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Abstract

The standard Markov chain Monte Carlo method of estimating an expected value is to
generate a Markov chain which converges to the target distribution and then compute
correlated sample averages. In many applications the quantity of interest θ is represented
as a product of expected values, θ = µ1 · · · µk , and a natural estimator is a product of
averages. To increase the confidence level, we can compute a median of independent runs.
The goal of this paper is to analyze such an estimator θ̂ , i.e. an estimator which is a ‘median
of products of averages’ (MPA). Sufficient conditions are given for θ̂ to have fixed relative
precision at a given level of confidence, that is, to satisfy P(|θ̂ − θ | ≤ θε) ≥ 1 − α. Our
main tool is a new bound on the mean-square error, valid also for nonreversible Markov
chains on a finite state space.
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1. Introduction

This paper is about constructing exact, nonasymptotic, confidence bounds in the course of
Monte Carlo (MC) simulations. In many applications in ‘rare-event simulations’, statistical
physics, chemistry, or biology, the quantity of interest, denoted henceforth by θ , is a positive
number of unknown order of magnitude. For this reason, we focus on bounding the relative
error. The goal is to obtain an MC estimator θ̂ such that

P(|θ̂ − θ | ≤ θε) ≥ 1 − α.

This requirement means that the estimator should have fixed relative precision ε > 0 at a given
level of confidence 1 − α < 1.

In this paper much attention is given to the case where the parameter of interest can be
expressed as a product,

θ =
k∏

j=1

µj ,

where each µj is computed using the Markov chain Monte Carlo (MCMC) method. Thus,
we assume that µj is the stationary mean of a functional of some Markov chain (in general,
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310 W. NIEMIRO AND P. POKAROWSKI

we have k chains defined on different state spaces). This product representation is the basis
of many efficient computational algorithms. We give several examples in Section 5. Standard
MCMC algorithms estimate stationary means µj by sample averages. An estimate of θ is then
the product of averages. Finally, a ‘median trick’ is used to enhance the confidence level. In
this way we arrive at an estimator which is a median of products of averages (MPA). Although
such an estimator is the main object of our investigations, some auxiliary results used in the
analysis of MPA estimators are presumably of independent interest.

The paper is organized as follows. We begin in Section 2 with a careful analysis of a
‘median trick’. We explain how it can be used to obtain exponential inequalities for unbounded
variables and discuss applications to rare-event simulations [4, Chapter 6]. This is illustrated
by one specific example, namely estimation of the tail probability of a random sum; see [5]
and [16]. We suggest that an estimator which can be used here is a median of averages (MA)
of independent and identically distributed (i.i.d.) variables.

In Section 3 we consider inequalities for the relative mean-square error (MSE) for products
of estimators. The results are tailored for the application to MPA estimators in Section 5.

Section 4 is devoted to MCMC algorithms based on ergodic averages along a trajectory of a
Markov chain. This scheme of computations is widely used in practice, but the nonasymptotic
analysis is difficult because it involves dependent variables. Our basic tool is a new bound for
the MSE of Markov chain averages; see Theorem 4.2. In contrast with the inequality of [1]
used in [15], our bound holds for chains which are not necessarily reversible and is in some
instances much tighter. We also obtain an inequality for the bias (see Theorem 4.1), which is a
generalized version of the results of [8], [14], and [30].

In Section 5 we collate the results of the earlier sections. We use them in the analysis of
the MPA scheme, based on the product representation. Theorem 5.1 gives lower bounds on
the number of samples necessary to guarantee the fixed relative precision of the MPA estimate.
The bounds depend on a few key quantities, assumed to be known a priori. Our result is of
similar form to that in [15]. However, we work in a more general setting and pay more attention
to optimizing constants in our inequalities. Some examples illustrate the range of applications
of MPA estimators and our bounds. We also mention other MC estimators and bounds on
their cost. Comparison of these bounds shows that, for several important problems, an MPA
estimator is the most efficient.

2. The ‘median trick’

In this section we discuss the problem of constructing confidence bounds based on inequali-
ties for the MSE. Well-known and classical ways of doing this are via Chebyshev or exponential
inequalities, such as the Bernstein inequality [6]. Less known is a ‘median trick’ introduced
in [23]. The most popular approach to confidence estimation which uses the central limit
theorem will not be discussed, because we are interested in exact bounds. The setup considered
below will be needed in Section 5.

Assume that θ̂1, . . . , θ̂m are estimators of a parameter θ > 0, each of them computed using
an independent sample of size n (or proportional to n). Thus, θ̂1, . . . , θ̂m are i.i.d. random
variables. Suppose that a bound on the relative MSE is available and that it is of the form

E

(
θ̂i − θ

θ

)2

≤ B

n
(1 + r(n)), (2.1)

where B is an explicitly known constant and r(·) is a nonnegative function (also explicitly
known) such that r(n) → 0 as n → ∞. Note that (2.1) is quite natural, because the variance of
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standard estimators usually decreases as 1/n and the remainder r(n) can absorb bias. Conditions
similar to (2.1) may come up in various problems of applied probability, in particular those
related to MC algorithms; see, e.g. [25]. As in the introduction, we look for an estimator θ̂ of
θ > 0 such that

P(|θ̂ − θ | ≤ εθ) ≥ 1 − α. (2.2)

Let θ̂ = med(θ̂1, . . . , θ̂m). We choose n and m large enough to guarantee (2.2). It is reasonable
to require that the total cost of sampling, nm, is minimum.

Proposition 2.1. There are universal constants C1 ≈ 8.305 and C2 ≈ 2.315 with the following
properties. If (2.1),

n

1 + r(n)
≥ C1

B

ε2 , (2.3)

m ≥ C2 ln(2α)−1 and m is odd, (2.4)

are satisfied, then (2.2) holds.

Proof. The idea is to fix an initial moderate level of confidence 1 − a < 1 −α and choose n

such that P(|θ̂i − θ | ≤ εθ) ≥ 1 − a for all i. Then we boost the level of confidence from 1 − a

to 1 − α by computing a median. If n satisfies

B

n
(1 + r(n)) ≤ aε2 (2.5)

then the Chebyshev inequality yields P(|θ̂i − θ | > εθ) ≤ a. Suppose that a < 1
2 . Consider

the Bernoulli scheme in which |θ̂i − θ | ≤ εθ is interpreted as the ‘success’ in the ith trial. The
event |θ̂ − θ | > εθ can occur only if the number of successes is less than m/2. Therefore, we
obtain

P(|θ̂ − θ | > εθ) ≤
m∑

i=(m+1)/2

(
m

i

)
ai(1 − a)m−i

≤ am/2(1 − a)m/2
m∑

i=(m+1)/2

(
m

i

)

= am/2(1 − a)m/22m−1x

= 1
2 [4a(1 − a)]m/2

= 1

2
exp

{
m

2
ln[4a(1 − a)]

}
. (2.6)

The above derivation is based on [20]. A similar result without the 1
2 factor can be deduced

from the well-known Chernoff bound, which is a special case of Hoeffding’s first inequality [17,
Theorem 1]. The right-hand side of (2.6) is less than α if m satisfies

m ≥ 2 ln(2α)−1

ln[4a(1 − a)]−1 . (2.7)

Therefore, (2.5) and (2.7) together imply (2.2).
It remains to optimize the choice of a. The goal is to minimize nm subject to (2.5) and (2.7).

An exact solution of this minimization problem depends on the actual form of r(n) and may
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Figure 1: Graph of h(a).

be complicated. There exists however a solution which is quite universal and nearly optimal
under (2.1). Note that, by (2.5), the lower bound on n behaves roughly as B/(aε2) for ε → 0.
Therefore, the lower bound on nm is approximately

2

a ln[4a(1 − a)]−1 ln(2α)−1 B

ε2 .

To minimize this expression, it is enough to find the maximum of the function h(a) =
−(a/2) ln[4a(1 − a)] on the interval (0, 1

2 ). There is exactly one maximum at a∗ ≈ 0.119 69
and h(a∗) ≈ 0.051 708 (see Figure 1). Let C1 = 1/a∗ and C2 = a∗/h(a∗). Inequalities (2.3)
and (2.4) are just (2.5) and (2.7) with a = a∗.

2.1. Rare-event simulation

We are interested in the behavior of estimators of θ as θ → 0. We say that an estimator Z

of θ has bounded relative error if it is unbiased, E Z = θ , and

var Z

θ2 ≤ B, (2.8)

where B is a constant independent of θ . This concept plays an important role; see [4, Chapter 6]
or [29]. Note that (2.8) is often deduced for nonnegative Z from a stronger condition, namely

Z

θ
≤ B. (2.9)

Indeed, it follows from (2.9) that E Z2 ≤ E ZθB = θ2B.
There is a problem which seems to be mostly overlooked in the literature. How exactly

can (2.8) be used to construct fixed relative precision estimates at a given level of confidence?
Below we discuss three possible methods.

Method 1: Chebyshev inequality. In MC simulations we can generate n independent copies
of the random variable Z, denoted by Z1, . . . , Zn. The obvious candidate for a good estimator
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of θ is the sample average, Z̄ = (1/n)
∑n

i=1 Zi. The Chebyshev inequality and (2.8) give

P(|Z̄ − θ | > θε) ≤ B

nε2 .

The right-hand side is less than or equal to α if

n ≥ B

ε2α
. (2.10)

Method 2: Bernstein inequality. Consider the case when (2.9) holds. For simplicity,
additionally assume that ε ≤ 1. Then the Bernstein inequality [6] yields

P(|Z̄ − θ | > θε) ≤ 2 exp

{
− nε2

2B + 2Bε/3

}
≤ 2 exp

{
−3ε2

8B
n

}
.

To make the right-hand side less than or equal to α, we need n to satisfy

n ≥ 8B

3ε2 ln

[
α

2

]−1

. (2.11)

Method 3: the median trick. Let us now consider nm independent copies of the random
variable Z, denoted by Zil and arranged in m blocks, each of length n. Let

θ̂i = 1

n

n∑
l=1

Zil and θ̂ = med(θ̂1, . . . , θ̂m).

Estimator θ̂ is thus an MA. Note that (2.8) implies that E(θ̂i − θ)2/θ2 ≤ B/n; so here (2.1)
holds with r(n) = 0. Condition (2.3) simplifies to n ≥ C1B/ε2. Combining this with (2.4) we
see that the number of samples sufficient for (2.2) is approximately

nm ∼ C1C2
B

ε2 ln[2α]−1, ε, α → 0. (2.12)

In fact, (2.2) holds if n ≥ C1B/ε2 and m ≥ C2 ln[2α]−1, where n is an integer and m is an
odd integer. For small α, (2.11) and (2.12) are much better than (2.10). The right-hand side
of (2.12) is of the same form as (2.11) but with a larger constant, C1C2 ≈ 19.34 > 8

3 . On the
other hand, MA uses only (2.8), whilst, for the Bernstein inequality, we need (2.9).

Example. (Asmussen–Kroese estimator.) One of the typical problems in the field of rare-event
simulations is to estimate the tail probability of a random sum; see [4, Chapter 6]. This is
needed, e.g. for computing the probability of ruin via the Khinchine–Pollaczek formula; see [2,
pp. 285–287]. The classical MC algorithm introduced by Siegmund uses importance sampling
and exponential change of measure. This method requires that the summands have light tails.
In a series of papers [3], [5], [16], conditional MC algorithms have been developed for the case
of heavy tails. Below we briefly describe one of the algorithms, focusing attention on the facts
relevant to the subject of this paper.

We compute θ = θ(u) = P(SN > u), where SN = X1 + · · · + XN with i.i.d. summands
having the tail function F̄ (u) = 1 − F(u) = P(X1 > u) and N is an independent random
variable. As a rule, u > 0 is large and θ is very small. Let us consider the estimator

Z = Z(u) = NF̄ (MN−1 ∨ (u − SN−1)), (2.13)
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where MN = max(X1, . . . , XN). Obviously, Z is an unbiased estimator of θ , because
Z = E(SN > u, MN = XN | X1, . . . , XN−1). This estimator is denoted by Z1 in [16]
and by Z4 in [4, Section 6.3]. For several classes of heavy-tailed distributions F , estimator
(2.13) has bounded relative error provided, e.g. that N has moments of sufficiently high order;
see [16, Theorem 4.2]. Although (2.8) is satisfied, (2.9) fails to hold if N is unbounded; see
[16, Lemma 4.1]. Of the three methods of constructing exact confidence bounds, the Chebyshev
inequality and the median trick can in principle be applied (provided that the actual constant B

is extracted from the proofs in [16]). Bernstein’s inequality breaks down.

To the authors’ knowledge, in this example the MA estimator is the only known estimator
for which an exponential inequality for large relative deviations holds uniformly for u → ∞.

3. Product estimators

Assume that the quantity of interest is represented as a product of positive factors, θ =
µ1 · · · µk . Let µ̂1, . . . , µ̂k be independent nonnegative random variables, where µ̂j is inter-
preted as an estimate of µj , possibly biased. Consider the estimator θ̂ = µ̂1 · · · µ̂k . Similarly
as in [11], we will bound the relative MSE of θ̂ in terms of the relative MSE and the relative
bias of µ̂j . Let

ν2
j = E(µ̂j − µj )

2

µ2
j

, bj = E µ̂j − µj

µj

, ν2 = E(θ̂ − θ)2

θ2 . (3.1)

Proposition 3.1. Let D > 0 be a constant. If ν2
j ≤ D/k and |bj | ≤ D/2k for j = 1, . . . , k,

then
ν2 ≤ D + 9

4D2e2D.

Let us begin with the following lemma.

Lemma 3.1. Assume that |xj | ≤ D/k for j = 1, . . . , k. Then

k∏
j=1

(1 + xj ) = 1 +
k∑

j=1

xj + r,

where |r| ≤ D2eD/2.

Proof. Since

r =
∑

j1<j2

xj1xj2 +
∑

j1<j2<j3

xj1xj2xj3 + · · · + x1 · · · xk,

by our assumption we have

|r| ≤
(

k

2

)
D2

k2 +
(

k

3

)
D3

k3 + · · · +
(

k

k

)
Dk

kk

≤ D2
(

1

2! + 1

3!D + · · · + 1

k!D
k−2

)

≤ D2

2

(
1 + 1

3
D + 1

3 · 4
D2 + · · ·

)

≤ D2

2
eD.
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Lemma 3.2. If ν2
j , ν2, and bj are defined as in (3.1), then

ν2 =
k∏

j=1

(1 + ν2
j + 2bj ) − 2

k∏
j=1

(1 + bj ) + 1.

Proof. Since the µ̂j are independent,

E(θ̂ − θ)2

θ2 = E θ̂2 − 2θ E θ̂ + θ2

θ2 = E µ̂2
1 · · · E µ̂2

k

µ2
1 · · · µ2

k

− 2
E µ̂1 · · · E µ̂k

µ1 · · · µk

+ 1.

To conclude the proof, it is enough to note that

E µ̂2
j

µ2
j

= E(µ̂j − µj )
2 + 2µj E(µ̂j − µj ) + µ2

j

µ2
j

= ν2
j + 2bj + 1,

E µ̂j

µj

= E(µ̂j − µj ) + µj

µj

= bj + 1.

From the preceding lemmas we immediately obtain the proof of our basic result in this
section.

Proof of Proposition 3.1. The formula for ν2 given in Lemma 3.2 can be rewritten as follows,
using Lemma 3.1:

ν2 = 1 +
∑

ν2
j + 2

∑
bj + r ′ − 2

(
1 +

∑
bj + r ′′

)
+ 1

=
∑

ν2
j + r ′ − 2r ′′,

where |r ′| ≤ 1
2 (2D)2e2D , because ν2

j + 2|bj | ≤ 2D/k, and |r ′′| ≤ 1
2 (D/2)2eD/2, because

|bj | ≤ D/2k. Thus, r ′ − 2r ′′ ≤ 9
4D2e2D . Of course,

∑
ν2
j ≤ D, and the result follows.

4. Bias and the MSE of Markov chain estimators

In this section we consider a Markov chain X0, X1, . . . on a finite state space X. Assume
that the chain is irreducible and aperiodic, but not necessarily reversible. Let P be the one-step
transition matrix. The stationary distribution is denoted by π . Assume that f is a function
defined on X. We focus attention on estimating the stationary mean,

µ = Eπ f =
∑
x∈X

f (x)π(x).

Many computational problems in physics, chemistry, and biology are of this form. If the space
X is large and π is exponentially concentrated, it is impossible to sample directly from π ,
and MCMC methods have to be applied. The standard practice is to estimate µ by a sample
average. To reduce bias, an initial part of the trajectory (the so-called burn-in time t) is usually
discarded; cf. [31]. Thus, we consider

f̄t,n = 1

n

t+n−1∑
i=t

f (Xi)

as an estimator of µ. If t = 0 then we write f̄n = (1/n)
∑n−1

i=0 f (Xi).
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The following results involve the second largest eigenvalue of the multiplicative reversibi-
lization of P , defined in [14]. Let us consider the Hilbert space L2

π of functions f : X → R

endowed with the scalar product 〈f, g〉 = ∑
x∈X f (x)g(x)π(x). The norm is defined by

‖f ‖2 = 〈f, f 〉. We will freely identify functions and probability distributions with column
vectors in R

s , where s = |X|. For example, the scalar product we work with can be rewritten
as 〈f, g〉 = f ��g, where � = diag[π(x)]x=1,...,s . We identify P with an operator on
L2

π given by Pf (x) = ∑
y P (x, y)f (y). The adjoint operator is P ∗ = �−1P ��. Indeed,

〈f, Pg〉 = f ��Pg = f ��P�−1�g = 〈P ∗f, g〉. We say that P ∗P is the multiplicative
reversibilization of P . Operator P ∗P is self-adjoint and nonnegative definite. Let us denote its
eigenvalues by 1 = λ2

1 > λ2
2 ≥ · · · ≥ λ2

s ≥ 0. We can assume that P ∗P is irreducible, so the
largest eigenvalue 1 is single. The corresponding (right) eigenspace is one-dimensional and it
is spanned by 1, the constant function equal to 1. For simplicity, write λ = λ2 and say that it
is the second largest singular value of P .

Now we are in a position to prove our basic results about the bias and MSE of MCMC
estimates.

4.1. Bias

Let πt (x) = P(Xt = x). The initial distribution is thus π0. Define a chi-squared ‘distance
from stationarity’ as

χ2
t =

∑
x∈X

(πt (x) − π(x))2

π(x)
= ‖�−1(πt − π)‖2.

The stationary variance of f is, by definition, σ 2 = ‖f − µ‖2. Throughout this section, we
will write g = f − µ.

Theorem 4.1. We have
|E(f (Xt )) − µ| ≤ σχt ≤ λtσχ0.

Applying Theorem 4.1 to f (x) = 1(πt (x) > π(x)) and π0(x) = 1(x = x0) we obtain
‖πt −π‖TV := 1

2

∑
x |πt (x)−π(x)| ≤ λtσ/

√
π(x0). This inequality implies the result of [14,

Theorem 2.1] upon noting that σ ≤ 1
2 . For reversible chains, the same inequality is given in [8].

Letting f (x) = 1(x = xj ) and π0(x) = 1(x = xi) in Theorem 4.1, we obtain

|P(Xt = xj | X0 = xi) − π(xj )|
π(xj )

≤ λt√
π(xj )π(xi)

,

which is the inequality proved for reversible chains in [30, Proposition 3.1].
To prove Theorem 4.1, we need the following lemma, which we believe belongs to the

folklore.

Lemma 4.1. If 〈g, 1〉 = 0 then ‖P tg‖ ≤ λt‖g‖ for t = 0, 1, . . . .

Proof. We have ‖Pg‖2 = 〈Pg, Pg〉 = 〈g, P ∗Pg〉. Now, use the well-known minimax
characterization of eigenvalues of a self-adjoint operator (cf., e.g. [18, p. 176]). Since v1 ≡ 1,
the second largest eigenvalue of P ∗P is

λ2 = max
g : 〈g,1〉=0

〈g, P ∗Pg〉
〈g, g〉 .

Thus, for 〈g, 1〉 = 0, we have ‖Pg‖2 ≤ λ2‖g‖2. To obtain the conclusion by induction, it is
enough to note that 0 = 〈g, 1〉 = π�g = π�Pg = 〈Pg, 1〉.
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Since the eigenvalues of P ∗P and PP ∗ are the same, we have the following result.

Corollary 4.1. If 〈g, 1〉 = 0 then ‖(P ∗)tg‖ ≤ λt‖g‖ for t = 0, 1, . . . .

Proof of Theorem 4.1. To obtain the first inequality in the conclusion of the theorem, we
proceed as follows. By the Cauchy–Schwarz inequality,

|Ef (Xt ) − µ| = |(π�
t − π�)(f − µ)|

= |〈�−1(πt − π), g〉|
≤ ‖�−1(πt − π)‖‖g‖
= χtσ.

The second of the claimed inequalities follows from Corollary 4.1. Indeed, �−1(P �)t =
(P ∗)t�−1 and 〈�−1(πt − π), 1〉 = 0. Therefore,

χt = ‖�−1(πt − π)‖
= ‖�−1(P �)t (π0 − π)‖
= ‖(P ∗)t�−1(π0 − π)‖
≤ λt‖�−1(π0 − π)‖
= λtχ0.

4.2. Mean-square error

It is well known that, for an arbitrary initial distribution,

lim
n→∞n E(f̄n − µ)2 = lim

n→∞n var f̄n = τ 2, (4.1)

where τ 2 is called the asymptotic variance, to avoid confusion with the stationary variance σ 2.
The following result replaces asymptotics with respect to n in (4.1) (which is useless for our
purposes) with a useful inequality.

Theorem 4.2. Under our standing assumptions, we have∣∣∣∣E(f̄n − µ)2 − 1

n
τ 2

∣∣∣∣ ≤ 1

n2

2λσ 2 + (1 + λ)‖f − µ‖∞σχ0

(1 − λ)2 ,

where ‖f − µ‖∞ = maxx(|f (x) − µ|).
Proof. Set Qi = diag[πi(x)]x=1,...,s , and write Ri = Qi − �. Now,

n2MSE = n2 E(f̄n − µ)2

= E

(n−1∑
i=0

g(Xi)

)2

= 2
n−1∑
i=0

n−1∑
j=i+1

E g(Xi)g(Xj ) +
n−1∑
i=0

E g(Xi)
2

= 2
n−1∑
i=0

n−1∑
j=i+1

g�QiP
j−ig +

n−1∑
i=0

g�Qig

= n2BIAS + n2MSE∗,
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where

n2BIAS = 2
n−1∑
i=0

n−1∑
j=i+1

g�RiP
j−ig +

n−1∑
i=0

g�Rig,

n2MSE∗ = 2
n−1∑
i=0

n−1∑
j=i+1

g��P j−ig +
n−1∑
i=0

g��g.

It is enough to show that

(i) n2|BIAS| ≤ ‖g‖∞σχ0(1 + λ)/(1 − λ)2;

(ii) n2|MSE∗ − τ 2/n| ≤ 2σ 2λ/(1 − λ)2.

First, we consider the bias term and prove (i). For j ≥ i, in view of the Cauchy–Schwarz
inequality, Lemma 4.1, and Theorem 4.1, we have

|g�RiP
j−ig| ≤ |g�Ri�

−1�P j−ig|
= |〈�−1Rig, P j−ig〉|
≤ ‖�−1Rig‖‖P j−ig‖
≤ ‖g‖∞χi‖g‖λj−i

≤ ‖g‖∞χ0‖g‖λj

= ‖g‖∞χ0σλj ,

because ‖�−1Rig‖2 = ∑
x g(x)2(πi(x) − π(x))2/π(x) ≤ ‖g‖2∞χ2

i .

Now, setting C = ‖g‖∞σχ0, we obtain

n2|BIAS| ≤ 2C

n−2∑
i=0

n−1∑
j=i+1

λj + C

n−1∑
i=0

λi

≤ C

(
2

∞∑
i=0

λi+1

1 − λ
+ 1

1 − λ

)

= C
1 + λ

(1 − λ)2 .

We have shown (i).

Now we turn to (ii). The asymptotic variance can be expressed in terms of P and f via the
so-called fundamental matrix of the Markov chain. Let T = P − 1π�. For i > 0, we have
T i = P i − 1π� and P ig = T ig, because π�g = 0. The fundamental matrix is

Z =
∞∑
i=0

T i = (I − T )−1. (4.2)
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We will make use of the following formula for the asymptotic variance:

τ 2 = varπ f (X0) + 2
∞∑
i=1

covπ (f (X0), f (Xi))

= ‖g‖2 + 2
∞∑
i=1

〈g, P ig〉

= g��

(
I + 2

∞∑
i=1

T i

)
g

= g�[2�Z − �]g. (4.3)

Formula (4.3) is classical and can be found, e.g. in [7, p. 232].
Of course,

∑n
i=1 T i = ZT (I − T n). Hence,

n−1∑
i=0

n−i−1∑
j=1

T j =
n−1∑
i=0

ZT (I − T n−i−1)

= nZT − Z

n∑
i=1

T j

= nZT − Z2T (I − T n)

= n(Z − I ) + Z2T (I − T n).

Therefore,

n2MSE∗ = 2g��

n−1∑
i=0

n−i−1∑
j=1

T jg + ng��g

= ng�[2�(Z − I ) + �]g + 2g��Z2T (I − T n)g.

By (4.2), the first term on the right-hand side is equal to nτ 2.
It remains to bound the second term. To this end, we use the simple observation that g��T =

g��P = g�(P ∗)��. The Cauchy–Schwarz inequality, Lemma 4.1, and Corollary 4.1 imply
that

|g��ZZT (I − T n)g| =
∣∣∣∣g��

( ∞∑
j=0

T j

)( n∑
i=1

T i

)
g

∣∣∣∣
=

∣∣∣∣g�
( ∞∑

j=0

((P ∗)�)j
)

�

( n∑
i=1

P i

)
g

∣∣∣∣
=

∞∑
j=0

n∑
i=1

|〈(P ∗)j g, P ig〉|

≤
∞∑

j=0

n∑
i=1

‖P jg‖‖P ig‖

≤ ‖g‖2
∞∑

j=0

λj
n∑

i=1

λi
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= σ 2 λ(1 − λn)

(1 − λ)2

≤ σ 2 λ

(1 − λ)2 .

Consequently, |n2MSE∗ − nτ 2| ≤ 2σ 2λ/(1 − λ)2. This completes the proof.

4.3. Corollaries

In this subsection we state some simple consequences of the preceding results in a form
‘ready to use’ in the analysis of MPA estimators in Section 5.

Corollary 4.2. We have

E(f̄t,n − µ)2 ≤ 1

n

1 + λ

1 − λ
σ 2 + 1

n2

2λσ 2 + (1 + λ)‖f − µ‖∞σχt

(1 − λ)2 .

Proof. In view of Theorem 4.2 it is enough to show that

τ 2 ≤ 1 + λ

1 − λ
σ 2.

This inequality is well known for reversible chains, but it also holds in the nonreversible case
(λ2 denotes the second largest eigenvalue of P ∗P ). Indeed, by (4.3), the Cauchy–Schwarz
inequality, and Lemma 4.1,

τ 2 = ‖g‖2 + 2
∞∑
i=1

〈g, P ig〉 ≤ ‖g‖2
(

1 + 2
∞∑
i=1

λi

)
= 1 + λ

1 − λ
σ 2.

This completes the proof.

Corollary 4.2 plays a role analogous to Proposition 4.2 of Aldous [1] and Proposition 3.2 of
Gillman [15]. Let us point out the main differences. Aldous’s inequality involves 1/minx π(x).
This quantity is of moderate order of magnitude for uniform distributions, but it is disastrously
large in the problems considered in Section 5; cf. Examples 5.1 and 5.2. Gillman’s bound on
the MSE of f̄t,n (in our notation) is implicit in the proof of his Proposition 3.2. This bound is
not dependent on 1/minx π(x), but it does not go to 0 as n → ∞ with t fixed. Both the cited
results are derived only for reversible chains.

In the next corollaries we assume that f ≥ 0 and write B = ‖f ‖∞/µ. Note that σ 2/µ2 ≤ B

(cf. (2.8) and (2.9)). We also use the notation � = 1/(1 − λ).

Corollary 4.3. If f ≥ 0 then
|Ef̄t,n − µ|

µ
≤ �

√
Bχt

n
.

Indeed, by Theorem 4.1 we have

|Ef̄t,n − µ| ≤ 1

n

n−1∑
i=0

|Ef (Xt+i ) − µ| ≤ 1

n

n−1∑
i=0

λiχtσ ≤ 1

n

χtσ

1 − λ
.

Corollary 4.4. If f ≥ 0 then

E(f̄t,n − µ)2

µ2 ≤ 2�B

n

(
1 + �

n
+ �

√
Bχt

n

)
.
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Indeed, by Corollary 4.2 we have

E(f̄t,n − µ)2 ≤ 1 + λ

n(1 − λ)
σ 2 + 2λ

n2(1 − λ)2 σ 2 + 1 + λ

n2(1 − λ)2 Bµσχt

≤ 2�σ 2

n
+ 2�2σ 2

n2 + 2�2Bµσχt

n2

≤ 2�Bµ2

n

(
1 + �

n
+ �

√
Bχt

n

)
.

Theorem 4.1 immediately entails the following result.

Corollary 4.5. For a deterministic initial distribution, P(X0 = x) = 1,

χt ≤ e−t/�π(x)−1/2.

Indeed, it is easy to see that χ0 ≤ π(x)−1/2 and λt = (1 − 1/�)t ≤ e−t/�.
Finally, from Corollaries 4.3, 4.4, and 4.5, we derive the following tidy bounds.

Corollary 4.6. Assume that f ≥ 0 and P(X0 = x) = 1. If

t ≥ � ln(π(x)−1/2B−1/2)

then
E(f̄t,n − µ)2

µ2 ≤ 2�B

n

(
1 + 2�B

n

)
and

| E f̄t,n − µ|
µ

≤ �B

n
.

Indeed, it is enough to note that χt ≤ √
B.

5. Median of products of averages

As mentioned in the introduction, we consider the problem of computing a quantity which
is expressed in the form θ = µ1 · · · µk . Each µj is the expectation of some function fj with
respect to a probability distribution πj on some finite space, µj = Eπj

fj . Assume that we can
generate a Markov chain with transition matrix Pj such that πj is its stationary distribution.
The sampling procedure under consideration starts from xj and makes t + n steps. The first
t steps are discarded and the remaining n steps are used to compute averages. The resulting
estimates of the µj s are multiplied. Finally, the whole procedure is repeated m times and the
median is taken as an estimate of θ . The basic parameters of the algorithm are t , n, k, and m.
Clearly, the number of samples is (n + t)km. A formal description of the algorithm is given
in Algorithm 5.1, below. Note that in this section we have to modify earlier notation to
accommodate different ‘building blocks’ in one algorithm.

Algorithm 5.1. (Median of products of averages.)

Inputs: t , n, k, m, and (Pj , xj ) for j = 1, . . . , k.
for i = 1 to m do

for j = 1 to k do
generate the trajectory X0

ij , X
1
ij , . . . , X

t
ij , . . . , X

t+n−1
ij of the Markov chain with tran-

sition rule Pj and initial state X0
ij = xj

compute µ̂ij = (1/n)
∑n−1

l=0 fj (X
t+l
ij )

end for
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compute θ̂i = ∏k
j=1 µ̂ij

end for
compute θ̂ = med(θ̂1, . . . , θ̂m)

Output: θ̂ .

Assume that fj ≥ 0 for every j = 1, . . . , k. Suppose that we know a priori B• > 0 and
π• > 0 such that fj/µj ≤ B• and πj (xj ) ≥ π•. Moreover, we denote the second largest
singular value of Pj by λj , write �j = (1 − λj )

−1, and assume that �j ≤ �• for every
j = 1, . . . , k. Our main result shows how the quantities B•, π•, �•, and k determine t , n,
and m, and, consequently, the cost of the algorithm.

Theorem 5.1. Let 0 < ε < 1 and 0 < α < 1
2 . Assume that

(i) t ≥ �• ln(π
−1/2• B

−1/2• );

(ii) n ≥ 2C1�•B•kε−2(1 + ε2);

(iii) m ≥ C2 ln(2α)−1 and m is odd,

where C1 and C2 are the universal constants defined in Section 2. Then the final estimate θ̂

satisfies P(|θ̂ − θ | ≤ θε) ≥ 1 − α.

Bounds on the cost of MCMC algorithms occur in many papers devoted to the computational
complexity of counting problems [11], [15], [19, Chapter 3]–[22]. In these papers, to prove that a
given algorithm in a given problem has the required relative precision, the authors derived ad hoc
bounds which correspond to our Propositions 2.1 and 3.1, and Corollaries 4.5 and 4.6. The
conditions of Theorem 5.1 highlight distinct roles played by the problem-dependent parameters
B•, π•, �•, and k. The conclusion is applicable to general MPA algorithms. We have optimized
the constants C1 and C2 so that in selected examples (see Examples 5.1 and 5.2, below) the cost
of the algorithms has been reduced at least several times compared to earlier results [15], [20],
[21]. Moreover, Theorem 5.1 does not require reversibility and covers, e.g. the ‘systematic
sweep’ or ‘systematic scan’ schemes [9], [12]. Analysis of such schemes is very difficult and
first bounds have been obtained recently for spin systems in [12].

Proof of Theorem 5.1. First we are going to apply Corollary 4.6 to the averages µ̂ij , then
Proposition 3.1 to the products θ̂i , and finally Proposition 2.1 to the median θ̂ .

Let

ν2
j = E(µ̂ij − µj )

2

µ2
j

, bj = E µ̂ij − µj

µj

, ν2 = E(θ̂i − θ)2

θ2 .

Corollary 4.6, when translated to our new notation, asserts that assumption (i) implies that

ν2
j ≤ 2�•B•

n

(
1 + 2�•B•

n

)
, |bj | ≤ �•B•

n
.

If we write

D = 2�•B•k
n

(
1 + 2�•B•

n

)
, B = 2�•B•k,
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then ν2
j ≤ D/k and |bj | ≤ D/(2k), so Proposition 3.1 implies that

ν2 ≤ D + 9

4
D2e2D

≤ B

n

(
1 + B

n
+ 9B

4n

(
1 + B

n

)2

exp

{
2B

n

(
1 + B

n

)})
, (5.1)

because D ≤ (B/n)(1 + B/n). This is clearly an expression of the form (2.1) and we are in
a position to apply Proposition 2.1. It remains to verify that assumption (ii) implies (2.3) or,
equivalently, that the right-hand side of (5.1) is less than or equal to ε2/C1. The following
elementary computation shows this is indeed true. Set H = B/n. Since

H ≤ ε2

(1 + ε2)C1
<

ε2

C1
<

ε2

8
<

1

8
,

it follows that

H

(
1 + H + 9

4
H(1 + H)2e2H(1+H)

)
< H

(
1 + ε2

8

[
1 + 9

4

(
9

8

)2

e9/32
])

< H(1 + ε2)

≤ ε2

C1
,

and the proof is complete.

5.1. Remarks on alternative approaches

Let us compare the computational complexity ofAlgorithm 1 with alternative schemes known
in the literature. The criterion, as before, is the number of samples necessary to guarantee that
P(|θ̂ − θ | ≤ θε) ≥ 1 − α. We use the O(·) notation, thus neglecting constants.

The cost of Algorithm 5.1 is, by Theorem 5.1,

(n + t)km = O(�•k(kB•ε−2 + ln π−1• ) ln α−1). (5.2)

Algorithm 5.1 is classical and close to computational practice, but many important theoretical
results have been obtained for algorithms which use averages over final states of multiple
independent runs of the chain; see [11], [19, Chapter 3]–[22], and [30]. This scheme, given by
Algorithm 5.2, below, is easier to analyze because it involves averages of independent variables.
It can be shown that the total number of samples in Algorithm 5.2 is

tnkm = O(�•k2B•ε−2 ln(π−1• B•ε−1k) ln α−1). (5.3)

Algorithm 5.2. (Median of products of averages with multiple runs.)

Inputs: t , n, k, m, and (Pj , xj ) for j = 1, . . . , k.
for i = 1 to m do

for j = 1 to k do
for l = 1 to n do

generate the trajectory X0
ij l , X

1
ij l , . . . , X

t
ij l of the Markov chain with transition rule

Pj and initial state X0
ij l = xj

end for
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compute µ̂ij = (1/n)
∑n

l=1 fj (X
t
ij l)

end for
compute θ̂i = ∏k

j=1 µ̂ij

end for
compute θ̂ = med(θ̂1, . . . , θ̂m)

Output: θ̂ .

Finally, let us consider Algorithm 5.3, below, which is seemingly simpler because it uses
products of averages along trajectories (without medians).

Algorithm 5.3. (Products of averages.)

Inputs: t , n, k, and (Pj , xj ) for j = 1, . . . , k.
for j = 1 to k do

generate the trajectory X0
j , X

1
j , . . . , X

t
j , . . . , X

t+n−1
j of the Markov chain with transition

rule Pj and initial state X0
j = xj

compute µ̂j = (1/n)
∑n−1

l=0 fj (X
t+l
j )

end for
compute θ̂ = ∏k

j=1 µ̂j

Output: θ̂ .

The length n of a single trajectory in Algorithm 5.3 must of course be greater than in
Algorithm 5.1 to achieve the same relative accuracy and level of confidence. To derive bounds
analogous to those in Theorem 5.1, we can use some exponential inequality for the deviations
of µ̂j from µj and then the Bonferroni inequality to obtain a confidence bound for products.
Exponential inequalities for Markov chain averages [10], [15], [24] allow us to obtain P(|µ̂j −
µj | > ηµj ) ≤ A exp{−Rnη2/(Bj�j )} for some absolute constants A, R > 0, where Bj

bounds fj/µj . To infer that P(|∏ µ̂j − ∏
µj | >

∏
µjε) ≤ α via the Bonferroni inequality,

we have to ensure that, say, P(|µ̂j − µj | > µjε/(2k)) ≤ α/k. We omit the details, because
the best we can hope to obtain in this way is

(t + n)k = O(�•k(k2B•ε−2 ln(α−1k) + ln π−1• )). (5.4)

Bound (5.3) is clearly worse than (5.2). In most examples of practical relevance, (5.4) is also
worse than (5.2).

5.2. Examples

Many models of statistical physics describe equilibrium properties of configurations of par-
ticles. Let X be a finite space of configurations. The Gibbs distribution at inverse temperature
β > 0 is given by πβ(x) = Z−1

β e−βV (x), x ∈ X, where V is a potential (energy) function and
Zβ is a normalizing constant called the partition function. The Boltzmann distribution on the
space of possible energy levels is induced by the Gibbs distribution:

ρβ(v) =
∑

x∈X : V (x)=v

πβ(x) = w(v)e−βv

Zβ

, (5.5)

where the function w(v) = |V −1(w)| is called the density of states and

Zβ =
∑

v

w(v)e−βv. (5.6)
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The summation in (5.6) is computationally feasible, because the set of energy levels v is typically
of moderate size, say approximately 104, in contrast with the size of X, which is usually
exponentially large. Therefore, knowledge of the density of states, even up to proportionality,
is sufficient for computing the Boltzmann distribution, which is of primary interest.

Modern algorithms, based on the idea of the multihistogram due to Ferrenberg and Swend-
sen [13], usually involve several series of MCMC simulations performed at different tempera-
tures β1 < β2 < · · · < βk . A Markov chain at temperature βj converges to πβj

and is used to
compute estimates ρ̂βj

(v) of Boltzmann probabilities. If the length of simulation at different
temperatures is equal then the multihistogram estimator of w(v) is given by

ŵ(v) =
∑k

j=1 ρ̂βj
(v)∑k

j=1 exp{−βjv}/Zβj

. (5.7)

A simple rationale behind (5.7) is the equation
∑

j ρβj
(v) = w(v)

∑
j exp{−βjv}/Zβj

, which
immediately follows from (5.5). Let us refer to [13] and [26, Chapter 8] for a more general
version and different derivations of (5.7). Common practice, also recommended by the cited
authors, is to iteratively approximate w(v) and unknown Zβj

intermittently using (5.6) and
(5.7). Both sets of values are in this way estimated up to a multiplicative constant.

An alternative way is to use the expression

Zβj+1

Zβj

=
∑
x∈X

exp{−(βj+1 − βj )V (x)}πβj
(x)

= Eβj
exp{−(βj+1 − βj )V } (5.8)

and the ‘telescopic product’

Zβj
= Zβ1

Zβ2

Zβ1

· · · Zβj

Zβj−1

. (5.9)

Note that even if the value of Zβ1 is unknown, we can estimate the ratio in (5.8) by MCMC
methods and, thus, estimate the collection of Zβj

(j = 1, . . . , k) up to proportionality. Then
we can use (5.7) directly and, thus, avoid the iterative procedure mentioned before. The
computational scheme based on (5.8) and (5.9) fits in the setup considered in Section 5: Zβk

is
expressed as a product of the expected values µj = Zβj+1/Zβj

. This scheme is applied in [27]
and [28] to the analysis of a model of protein folding. It is interesting that algorithms based on
(5.8) and (5.9) were proposed earlier in theoretical papers on the computational complexity of
counting problems [11], [20], [21], [30].

Below we consider two classical examples from statistical physics, apply our theorem, and
compare the complexity of the three algorithms described in the previous subsections. For a
detailed presentation of the analyzed models and background of the considered problems, we
refer the reader to [20] and [21].

Example 5.1. (The Ising model.) The state space X consists of all spanning subgraphs of a
given graph (V, E). The problem is to compute the partition function

Z =
∑
x∈X

γ |x|τ |ODD(x)|,

where γ, τ > 0 and ODD(x) stands for the set of all odd-degree vertices of graph x. Jerrum
and Sinclair [20] gave an instance of Algorithm 5.2 and they proved the following bounds.
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Let N = |V| and M = |E |. Then, in our notation, k ≤ N , B• ≤ 10, �• ≤ 2N4M2, and
π−1• ≤ 2M . Gillman [15] applied these bounds in his analysis of Algorithm 5.1 and (implicitly)
of Algorithm 5.3. The cost is the following:

O(N6M2ε−2 ln α−1) for Algorithm 5.1,

O(N6M3ε−2 ln α−1) for Algorithm 5.2,

O(N7M2ε−2 ln(α−1N)) for Algorithm 5.3.

To simplify the expressions for Algorithms 5.1 and 5.2, we have used rather unrestrictive
assumptions that ln[Nε−1] � M � Nε−2.

Let us note that from our Theorem 5.1 it follows that the cost of Algorithm 5.1 is asymp-
totically equivalent to 40C1C2N

6M2ε−2 ln α−1 for ε, α → 0. The constant 40C1C2 ≈ 769 is
about three times less than that in [15].

Example 5.2. (The monomer-dimer model.) Consider the state space X consisting of all
matchings in a graph (V, E). The problem is to compute the partition function

Z =
∑
x∈X

τ |x|,

where τ > 0. Jerrum and Sinclair [21] gave an instance of Algorithm 5.2. In this case the
following bounds are shown. Let N = |V| and M = |E |. Then k ≤ 2N ln[τ ′M] + 2,
B• ≤ e ≈ 2.718, �• ≤ 4MNτ ′, where τ ′ = max(τ, 1), and π−1• ≤ (2N)!τ ′N . From (5.2),
(5.3), and (5.4), we obtain the following bounds:

O(N3Mτ ′(ln(Mτ ′))2ε−2 ln α−1) for Algorithm 5.1,

O(N4Mτ ′(ln(Nτ ′))3ε−2 ln α−1) for Algorithm 5.2,

O(N4Mτ ′(ln(Nτ ′))3ε−2 ln(α−1N)) for Algorithm 5.3.

Again, we have used some simplifying assumptions to make the bounds more readable. In the
expressions for Algorithms 5.1, 5.2, and 5.3 we assume respectively that ln N � ln[Mτ ′]ε−2,
ln ε−1 � N ln[Nτ ′], and ln M � N . None of these assumptions seems to be restrictive.

We have to admit however that the results in the spirit of computational complexity theory,
with precise nonasymptotic bounds, so far remain too pessimistic to be applied in practice.

Appendix A. Proofs of the complexity bounds for Algorithms 5.2 and 5.3

Proof of (5.3). We derive bounds on t , n, and m. Let fj/µj ≤ Bj , and note that σ 2
j =

varπj
fj ≤ Bjµ

2
j .

Choice of t . By Theorem 4.1,

|Efj (X
t
ij l) − µj | ≤ exp

{
− t

�j

}
σj√

πj (xj )
≤ exp

{
− t

�j

}√
Bj

πj (xj )
µj .

Let us divide both sides by µj , replace Bj , �j , and πj (xj ) by B•, �•, and π•, and then choose t

sufficiently large to make the right-hand side less than or equal to aε2/(4k). Here we can
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choose any fixed a < 1
2 , but for definiteness, let us take a = a∗ = 1/C1 as in Proposition 2.1.

We see that
|Efj (X

t
ij l) − µj |
µj

≤
√

B•
π•

e−t/�• ≤ aε2

4k
(A.1)

is satisfied if we choose

t ≥ �• ln
4k

√
B•

aε2√π•
= O(�• ln(π−1• B•ε−1k)). (A.2)

Choice of n. Since µ̂ij is an average of i.i.d. variables var µ̂ij = (1/n) var fj (X
t
ij l). But it

follows from (A.1) that E fj (X
t
ij l) ≤ 2µj , so

var fj (X
t
ij l) ≤ E fj (X

t
ij l)

2 ≤ E fj (X
t
ij l)µjBj ≤ 2µ2

jBj ,

because 0 ≤ fj (X
t
ij l) ≤ µjBj . We can see that

var µ̂ij

µ2
j

≤ 2Bj

n
≤ 2B•

n
≤ aε2

2k
(A.3)

is satisfied if we choose

n ≥ 4kB•
a

= O(B•ε−2k). (A.4)

Now, (A.1) together with (A.3) implies that

ν2
j := E(µ̂ij − µj )

2

µ2
j

≤
(

aε2

4k

)2

+ aε2

2k
≤ 2aε2

3k
.

We are in a position to apply Proposition 3.1 with D = 2aε2/3 and obtain

ν2 := E(θ̂i − θ)2

θ2 ≤ D + 9

4
D2e2D ≤ aε2.

By the Chebyshev inequality, it follows that P(|θ̂i − θ | > ε) ≤ a.
Choice of m. Exactly as in the proof of Theorem 5.1,

m ≥ C2 ln(2α)−1 = O(ln α−1). (A.5)

It remains to take the product of (A.2), (A.4), and (A.5), and multiply by k.

Proof of (5.4). We will use a simplified version of an inequality due to Lezaud [24, The-
orem 1.1]. Without loss of generality, we can assume that 0 ≤ fj ≤ 1 and set Bj = 1/µj .
The stationary variance of fj is bounded by 1/Bj . Since in Algorithm 5.3 we have µ̂j =
(1/n)

∑n−1
l=0 fj (X

t+l
j ), the Lezaud inequality yields

P

(
|µ̂j − µj | >

εµj

2k

)
≤ 3

(
1 + exp{−t/�j }√

πj (xj )

)
exp

{
−n(εjµj/2k)2

5�j/Bj

}

≤ 3

(
1 + e−t/�•

√
π•

)
exp

{
− nε2

20k2�•B•

}
. (A.6)
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Choice of t . If

t ≥ �• ln
1√
π•

= O(�• ln π−1• )

then (A.6) simplifies to

P

(
|µ̂j − µj | >

εµj

2k

)
≤ 6 exp

{
− nε2

20k2�•B•

}
. (A.7)

Choice of n. If

n ≥ �•k2B•
40ε2 ln

6k

α
= O

(
�•k2B•

ε2 ln[α−1k]
)

then it follows from (A.7) that

P

(
|µ̂j − µj | >

εµj

2k

)
≤ α

k
. (A.8)

By Lemma 2.3 with D = ε/2,

µj

(
1 − ε

2k

)
≤ µ̂j ≤ µj

(
1 + ε

2k

)
for j = 1, . . . , k

implies that (∏
j

µj

)
(1 − ε) ≤

∏
j

µ̂j ≤
(∏

j

µj

)
(1 + ε),

because ∏
j

(
1 ± ε

2k

)
= 1 ± ε

2
+ r where |r| ≤ ε2

8
eε/2 <

ε

2
.

Now we can use the Bonferroni inequality and (A.8) to obtain P(|θ̂ − θ | > εθ) ≤ α, which
completes the proof.
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