ∧ ∂/∂xq+1 (with −1 6 r 6
q,06 s 6 min(p − 1, q − r)).

Type 2: 5 = ∂/∂x1 ∧ · · · ∧ ∂/∂xq−1 ∧ (∑n
i,j=q b

i
j xi∂/∂xj )

Remark. Linear Nambu tensors may be viewed as finite-dimensional Nambu–
Lie algebras which satisfy some integrability conditions (cf. [6, 17]). The case of
four-dimensional Nambu–Lie algebras of order 3 has been done in [6].

We notice here a very interesting duality between Type 1 and Type 2: The
formula for5 of Type 1 looks similar to that forω of Type 2, and vice versa.
This duality will play an important role in the rest of this paper. We should notice
also that if a differential formω can be written in one of the two forms presented
in Theorem 3.1, then it is obviously a linear co-Nambu form.

We have the following natural notion of nondegeneracy for linear Nambu struc-
tures:

DEFINITION 3.4. A linear co-Nambup-form ω (and its corresponding linear
Nambuq-tensor5) of Type 1 is callednondegenerateif and only if it can be
written in the formω = dx1 ∧ · · · ∧ dxp−1 ∧ dq(2), whereq(2) = ∑n

p±x2
j (is

nondegenerate). In this case,ω and5 are calledelliptic if q(2) is negative-definite
or positive-definite. The absolute value of the signature of the quadratic function
q(2) is called thesignatureof ω. The indexof ω is the index ofq(2), defined only
up to the involutionm 7→ q + 1−m.

A linear co-Nambup-form ω (and its corresponding linear Nambuq-tensor
5) of Type 2 is callednondegenerateif and only if it can be written in the form
ω = ∑p+1

i=1

∑p+1
j=1 a

j

i xj dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxp+1, with (aij ) being
nondegenerate, i.e. having nonzero determinant.

It is evident that a linear Nambu structure of Type 1 is nondegenerate if and only
if all the other linear Nambu structures nearby it are equivalent to it in a natural
sense, and there is only a finite number of equivalence classes in this case, which
are classified by a signature ofq(2). On the other hand, for nondegenerate linear
Nambu structures of Type 2, there is a continuum of equivalence classes, which are
classified by the Jordan form of(aij ), modulo multiplication by a nonzero number.
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4. Decomposition of Nondegenerate Nambu Singularities

We will say that a singularity of a Nambu structure isof Type 1(of Type 2, nonde-
generate, elliptic, hyperbolic) if its linear part is so. In this Section we will show
that Nambu structures are decomposable also at nondegenerate singularities.

THEOREM 4.1. (a)LetO ∈ V be a nondegenerate singular point of Type1 of a
co-Nambup-form (of co-orderq > 3) ω. Then in a small neighborhood ofO in
V,ω is decomposable: it can be written asω = γ1 ∧ · · · ∧ γp−1 ∧ α, whereγi are
1-forms which do not vanish atO, andα is an1-form which vanishes atO.

(b) LetO ∈ V be a nondegenerate singular point of Type2 of a Nambuq-
tensor (of orderq > 3) 5. If q = n − 1 then we will also assume that in the
normal form of its linear part5(1) = ∂/∂x1∧ · · ·∧ ∂/∂xq−1∧ (∑n

i,j=q b
i
j xi∂/∂xj )

as given in Corollary 3.3, the(2 × 2) matrix (bij ) has a nonzero trace. Then in
a small neighborhood ofO in V,5 is decomposable: it can be written as5 =
V1 ∧ · · · ∧ Vq−1 ∧ X, whereVi are vector fields which do not vanish atO, andX
is a vector field which vanishes atO.

Proof. First we will prove (a). The proof will not make use of the integrability
of Nambu tensors (or similar property of co-Nambu forms), so in fact the above
theorem can be stated in a stronger form.

According to the definition of nondegenerate singularities of Type 1, we can
suppose thatω has a Taylor expansionω = ω(1) + ω(2) + · · ·, with ω(1) = dx1 ∧
· · · ∧ dxp−1 ∧ dq(2), whereq(2) = ∑n

j=p±x2
j /2. Expressω as a polynomial in

dx1, . . . ,dxp−1:ω = dx1 ∧ · · · ∧ dxp−1 ∧ α +∑p−1
j=1 dx1 ∧ · · · ∧ dxj−1 ∧ dxj+1 ∧

· · · ∧ dxp−1∧βj +∑16i<j6p−1 dx1∧ · · · ∧ dxi−1∧ dxi+1∧ · · · ∧ dxj−1∧ dxj+1∧
· · ·∧dxp−1∧γij+· · · Hereα, βi, γij , . . . are differential forms which, when written
in coordinates(x1, . . . , xn), do not contain the terms dx1, . . . ,dxp−1. Applying the
equationiAω∧ω = 0 toA = ∂/∂x1∧· · ·∧∂/∂xp−1, we haveα∧ω = 0. It follows
thatα ∧ βj = 0, α ∧ γij = 0, etc. We can considerα andβj as differential forms
on the space of variables{xp, . . . , xn}, parametrized byx1, . . . , xp−1, and by our
assumption of nondegeneracy, we can apply DeRham division theorem (cf. [4]),
which says that, since the number of variables isq + 1 > 2 which is the order of
βj , βj is divisible byα:βj = α ∧ θj whereθj are smooth 1-forms.

Applying the equationiAω∧ω = 0 toA = ∂/∂x1∧ · · · ∧ ∂/∂xj−1∧ ∂/∂xj+1∧
· · · ∧ ∂/∂xp−1 ∧ ∂/∂xp, we get

0= ω ∧ [〈α, ∂/∂xp〉((−1)p−j dxj + θj )− 〈θj , ∂/∂xp〉α].
Since〈α, ∂/∂xp〉 = 〈α(1), ∂/∂xp〉+· · · = ±xp+· · · 6= 0, and we already haveω∧
α = 0, we get thatω∧γj = 0 whereγj = dxj+(−1)p−j θj . Sinceγj do not vanish
and are linearly independent atO, it follows thatω is divisible by the product ofγj :
ω = γ1∧ · · · ∧ γp−1∧α′ for some 1-formα′. By adding a combination ofγj to α′,
we assume thatα′ does not contain the terms dx1, . . . ,dxp−1 when written in the
coordinates(x1, . . . , xn). Then considering the terms containing dx1∧ · · · ∧ dxp−1
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on the two sides of the equationω = γ1∧ · · · ∧ γp−1∧α′, it follows that in fact we
haveα′ = α. Statement (a) is proved.

The proof of Statement (b) in caseq > n − 2 is the same as that of (a), by
the dualityvector↔ covector. We will now prove (b) for the caseq = n − 1. In
this case we have5 = ∂/∂x1 ∧ · · · ∧ ∂/∂xn−2 ∧ (Xn−1∂/∂xn−1 + Xn∂/∂xn) +
(
∑n−2

i=1 Bi∂/∂x1 ∧ · · · ∧ ∂/∂xi−1 ∧ ∂/∂xi+1 ∧ · · · ∧ ∂/∂xn−2) ∧ ∂/∂xn−1 ∧ ∂/∂xn,
whereBi contains only terms of degree> 2 in the Taylor expansion, and the linear
part of the vector fieldX = Xn−1∂/∂xn−1 + Xn∂/∂xn has nonzero trace, that is
∂Xn−1/∂xn−1 + ∂Xn/∂xn 6= 0. Notice thatX is a Hamiltonian vector field of5,
given by the(q−1)-tuple of functions(x1, . . . , xn−2) (heren−2= q−1). Hence
X preserves5: LX5 = 0. Considering the coefficient of the term∂/∂x1 ∧ · · · ∧
∂/∂xi−1∧ ∂/∂xi+1∧ · · · ∧ ∂/∂xn−2 in the equationLX5 = 0, we obtain a relation
of the form

(X(Bi)− (∂Xn−1/∂xn−1+ ∂Xn/∂xn)Bi)∂/∂xn−1 ∧ ∂/∂xn = U ∧X

for someU = Un−1∂/∂xn−1 + Un∂/∂xn. Since∂Xn−1/∂xn−1 + ∂Xn/∂xn 6= 0, it
follows that we have a relation of the formBi = Vn−1Xn− VnXn−1 and, therefore,
Bi∂/∂xn−1 ∧ ∂/∂xn is divisible byX:Bi∂/∂xn−1 ∧ ∂/∂xn = (Vn−1∂/∂xn−1 +
Vn∂/∂xn)∧X. Thus in this case, by using the fact thatX has nonzero trace, instead
of its nondegeneracy, we also obtain the divisibility byX of the tems of degree
q − 2 in the expression of5 as a polynomial in∂/∂x1, . . . , ∂/∂xq−1. The rest of
the proof is the same as for the caseq 6 n− 2. 2
The nondegeneracy implies that the 1-formα in the above theorem, considered
as an 1-form on the space of the variables(xp, . . . , xn), will have exactly one
(nondegenerate) zero point of each value of the parameters(x1, . . . , xp−1), and
of course this zero point will depend smoothly on the parameters(x1, . . . , xp−1).
A similar statement is true for the vector fieldX in the second case. Thus we have:

COROLLARY 4.2. If O is a nondegenerate singular point of Type1 of a Nambu
tensor5 of orderq > 3 in an n-dimensional manifold, then the set of zero points
of5 nearO forms a(n−q−1)-dimensional submanifold. IfO is a nondegenerate
singular point of Type2 of a Nambu tensor5 of orderq > 3 in ann-dimensional
manifold (whenq = n−1 we need the same additional assumption as in the previ-
ous theorem), then the set of zero points of5 nearO forms a(q − 1)-dimensional
submanifold.

5. Nondegenerate Singularities of Type 1

We have the following result about the linearization of co-Nambu forms of Type 1:

THEOREM 5.1. LetO be a nondegenerate singular point of Type1 of a smooth
co-Nambup-formω of co-orderq > 2.
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(a) If the singular pointO is of elliptic type thenω is linearizable in a neigh-
borhood ofO, up to multiplication by a nonzero smooth function. In other words,
there is a local smooth system of coordinates(x1, . . . , xn) in a neighborhood ofO
such that we haveω = f dx1 ∧ · · · ∧ dxp−1 ∧ α(1), wheref is a smooth function
which does not vanish atO, andα(1) = dq(2) is a nondegenerate linear closed
1-form in the variables(xp, . . . , xn) (which does not depend on(x1, . . . , xp−1)).

(b) If ω is analytic (real or complex), then it is linearizable analytically in a
neighborhood ofO, up to multiplication by an analytic function which does not
vanish atO.

(c) If ω is onlyC∞ but not analytic, andO is not of elliptic type, thenω is still
formally linearizable atO, up to multiplication by a formal function which does
not vanish atO.

Proof. Statement (a) and Statement (b) of the above theorem are absolutely
similar to that of Reeb [20], as improved by Moussu [11], for the case of integrable
1-forms, and the proof is essentially the same except for some additional regular
first intregrals. So we will only give a sketch of the proof here. The details of
the steps can be found in [11, 20]. In the elliptic case, we can blow up along
the local (p − 1)-dimensional submanifold of elliptic singular points ofω (cf.
Corollary 4.2), and then take a double covering of the blown-up manifold. In this
double covering we have a regular foliation induced by the foliation associated to
the Nambu structure. All the leaves of this foliation are diffeomorphic toSq due to
Reeb’s stability theorem, and the foliation itself is a regular fibration of fiberSq .
On thep-dimensional base space of this fibration we have a smooth involution,
whose fixed point set is a local(p − 1)-dimensional manifold (which corresponds
to the manifold of zero points ofω). It follows that there is a system of coordinates
(f1, . . . , fp) on the base manifold of the fibration such that(f1, . . . , fp−1) are
invariant under the involution,fp = 0 on the submanifold of fixed points andf 2

p

is invariant under the involution. These coordinates give rise to the first integrals of
the singular foliations of the Nambu structure: the first(p−1) first integrals are reg-
ular and functionally independent, the last one is zero on the submanifold of zero
of the co-Nambu formω and is nondegenerate positive-definite in the transversal
direction to this submanifold. Taking the first(p − 1) first integrals as coordinates
and applying the Morse’s lemma to the last first integral, we get the linearization
of ω up to multiplication by a nonzero smooth function. In the real analytic case,
one can complexify the picture, then realify it back (in a different way) so that the
singularity becomes elliptic, and then proceed as above. The complex analytic case
is similar, without the step of complexifying.

Let us now prove Statement (c) of the theorem. Since in this case the blowing-
up argument does not work so easily, we adopt a different strategy. By induction
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we assume that we have found a new system of local coordinates(x1, . . . , xn) such
that the Taylor expansion ofω in these coordinates have ‘good’(r − 1) first terms:

ω(1) = dx1 ∧ · · · ∧ dxp−1 ∧ α(1)
ω(2) = dx1 ∧ · · · ∧ dxp−1 ∧ α(2)
· · · · · ·
ω(r−1) = dx1 ∧ · · · ∧ dxp−1 ∧ α(r−1),

whereα(1) = ∑n
p±xi dxi . Whenr = 2, this assumption follows from the defini-

tion of nondegenerate singularities of Type 2. We will show that we can make so
thatω(r) = dx1 ∧ · · · ∧ dxp−1 ∧ α(r).

Let us use the following notations:

x = (x1, . . . , xp−1),

y = (xp, . . . , xn) = (y1, . . . , yq+1),

dx = dx1 ∧ · · · ∧ dxp−1,

dx̂i = dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxp−1,

∂x = ∂/∂x1 ∧ · · · ∧ ∂/∂xp−1,

∂x̂i = ∂/∂x1 ∧ · · · ∧ ∂/∂xi−1 ∧ ∂/∂xi+1 ∧ ∂/∂xp−1.

(7)

Decomposeω(r) intoω(r) = dx∧α(r)+ω′, whereω′ consists of the terms which
are not divisible by dx. PutA = ∂x̂k ∧ ∂/∂y1 for some indexk < q. We have that
iAω

(r) =∑j νj dyj ±α(r)1 dxk for some functionsνj . The terms of degreer + 1 in
the relationiAω ∧ ω = 0 give:

±y1 dxk ∧ ω′ +
∑

j

νj dyj

 ∧ dx ∧ α(1) = 0, (8)

which implies that±y1 dxk ∧ω′ = dx ∧ γk for someγk, andxk ∧ω′ = dx ∧ γ ′k for
someγ ′k. By varyingk from 1 top − 1, we obtain that

ω′ =
p−1∑
k=1

dx̂k ∧ ωk (9)

with ωk =∑i<j ω
k
ij dyi ∧ dyj .

Putting Equation (9) into the left-hand side of Equation (8) we get

±y1ω
k ∧ dx =

∑
j

νj dyj

 ∧ α(1) ∧ dx,
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which implies

ωk = α(1) ∧ βk (10)

with βk =∑l β
k
l dyl for someβkl .

The term of degreer in iAω ∧ dω = 0 gives

iAω
(1) ∧ dω(r) + iAω(2) ∧ dω(r−1) + · · · + iAω(r) ∧ dω(1) = 0,

which implies±y1 dx ∧ dωk = 0, and hence dx ∧ dωk = 0.
Thus the derivation ofωk with respect to the variablesy is zero: dyωk = 0.

Putting the relation (10) in this equation we get

α(1) ∧ dyβ
k = 0. (11)

Now we will use the nondegeneracy ofα(1). The division theorem of DeRham
(cf. [4]) says that in this case we can divide dyβ

k by α(1):

dyβ = α(1) ∧ β(r−2), (12)

whereβ(r−2) is a homogeneous 1-form of degreer − 2. Differentiating (12) with
respect to the variablesy, we getα(1) ∧ dyβ(r−2) = 0, which implies

dyβ
(r−2) = α(1) ∧ β(r−4)

for someβ(r−4). Repeat the above process until we get a formβ(r−2h) with dy
β(r−2h) = 0. Then we go back:β(r−2h) = dyφ(r−2h+1) and the equation dy
β(r−2h+2) = α(1) ∧ β(r−2h) givesβ(r−2h+2) = −φ(r−2h+1)α(1) + dyφ(r−2h+3). Keep
going back until we refinedβk in the form

βk = −φ(r−1)
k α(1) + dyφ

(r+1)
k .

It follows that (10) we can changeβk by an exact 1-formωk = α(1) ∧ dyφ
(r+1)
k .

Consider now the following new system of coordinates

x′1 = x1 ± φ(r+1)
1

· · · · · ·
x′p−1 = xp−1 ± πφ(r+1)

p−1

y′ = y.

(13)

In these new coordinates,ω(1) becomes dx′1 ∧ · · · ∧ dx′p−1 ∧ (
∑q+1

j=1±yj dyj ) =
ω(1) +∑p−1

k=1 ± dx̂k ∧ α(1) ∧ dyφ(r+1)k + (terms of degree> q).
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Thus, by choosing appropriate signs in the above change of variables, we can
kill the termω′ =∑ dx̂k ∧ ωk =∑p−1

k=1 ±dx̂k ∧ α(1) ∧ dyφ
(r+1)
k in the expression

ω(r) = dx ∧ α(r) + ω′.
Repeating the above procedure forr going from 2 to infinity, we find a formal

system of coordinates(x1, . . . , xn) in whichω =∑∞r=1ω
(r) with ω(r) = dx1∧· · ·∧

dxp−1∧ α(r) for everyr. In particular,ω = dx ∧ α, where dx = dx1∧ · · · ∧ dxp−1

andα = ∑α(k). The relationi∂xω ∧ dω = 0 implies thatα ∧ dyα = 0, that isα
can be considered as an integrable 1-form in the variablesy, with a nondegenerate
closed linear partα(1), and parametrized byO. It is well known that in this case
α is formally linearizable up to multiplication by a formal functionf (see, e.g.,
[11]). Theorem 5.1 is proved. 2

Remarks. In the above theorem, we have linearization only up to multiplication
by a function, becauseω is not a closed form in general. It is closed (outside singu-
lar points) only up to multiplication by a function. There is another simple proof of
the analytic (and formal) case of the above theorem, which uses Theorem 4.1 and
Malgrange’s Frobenius theorem with singularities [8].

The above theorem implies that a nondegenerate Nambu tensor of Type 1 is
(maybe formally) linearizable up to multiplication by a function. In fact, at least
formally, we can linearize it without the need of multiplication by a function:

THEOREM 5.2. LetO be a nondegenerate singular point of Type1 of a smooth
Nambuq-tensor5, q > 2. The5 is formally linearizable atO: there is a formal
system of coordinates(x1, . . . , xn) such that

5
formally=

q+1∑
i=1

±xi∂/∂x1 ∧ · · · ∧ ∂/∂xi−1 ∧ ∂/∂xi+1 ∧ · · · ∧ ∂/∂xn.

Proof. According to Theorem 5.1, we can write5 = f51 where51 =∑q+1
i=1 ±xi∂/∂x1 ∧ · · · ∧ ∂/∂xi−1 ∧ ∂/∂xi+1 ∧ · · · ∧ ∂/∂xn
We want to change the coordinates(x1, . . . , xq+1) (and leavexq+2, . . . , xn un-

changed) so that to makef = 1. We will forget about the parameters(xq+2, . . . , xn)

and will assume for simplicity thatn = q + 1.
Write f =∑ f (r) wheref (r) is homogeneous of orderr in (x1, . . . , xq+1). By

a change of coordinates of the typex′1 = gx1, . . . , x
′
q+1 = gxq+1, we can make

f (0) = 1. We assume now that we already havef (1) = · · · = f (r−1) = 0 for
somer > 1. We will show that there is a change of coordinates which changes
xi by terms of degree> r, and which killsf (r). It amounts to find a vector field
X such thatLX51 = f (r)51, whereL denotes the Lie derivative. Consider the
volume form� = dx1 ∧ · · · ∧ dxq+1. Then it is easy to see, by contracting51

with �, that the equationLX51 = f (r)51 is equivalent to the equation dX(Q) =
(f (r) + div�X)dQ, whereQ = 1/26εix2

i with εi = ±1. In turn, this equation is
equivalent to the following system of equations:

div�X + f (r) = d[2QF(Q)]/dQ X(Q) = 2QF(Q),
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whereF is an unknown function. WriteX = A+Y , whereA = F(Q)∑ xi∂/∂xi,
andY is a vector field such thatY (Q) = 0. Then the above system of equations
is equivalent to a system of the typeY (Q) = 0, β(Q) + div�Y = f(r), where
β is an unknown function. The equationY (Q) = 0 is equivalent to the fact that
Y = ∑

i<j fijYij whereYij = εixj∂/∂xi − εjxi∂/∂xj . For such anY , we have
div�Y =∑i<j Yij (fij ). Denote byJ the set of homogeneous polynomials of degree
r. The solvability of the above system of equation follows from the following facts,
which can be verified easily by choosing appropriatefij :

(1) If a monomialxI = x
I1
1 . . . x

Iq+1
q+1 has one ofIi to be an odd number, then it

belongs toJ .
(2) Qs is equivalent toλx2s

1 moduloJ for some nonzero numberλ.

(3) Any monomialxI = x
I1
1 . . . x

Iq+1

q+1 , with all Ii even, is equivalent toλx6Ii1
moduloJ for some numberλ.

Thus the above system of equations can always be solved. The theorem is
proved. 2
Suppose now thatω is of classC∞, is nondegenerate of Type 1 at a zero point
O, is not elliptic atO but has an index different from 2 andq − 1 (i.e. signature
different fromq−3, cf. Definition 3.4). Then the regular local leaves of the fibration
associated to the linear partω(1) of ω are simply-connected (they are diffeomorphic
to a direct product of a disk with a sphere of dimension different from 1). It follows
from Reeb’s stability theorem that the local regular leaves ofω are diffeomorphic
to that ofω(1). One can show easily in this case that the singular foliation associated
toω is homeomorphic to the one associated to the linear part ofω (see [10] for the
casep = 1). According to Moussu [11, 12], ifω is the orderp = 1 (i.e. is an
1-form) and its index is different from 2 andq − 1, or if its index is 2 but all of
its leaves are closed except for a finite number of leaves which contain the origin
in the limit, then it admits a smooth first integral, which means thatω is smoothly
linearizable up to multiplication by a smooth function which does not vanish atO.
We suspect that it is also true for the casep > 1. If ω is of index 2 atO and without
the condition on the closedness of the leaves, then it may have no local first integral,
(which implies in particular that it may not be linearizable up to multiplication by
a function), as the following example shows:

Example. Consider the 2-formω = [dq + l(q)α] ∧ [dx3 + h(q)α] near 0 in
R3+k, where

q = x2
1 + x2

2 − y2
1 − · · · − y2

k , α = x1 dx2 − x2 dx1

x2
1 + x2

2

is a singular closed 1-form,l(q) andh(q) are two flat functions inq at 0 such that
l(q) = h(q) = 0 whenq 6 0. The conditions onl(q) andh(q) assure thatω is
a smooth two-form whose linear part at 0 is dq ∧ dx4. Near a pointP such that
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x1(P )
2 + x2(P )

2 6= 0, we can writeα = df for some functionf . Thus near this
point ω can be considered as a pull-back of a two-form on a three-dimensional
space via the map(x1, x2, x3, y1, . . . , yk) 7→ (q, f, x3). Since any two-form on a
three-dimensional space is a co-Nambu form and a pull-back of a co-Nambu form
is also a co-Nambu form, it follows thatω is a co-Nambu form. Whenh(q) = 0 and
l(q) > 0 for q > 0, the leaves of the singular foliation associated toω will spiral
toward the cones(q = 0, x3 = constant). In this case the foliation has only one
local first integral (up to functional dependence), which isx3. If l(q) > 0 andh(q)
is not identically 0 whenq > 0, then the leaves of the singular foliation associated
toω also drift inx3, and if we chosel, hwell enough this phenomenon will prevent
the foliation from having a nontrivial first integral. For example, we can makel(q)

andh(q) vanish together at a series of pointsqi which tend to 0. Near each point
qi we makeh(q) vary from positive to negative an infinite number of times and
chosel(q) andh(q) so that the drift in terms ofx3 of a leaf passing via some point
x ∈ R4 with qi < q(x) < qi−1 and spiraling inwards or outwards (i.e. the curve
drawn by the value ofx3 of a point on this leaf while this point is moving inwards
or outwards), is contained in a small interval[−εi,+εi] (lim εi = 0) and spans this
interval an infinite number of times. It follows that this leaf contains the leaves(q =
qi, x3 = constant∈ [−εi,+εi]) or the leaves(q = qi, x3 = constant∈ [−εi,+εi])
in its limit. By invariance with respect to∂/∂x3 andx1∂/∂x2 − x2∂/∂x1 of our
construction, any other leaf nearby this leaf will have the same property (with the
interval [−εi,+εi] replaced by an interval[−εi,+δ,+εi + δ]). It follows that for
any local continuous functionf which is invariant on the leaves of the foliation,
there is an open set containing 0 in the boundary, in whichf is constant.

6. Nondegenerate Singularities of Type 2

THEOREM 6.1. LetO be a nondegenerate singular point of Type 2 of a Nambu
tensor5 of order q > 3 on ann-manifoldV , whose linear part has the form
5(1) = ∂/∂x1 ∧ · · · ∧ ∂/∂xq−1 ∧ (∑n

i,j=q b
i
jxi∂/∂xj ). If q = n − 1 then we will

also assume that the matrix(bij ) has a nonzero trace. Then there is a local system
of coordinates(x1, . . . , xn) in which5 can be written as

5 = f ∂/∂x1 ∧ · · · ∧ ∂/∂xq−1 ∧X,

wheref is a function withf (O) 6= 0 andX = ∑n
i=q ci(xq, . . . , xn)∂/∂xi is a

vector field which does not depend on(x1, . . . , xq−1).
Proof. Write5 = V1∧ · · · ∧Vq−1∧X as in Theorem 4.1, where in some local

system of coordinates(x1, . . . , xn) we haveVi = ∂/∂xi +∑k=q,...,n v
k
i ∂/∂xk and

X does not contain terms in∂/∂xi, i < q and has
∑n

i,j=q b
i
j xi∂/∂xj as its linear

part.
Using Corollary 4.2, we can, and will, make so thatX = 0 on the submanifold

(xq = · · · = xn = 0).
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The integrability of5 implies that for any pair of indicesi, j < q, [Vi, Vj ] ∧
V1∧· · ·∧Vq−1∧X = 0. Considering the terms containing∂/∂x1∧· · ·∧∂/∂xq−1 in
this equation, we get that[Vi, Vj ] ∧X = 0. Notice that[Vi, Vj ]may be considered
as a vector field on the space of the variables(xq, . . . , xn), parametrized by the
parameters(x1, . . . , xq−1). The nondegeneracy of the linear part ofX allows us
to use DeRham division theorem (cf. [4]), which says that[Vi, Vj ] is divisible
by X: [Vi, Vj ] = gijX wherefi is some smooth function. Using these proper-
ties, we will change5, wheregij is some smooth function. Similarly, we have
that [Vi,X] = fiX, Vi andX so that5 is only changed by multiplication by a
nonzero function, the above relations still hold, but in additionVi commutes with
X,V2, . . . , Vq−1.

The equation[V1, X] = f1X implies that[V1, gX] = (V1(g) + f1g)X for any
function g. The equationV1(g) + f1g = 0 can be solved locally becauseV1 is
nonzero atO. ReplacingX by gX and5 by g5, we still have5 = V1 ∧ · · · ∧
Vq−1 ∧ X, but with [V1, X] = 0. Assume now that we already have[V1, X] = 0.
For i > 1, i < q we have[V1, Vi + γiX] = (g1i + V1(γi))X. One can easily solve
the equation(g1i+V1(γi)) = 0 to find aγi such that[V1, Vi+γiX] = 0. Replacing
Vi by Vi + γiX, we get thatVi commutes withV2, . . . , Vq−1, X.

Assume now that we already have thatV1 commutes withV2, . . . , Vq−1, X. In
other words, everything is invariant with respect toV1. Make the same process
as above but withV2, in a way which is invariant with respect toV1, we get that
V2, . . . , Vq−1, X can be changed so that5 remains the same butV2 becomes com-
muting withV3, . . . , Vq−1, X. Repeating the above process withV3, V4, . . .. In the
end we get a new family of vector fieldsVi andX whose product is5 and which
commute pairwise.

SinceVi commute pairwise and are linearly independent, there is a new local
system of coordinates(x1, . . . , xn) such that in these coordinates we haveVi =
∂/∂xi for i = 1 6 q − 1. The fact thatX commutes withVi means that the
cofficients ofX is these coordinates will not depend on(x1, . . . , xq−1). Of course,
we can also assume thatX does not contain the terms∂/∂xi, i = 1, . . . , q − 1,
since subtracting these terms formX will not change5. ThusX can be considered
as vector field on the space of the variables(xq, . . . , xn), which vanishes at the
origin (and which does not depend on the parameters(x1, . . . , xq−1)). 2
THEOREM 6.2. LetO be a nondegenerate singular point of Type2 of a Nambu
tensor5 of order q > 3 on ann-manifoldV , whose linear part has the form
5(1) = ∂/∂x1∧· · ·∧∂/∂xq−1∧(∑n

i,j=q b
i
jxi∂/∂xj ). If the matrix(bij ) is nonreson-

ant, i.e. if its eigenvalues(λ1, . . . , λp+1) do not satisfy any relation of the formλi =∑p+1
j=1 mjλj withmj being nonnegative integers and

∑
mi > 2, then5 is smoothly
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linearizable, i.e. there is a local smooth system of coordinates(x1, . . . , xn) in a
neighborhood ofO, in which5 coincides with its linear part:

5 = ∂/∂x1 ∧ · · · ∧ ∂/∂xq−1 ∧
 n∑
i,j=q

bijxi∂/∂xj

 .
The above linearization can be made analytic if5 is analytic and the eigenvalues
λ1, . . . , λp+1 of (bij ) satisfy the Bryuno’s incommensurability condition: there exist
positive constantsC, ε such that for any(p + 1)-tuple of nonnegative integers
(m1, . . . , mp+1) with

∑
mi > 2 and any indexk 6 p + 1 we have|(∑ λimi) −

λk| > C exp(−(∑mi)
1−ε).

Proof. Using Theorem 6.1, we can write5 = V1 ∧ · · · ∧ Vq−1 ∧ Y , where
Y = fX = f

∑n
i=q ci(xq, . . . , xn)∂/∂xi. (We will forget about the fact that

Vi = ∂/∂xi). If the linear part ofX satisfies the nonresonance condition then we
can apply Sternberg’s theorem [16] to linearizeX smoothly, and if it satisfies the
Bryuno’s incommensurability condition then we can apply Bryuno’s theorem (see
e.g. [3, 9]) to linearizeX analytically in the analytic case. Thus in both case we can
assume thatX is already linearized and normalized:X = ∑n

i=p λi−p+1xi∂/∂xi.
We want now to changeVi andY so that they become commuting and the relation
5 = V1∧· · ·∧Vq−1∧Y still hold (without multiplying5 by the nonzero function).

Similarly to the proof of Theorem 6.1, we have[V1, Y ] = [V1, fX] = V1(f )

X = f1Y with f1 = V1(f )/f . The equationV1(g)+f1g = 0 can be solved locally
becauseV1(O) 6= 0. This time we will solve it on the submanifold(xq = · · · =
xn = 0) of zero points of5. So letg be a nonzero function which does not depend
on (xq, . . . , xn) and which satisfiesV1(g) + f1g = 0 on the submanifold(xq =
· · · = xn = 0). Then[V1/g, gY ] = h/gY whereh is a function which vanishes
on the submanifold(xq = · · · = xn = 0). Under the nonresonance condition,
a theorem of Roussarie [15] says that the equationY (γ ) = h, or equivalently,
X(γ ) = h/f , has a smooth solutionh. (Notice here an important fact thatX
does not depend on(xq, . . . , xn), which allows us to use Roussarie’s theorem). In
the analytic case, the equationX(γ ) = (∑p+1

i=1 λixq−1+i∂/∂xq−1+i)(γ ) = h/f =∑
sq ,...,sn

(h/f )sq,...,sn(x1, . . . , xq−1)x
sq
q . . . x

sn
n has the formal solution

γ =
∑
sq ,...,sn

1∑p+1
i=1 γisq−1+i

(h/f )sq,...,snx
sq
q . . . x

sn
n ,

which can be verified easily to converge nearO, under the incommensurability
condition of Bryuno.

With a smooth or analytic functionγ such thatY (γ ) = h, we have[V1/g +
γ Y, gY ] = 0. Thus we can changeV1 by V1/g + γ Y and Y by gY to obtain
[V1, Y ] = 0. Of course, this change does not affect5. After that, we can change
V2, . . . , Vq−1 so that they commute withV1, in the same way as in the proof of
Theorem 6.1.
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Thus we can makeV1 commute withV2, . . . , Vq−1, Y , without affecting5. Just
as in the proof of Theorem 6.1, by induction we can makeV1, . . . , Vq−1, Y com-
mute pairwise. Then we can putVi = ∂/∂xi in some new local system of coordin-
ates, and can assume thatY does not contain the terms∂/∂x1, . . . , ∂/∂xq−1. The we
can linearizeY , using Bryuno’s or Sternberg’s theorem, to finish the linearization
of 5. 2

Remark. The Bryuno’s incommensurability condition in the above theorem can
indeed be replaced by a weaker so-called(�)-condition plus the nonresonance
condition (see e.g. [3, 9] for the(�)-condition).

Talking about co-Nambu forms of Type 2, the above theorems show that such
co-Nambu forms can be written locally asω = fω1 wheref is some nonzero
function andω1 is ap-form which does not contain the terms dx1, . . . ,dxq−1 and
does not depend on the variablesx1, . . . , xq−1, in some local system of coordinates
(x1, . . . , xn). In other words,ω1 is a pull-back of ap-form on a(p+1)-dimensional
space under a projectionRn → Rp+1. Furthermore,ω1 can be made linear if
ω satisfies some nonresonance of incommensurability condition. If dω(O) 6= 0,
then a result of Medeiros [10] (called fundamental lemma for integrablep-forms)
says thatω itself is the pull-back of ap-form on a(p + 1)-dimensional space
under a projectionRn → Rp+1. Let us give a proof of this fact, which is a slight
simplification of the one given in [10].

First of all, notice that ifω is a co-Nambup-form, then dω is a co-Nambu
(p + 1)-form. Indeed, the condition (4) in Definition 2.4 is trivial for dω, and the
condition (3) about the decomposability is easily verified: near a nonzero point of
ω we can writeω = f dx1∧ · · · ∧ dxp, which implies dω = df ∧ dx1∧ · · · ∧ dxp.
If dω(0) 6= 0 then a Nambu tensor dual to it is regular atO and gives rise to a local
regular foliation, denoted byF . The tangent spaces ofF are nothing but the spaces
of vectors whose contraction with dω is zero. Therefore ifZ is a vector tangent to
F at a pointx nearO we haveiZ dω(x) = 0. If ω(x) 6= 0 then we also obtain
thatiZω(x) = 0, by using again the presentationω = f dx1∧ · · · ∧ dxp. Since the
set of nonzero points ofω is dense nearO (because dω(0) 6= 0), by continuity we
get that for anyZ tangent toF , iZω(x) = 0 andiZ dω(x) = 0. It means thatω is
locally a pull-back of a form on the local base space ofF . 2

Acknowledgements

We thank N. Nakanishi whose visit to Montpellier in May 1997 attracted our
attention to this problem.

References

1. Alekseevsky, D. and Guha, P.: On decomposability of Nambu–Poisson tensor, Preprint, Max-
Planck-Institut für Mathematik, MPI/96-9, 1996.

165881.tex; 4/05/1999; 11:41; p.21

https://doi.org/10.1023/A:1001014910775 Published online by Cambridge University Press

https://doi.org/10.1023/A:1001014910775


98 JEAN-PAUL DUFOUR AND NGUYEN TIEN ZUNG

2. Bryant, R.L., Chern, S.S., Gardner, R.B., Goldshmidt, H.L. and Griffiths, P.A.:Exterior
Differential Systems, Math. Sci. Res. Inst. Publ. 18, Cambridge Univ. Press, 1991.

3. Bryuno, A.D.: Analytic form of differential equations,Trans. Moscow Math. Soc.25 (1971),
131–288.

4. de Rham, G.: Sur la division de formes et de courants par une forme lineaire,Comment. Math.
Helv., 28 (1954), 346–352.

5. Dufour, J.-P.: Quadratisation de structures de Poisson, Preprint, Montpellier 1993.
6. Gautheron, Ph.: Some remarks concerning Nambu mechanics,Lett. Math. Phys.37 (1996),

103–116.
7. Kupka, I.: The singularities of integrable structurally stable Pfaffian forms,Proc. Nat. Acad.

Sci. USA 52 (1964), 1431–1432.
8. Malgrange, B.: Frobenius avec singularités. 1: Codimension 1,Publ. IHES46(1976), 162–173;

and 2: Le cas general,Invent. Math.39 (1977), 67–89.
9. Martinet, J.: Normalisation des champs de vecteurs holomorphes (d’après A.-D. Bryuno),

Séminaire Bourbaki, No. 564, (1980) 16 pp.
10. Medeiros, A.: Structural stability of integrable differential forms,Lecture Notes in Math.597,

Springer, New York, 1977, pp. 395–428.
11. Moussu, R.: Sur l’existence d’intégrales premières pour un germe de forme de Pfaff,Ann. Inst.

Fourier 26(2) (1976), 171–220.
12. Moussu, R.: ClassificationC∞ des équations de Pfaff intégrables à singularités isolés,Invent.

Math.73 (1983), 419–436.
13. Nakanishi, N.: On Nambu–Poisson manifolds, Preprint 1996.
14. Nambu, Y.: Generalized Hamiltonian dynamics,Phys. Rev. D7 (1973), 2405–2412.
15. Roussarie, R.: Modèles locaux de champs et de formes,Astérisque30 (1975), 181 pp.
16. Sternberg, S.: On the structure of local homeomorphisms of Euclideann-space,5, Amer. J.

Math.80 (1958), 623–631.
17. Takhtajan, L.: On foundation of the generalized Nambu mechanics,Comm. Math. Phys.160

(1994), 295–315.
18. Vaisman, I.:Lectures on the Geometry of Poisson Manifolds, Progr. Math. 118, Birkhäuser,

Basel, 1994.
19. Weinstein, A.: The local structure of Poisson manifolds,J. Differential Geom.18 (1983), 523–

557.
20. Wen-Tsun, Wu. and Reeb, G.:Sur les Espaces Fibrés et les Variétés Feuilletées, Actualités Sci.

Indust. 1183, Publ. Insti. Math. Strasbourg XI, Hermann, Paris, 1952.

165881.tex; 4/05/1999; 11:41; p.22

https://doi.org/10.1023/A:1001014910775 Published online by Cambridge University Press

https://doi.org/10.1023/A:1001014910775

