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Abstract

The following question is discussed and evidence for and against it is advanced: is it true that if
F is an arbitrary finite subgroup of an arbitrary non-linear simple locally finite group G, then
CG(F) is infinite? The following points to an affirmative answer.

THEOREM A. Let F be an arbitrary finite subgroup of a non-linear simple locally finite group
G. Then there exist subgroups D<C < G such that F centralizes C/D, FC\C < D, and C/D
is a direct product of finite alternating groups of unbounded orders. In particular, F centralizes
an infinite section of G.
Theorem A is deduced from a "local" version, namely

THEOREM B. There exists an integer valued function f(n, r) with the following properties.
Let H be a finite group of order at most n , and suppose that H < S, where S is either an
alternating group of degree at least f = f(n, r) or a finite simple classical group whose natural
projective representation has degree at least f. Then there exist subgroups D<C <S such that
(i) [H,C]<D, (ii) H n C < D, (iii) C/D ^ Alt(r), (iv) D = 1 if S is alternating, and D
is a p-group of class at most 2 and exponent dividing p2 if S is a classical group over afield
of characteristic p.
The natural "local version" of our main question is however definitely false.

PROPOSITION C. Let p be a given prime. Then there exists a finite group H that can be
embedded in infinitely many groups PSL(«, p) as a subgroup with trivial centralizes
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[2] Finite groups 503

1. Introduction

The study of simple locally finite groups depends heavily on knowledge about
finite simple groups, and, not surprisingly, the classification of finite simple
groups has led to considerable progress in our understanding of simple lo-
cally finite groups, or 6-groups , as we shall call them. In [6], we used the
classification to discuss centralizers of elements in infinite 6-groups , and
in this paper we study centralizing properties of arbitrary finite subgroups
of infinite 6-groups. Now 6-groups can be divided into two classes with
widely differing properties, the linear ones and the non-linear ones. The in-
finite linear 6-groups are precisely the Chevalley groups and their twisted
analogues over infinite locally finite fields [1], [2], [7], [15]. They are known,
although perhaps not fully understood, and powerful techniques are available
for studying them. Among the non-linear ones, the finitary linear groups have
recently received attention. These act faithfully on a vector space V in such
a way that for each element x, the kernel of JC - 1 has finite codimension.
Although these form a very natural class and much is known about them [5],
[13], we shall not distinguish them from other non-linear 6-groups in this
paper.

The following question, which we shall discuss but not answer, focuses
attention on the issues we deal with in this paper.

QUESTION. IS it the case that in a non-linear <&-group, the centralizer of
every finite subgroup is infinite0!

One could go further and ask whether the centralizer of every finite sub-
group involves a non-linear ©-group. It is known [6] that the centralizer of
each element of an infinite ©-group is infinite, irrespective of linearity, but
any linear ©-group will certainly contain finite subgroups with trivial central-
izer. Further, [6, Theorem B] provides quite strong evidence to support the
view that in a non-linear ©-group, the centralizer of every element involves
a non-linear ©-group.

We shall prove the following.

THEOREM A. Let G be any non-linear <&-group and F be any finite sub-
group of G. Then there exist subgroups D < C < G such that D contains
[C, F] and C n F, and C/D is a direct product of finite alternating groups
of unbounded orders.

Although at first sight this seems like substantial progress towards an affir-
mative answer to the question above, our discussion below will indicate that
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such optimism is not really justified, and Proposition C suggests to me that
the answer may be negative.

We note two easy consequences of Theorem A.

COROLLARY Al. Let G bean ®-group. If every proper subgroup of G is
almost locally soluble, then G is linear.

This is clear since in Theorem A, the group C is not almost locally soluble.
This corollary is one of the steps in the proof of a theorem of Kleidman and
Wilson [12], who go on to show that if G is infinite, then G = PSL(2, k) or
Sz(fc), for a suitable locally finite field k. The approach of this paper was
inspired by theirs.

COROLLARY A2. Let G be a countable <5-group in which, for some prime
p, the maximal p-subgroups are conjugate. Then G is linear.

This follows because every section of G will have only countably many
maximal p-subgroups [8], while C/D clearly has 2N° of them. This corollary
is a special case of a theorem of Kegel [10] and is an important ingredient
of his proof. Theorem 2.4 of Kegel [10], on singular p-subgroups of finite
simple groups, follows from Theorem B below.

Let us now discuss the proof of Theorem A. First, it suffices to deal with
the case when G is countable, as every countable set of elements of an <8-
group lies in a countable ©-subgroup [11] and every non-linear group has
a countable non-linear subgroup. Then G has a Kegel sequence, that is, a
sequence Gx < G2 < • • • of finite subgroups such that

(1.1)

and
(1.2) Gi+l contains a maximal normal subgroup Mi+l such that

G , n \ , = i ( / > i ) .
For this, see [11, 4.5]. Applying the classification of finite simple groups

to the simple groups Gt = Gi/Mi, we eventually find that either G is linear,
or

(1.3) (after modifying the Kegel sequence if necessary) the G( are either
all alternating groups and of unbounded degrees, or all belong to a fixed
family of finite simple classical groups over various fields, with unbounded
rank parameter.

See [6] for a more detailed discussion. We are concerned with situation
(1.3), and Theorem A will be deduced from the following.
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THEOREM B. There exists an integer-valued function f(n, r) with the fol-
lowing properties.

Let H be a finite group of order at most n, and suppose that H < S,
where S is either an alternating group of degree at least f — f(n ,r), or a
finite simple classical group whose natural projective representation has degree
at least f.

Then there exist subgroups D<C <S such that
(i) [H,C]<D,
(ii) HDC<D,
(iii) C/DSAlt(r),
(iv) D — \ if S is alternating, and is a p-group of class at most two and

exponent dividing p2 if S is a classical group over a field of characteristic p.

Roughly speaking, a small subgroup of a large alternating or classical group
centralizes a large section. This theorem would be more satisfactory if one
could always take D - 1, and at first sight it is tempting to work towards
that goal. The next result shows that it is impossible.

PROPOSITION C. Let p be a given prime. Then there exists a finite group
H that can be embedded in infinitely many groups PSL(«, p) as a subgroup
with trivial centralizer. If p £ 2 we can take \H\ = 2p3.

Though this result suggests that our main question has a negative answer,
it does not prove it. That would require the embeddings to be induced by
embeddings of the projective special linear groups.

The argument of Proposition C yields rather more. In fact, H also embeds
in the corresponding groups SL(«, p) in such a way that the only matrices
centralizing it are scalar. Thus, H has modules over ¥p that have unbounded
dimension, but whose endomorphism rings are F p . These modules are, of
course, indecomposable. This may be of independent interest. Of course,
there are well known examples of finite p-groups having indecomposable
modules of unbounded dimension over Fp , but the radicals of the endomor-
phism rings of these modules necessarily have unbounded dimensions also.
The above phenomenon seems to be new. A more detailed version of Propo-
sition C is given as Proposition C2 in Section 3; Proposition Cl is a related
result.

2. Proofs

The proof of the first case of Theorem B, when 5 = Alt(w), is virtually the
same as an argument in [12]. We reproduce it for the reader's convenience
and because it is the pattern for the other cases.
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Proof of Theorem B, Case (i), S = Alt(w). The number of inequivalent
transitive permutation representations of our subgroup H of S is the num-
ber of conjugacy classes of subgroups of H, say t — t(H). Think of S as
acting on il — {1, 2, ... , m} . Let r be given. If m > tr \H\, then in the
action of H on Q, there will be a set of r equivalent orbits. Thus, we can
write Q — Q, U- • •u£2ruQ/, where Q, , . . . , Qr are equivalent //-orbits and
il' is permuted by H. Let AT be a subgroup of H which is the stabilizer
of a point in each Q ( , and let coj be a point in Q( of which K is the sta-
bilizer. For any a e Alt(r), let f{a) be the permutation of Q, sending o)th
to (oiah (1 < / < r, h e / /) and fixing fi' pointwise. Clearly, / embeds
Alt(r) in Alt(Q) = S. The image C of f commutes elementwise with H
and intersects H trivially, so we may take D - 1 here.

Before dealing with the other cases, we need to establish our notation for
classical groups. It will be consistent with [3], where a brief account of them
is given; for more detail, see [4]. In particular, the orthogonal groups over a
field k of characteristic 2 arise as follows. If V is a vector space of finite
dimension over k, then a quadratic form on V is a map g: V —• k, together
with a fc-valued bilinear form ( , ) on V, such that

g{Xx + fiy) = X2g(x) + Xfi{x, y) + f/g(y) (x, y € V, k, fi G k).

The bilinear form is uniquely determined and necessarily alternating. Let Vo

be the radical of ( , ) and d = dim Vo, which is called the defect of g. The
form g is called non-degenerate if g(;c) / 0 for all 0 ^ JC e Vo. When A;
is finite, there are the following possibilities. If dim V = 2a + 1 is odd, then
d = 1 and there is only one equivalence class of non-degenerate quadratic
forms on V. The associated isometry group fi(2a + 1, k) is isomorphic
to Sp(2a, k) so from the group-theoretical point of view, odd dimensional
orthogonal groups need not be considered. If dim V — 2a, then d = 0 and
there are two equivalence classes of non-degenerate quadratic forms, giving
rise to simple groups PQ,±(2a, k) as in the odd characteristic case.

We need the following result ("Witt's Theorem").

LEMMA 2.1. Let V be a vector space over a finite field k, carrying a non-
degenerate alternating, quadratic or hermitian form f. If char/: = 2 and f
is quadratic, assume further that dim V is even. Let Ul, U2 be subspaces of
V and 6: U{ —* U2 be an isometry. Then 6 can be extended to an isometry
ofV.

These facts can be found in [4, page 21] (/ hermitian or / quadratic in
odd characteristic), [7, page 23] ( / alternating) and [4, page 36] (/ quadratic
in characteristic 2).

https://doi.org/10.1017/S1446788700032468 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700032468


[6] Finite groups 507

Continuing with the proof of the theorem, we now consider
Proof ofTheorem B, Case (ii), S is a classical group. Thus S is constructed

from a vector space V of finite dimension m over a finite field k. We have
S = T/Z, where Z acts scalarly on V and T = SL(V), Sp(F), Q ± (F) or
SU(F). Except in the first case, V carries a form of the appropriate kind.
This will be denoted by g in the case of orthogonal groups in characteristic
2, and ( , ) otherwise. We have to show that if m is sufficiently large
compared with r and \H\, then C and D can be found with the stated
properties. Let H — LjZ , where L <T. We proceed in a number of steps.

(a) If m > 4\H\, then L leaves invariant a non-zero totally isotropic {re-
spectively totally singular) subspace of V.

Recall that if V carries a quadratic form / , a subspace U of V is called
totally singular (for / ) if f(u) = 0 for all u € U. In the case T = SL(F),
every subspace is considered totally isotropic.

PROOF. We consider the various types separately. In the case T = SL(F),
there is nothing to do. In the other cases, let vl,... , vm be a basis of V
and let H be a transversal to Z in L . Then

m

vih =

Consider the case when T = Sp(F) or Q ± (F) in odd characteristic, so
that our form ( , ) is alternating or symmetric. Let ast — (vs, vt) (1 < s,
t<m). Then

( E asvs' E rtvt) = E astash K ' h € *)•
Let v e V. The space £/ spanned by all vh (h € H) is L-invariant
since Z acts scalarly on V. Further, U is totally isotropic if and only if
(v, vh) = 0 for all h e H; again, this is because Z acts scalarly. Thus, if
v = J2?=i a

s
v
s ia

s
 e ^ ) ' ^en £/ is totally isotropic if and only if, for all

h G H , we have

This is a system of \H\ homogeneous quadratic equations over the finite
field k for the m variables ax,... , am. By the theorem of Chevalley and
Warning [14, page 5] (where the result is misstated), there is a nontrivial
solution provided that the sum of the degrees of the equations is less than
the number of variables, that is, if 2\H\ < m .
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Now let T = SU(V), so that ( , ) is a non-degenerate hermitian form.
We have \k\ = q for some prime power q. Let X i-> X be the unique
automorphism of order 2 of k, and fc0 be its fixed field. Let vl, ... ,vm be
as before, and consider a vector v = X ) ^ , asvs with o^ e fc0. The space U
spanned by the vh{h e H) is totally isotropic if and only if, for all A e H ,

s,u

s,u

say, with Psu e k. Let 1, co be a A:0-basis of A: and write Psu{h) =
asu(h) + a'su(h)co with asu{h), a'su{h) e A:o. Then the above yields 2\H\
homogeneous quadratic equations for a{, ... , am, and there will be a non-
trivial solution if m > 4\H\.

There remains the case when char A: = 2 , dim V is even, and V carries
a non-degenerate quadratic form. With v = J2a

s
vs a s before, we have

We now require g(yh) = 0 and (v, vh) = 0 for all h GH. This gives 2\H\
quadratic conditions, which can be satisfied non-trivially if m > 4\H\.

(b) Let d be given. If m > Id + 4\H\, then L leaves invariant a totally
isotropic {respectively totally singular) subspace of V of dimension at least d.

PROOF. If T = SL(F), there is again nothing to do. Otherwise, let U
be a totally isotropic (respectively totally singular) L-invariant subspace of
maximal dimension. Then U < U1 (in the case when we have a quadratic
form in characteristic 2, the orthogonal space is taken with respect to the as-
sociated symplectic form). We have an induced non-degenerate form on
U±/U, and in its action on this space, L leaves invariant no non-zero
totally isotropic (respectively totally singular) subspace. By (a), we have
m-2dimU = dimU±/U < 4\H\, whence 2dim£/ > m-4\H\. If
m>2d + 4\H\, this gives dim U > d, as required.

(c) An L-composition series of V contains at most \H\ isomorphism types
of factors, each of dimension at most \H\.

PROOF. There is a unique one-dimensional fcZ-module W such that Vz

is a direct sum of copies of W. If X is any L-composition factor of W,
then Xz is also a direct sum of copies of W. Then Homz(Ar

z , W) £ 0, and
by Nakayama's form of Frobenius Reciprocity [9, V.I6.6], HomL(Ar, WL) /
0. Hence X can be embedded in WL , which has dimension \H\.

(d) / / Y is any kL-submodule of V and S{Y) is the socle of Y, then
dimY < \H\ dimS(Y).
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PROOF. Y is an essential extension of its socle S(Y), and so can be em-
bedded in the injective hull of S(Y). The fcL-module WL considered in (c)
is injective, since \Z\ is coprime to char k and for finite groups, induction
preserves the property of being injective. Clearly S{Y) is a direct sum of at
most dim 5(7) simple submodules, and each of these can be embedded in
the injective module WL , and so S(Y) can be embedded in the direct sum of
dim5(7) copies of WL , an injective module of dimension \H\ dimS(Y).
By our first remark, Y can also be embedded in this module.

(e) If m> 2r\H\3 + 4\H\, then V contains an L-submodule U which is
the direct sum of r isomorphic simple L-submodules and is totally isotropic
(respectively totally singular).

PROOF. Let W be an L-invariant totally isotropic (respectively totally
singular) subspace of V of maximal dimension. By (c), if dimS(W) >
(r - l)\H\2, then some simple A:L-module must occur at least r times in
S(W). By (b), if in > 2r\H\3 + 4\H\, then dim W > r\H\3, whence (d) gives
dim S(W) > r\H\2. Thus, we may take U = S(W).

(f) Completion of proof. We consider only the case when some nontriv-
ial form is involved. The interpretation for SL(F) will be clear. We put
f(r, n) - 2rn3 + 4n. By (e), if m > f(r, n), then V contains a kL-
submodule of the form U — Ul © • • • © Ur, where the Ut are copies of a
simple kL-module, and U is totally isotropic or totally singular, as the case
may be. We have an action of A = Alt(r) on U by permuting the summands;
this is trivially an action by isometries of U, and can be arranged to commute
with the action of L. We have 0 < U < U^ < V. Write U1- = U © W, and
extend the action of A to U± by allowing it to act as the identity on W. It
is easy to see that this is an action by isometries of U± . By Lemma 2.1, the
action of each a € A on if1 can be extended to an isometry pa of V. Since
A is perfect, we can arrange that pa e T. Let C* = A^r(f/)nCr([/J-/C/) and
Dl = CC.(U). Then paeC*, and if C, = {pa:ae A)D{, then Cl/Dl = A
via restriction to U. We also have L < NT(U), and hence L < N^lf1).
Therefore [L,CX]< CT(U) n C7.(C/J7C/) = Dl. Also L n C , operates triv-
ially on U, as C, operates by permuting £/,, . . . ,Ur while H leaves them
invariant, and hence L n C, < D , .

Next note that Z>, operates trivially on V/U± . For if v e V, u e U
and x e D , , then (vx, w) = (v, ux~l) = (v , M) , so (vx - v, u) = 0 and
vx - v e U± . Hence Dx operates trivially on V/U± , U±/U and U and
so it is a nilpotent group of class at most two and exponent dividing p2 .

Finally, put C = CXZ/Z , D = DXZ/Z and recall that H = L/Z . The
required conditions are trivial to verify.
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REMARK. If p does not divide \H\, then the subspace W above can be
taken to be L-invariant.

Deduction of Theorem A. Let F be a given finite subgroup of G and
r,, r 2 , . . . be a strictly increasing sequence of natural numbers. Let G, <
G2 < ••• be a Kegel sequence of G. We may assume that F < Gl and
that the simple groups Gt are either all alternating and have unbounded
degrees, or belong to a fixed family PSL(n, —), PSp(n,—), . . . in which
the parameter n is unbounded.

Put CQ = Do = 1 and choose subgroups Dt < Ct for t > 0 as follows.
Having obtained Ct, choose k such that Ct<Gk. For any s > k ,we can
apply Theorem B to the subgroup GkMJMs of the simple group GJMs, and
thus, by choosing s large enough, we have subgroups Ms < Lt+l <Kt+l <
Gs such that [Gk,Kl+l] < Lt+i, GkMsnK,+l < Lt+l, and Kl+l/Ll+l =
Alt^+i)- Further, Lt+l/Ms has prime power order. Put Ct+l = CtKt+l and
Dl+l - DtLt+l. Finally, set C = (J^, C, and D = U " , Dt. Clearly D<C,
and [C, F] < D as F < G{. We shall show that

(*) CC\F<D

and

(**) C/D = DrKtD/D = Dr KJLr

We are using Dr to denote direct product here. Clearly (*) follows from
(**), since C n F is central modulo D. Now if t < s, then [Kt, Ks] <
[Ct, Ks] <LS<D, and so the groups K(D/D commute elementwise. Since
they are non-abelian simple or trivial, C/D is their direct product. Finally,
we have KtD/D s KJ{Kt n D), and we wish to show that KtC\D = Lt if
t > 1. Now

Suppose that for some s > t, we know that KtnDs = Lt. Then

and

Now from the way these subgroups are constructed, we have a certain sub-
group Gk containing Cs and a number j > k such that Mj < Ls+{ <Ks+x <
Gj . Then CsC\Mj= 1, and so Cs n Ls+l = (Cs n Ls+l)Mj/Mj, which has
prime power order. Thus, ( ^ n Ds+l)/Lt is a normal subgroup of prime
power order of the non-abelian simple group KJLt, and must therefore be
trivial. Therefore KtnDs+l = Lt. It follows that Kt nDs = L, for all 5 > t,
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and hence that Kt n D = Lt, as required to complete the proof of Theorem
B.

3. Examples

In this section, let U denote a vector space of finite or infinite dimension
over a field k. Let E be the ring of fc-linear maps of U into itself, which
we consider to act on the right. Let V = U © U and F be the ring of
fc-linear maps of V into itself. We think of V as consisting of row vectors
of length 2 with entries from U, and F as the 2 x 2 matrix ring M2{E),
acting on V by right multiplication.

LEMMA 3.1. Let S be a subset of E containing the identity map \, let C
be the centralizer ring CE{S) of S in E, and let £ = (£ £) e F. For s e S,
let fi(s) = (Q \). Then the following conditions on £, are equivalent.

(i) For each s e S, there exists a scalar A(s) e k such that £P(s) =

(ii) w = 0 and u = x e C.

PROOF. Assuming (i), and equating matrix entries, we obtain

u- k(s)(u + sw); us + v = A(s)(v + sx);

w = X(s)w; ws + x = X(s)x.

If X(s) ^ 1 for some s, we see that £ = 0 . Otherwise, we obtain 0 = sw =
ws and us = sx. Putting s = 1 gives w — 0 and u = x, and then, as
us = su for all s € S, we find that u eC. The converse is clear.

If k has characteristic p > 0, then the matrices fi(s) generate an ele-
mentary abelian p-group B of rank at most \S\. The centralizer CF{B) has
an ideal / of square zero such that CF(B)/J = C, and thus any decom-
position of the identity into a sum of two non-zero orthogonal idempotents
in CF(B) gives one in C. Hence if U is S-indecomposable, then V is
fc5-indecomposable. Taking S = {1, s} for various choices of s allows one
to construct a number of examples of indecomposable modules over ¥p for

an elementary abelian group of order p2 . This kind of thing is familiar, but
we need to proceed a little further.

LEMMA 3.2. Continuing with the same notation, assume that C — k. Let
p be a homomorphism of a group G into GL(C/), and for g e G , let

9{8)={o Pig))'
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Assume that (i) of Lemma 3.1 holds, and also that for each g e G, there
exists fi(g) € k such that £p*{g) — fi{g)p*(g)€ • Then £, 6 k provided either

(i) no one-dimensional subspace of U is p(G)-invariant, or
(ii) M ^ 0 and no non-zero vector in U is p(G)-invariant.

P R O O F . W e h a v e , b y L e m m a 3 . 1 , t h a t £ = (H) w i t h uek, v e E. The
equation £p*(g) = n{g)p*{g)£ gives vp(g) = n(g)v, whence, if y e U,
yvp(g) = n{g)yv . Hence the subspace spanned by yv is /?(G)-invariant.
Under hypothesis (i) we get yv = 0, and since y is any element of U, we
deduce that v = 0. In case (ii) we get u = fi{g)u for all g e G, whence
fi(g) — 1 and the above shows that yv is /?(G)-invariant. Hence yv = 0
and v = 0 as before.

As a first application of these observations, take k to be a field of odd
prime characteristic p, and take S = {l,si,s2}, where sx and s2 are
chosen to make sure that C — k. Let G be cyclic of order 2, generated
by g, and let p(g) = - 1 . Then H = (p(G), B) is of order 2p3, with an
elementary abelian normal subgroup of order p inverted by an involution.
If U has finite dimension n, we can take sx to be 1 + J2"Ii et ,+i where
the etj are the usual elementary matrices, and ^2 to be the transpose of sx.
Another possibility is to take U to be the fc-space with basis xt (i e Z ) ,
with s{ as the shift xt H-> xi+l, and s2 interchanging xx and x2 and fixing
the other basis elements. Then {sx, s2) contains every finitary permutation
of the basis elements, and so C = k . Thus we obtain the following.

PROPOSITION Cl. Let p be an odd prime and k be afield of character-
istic p. Then there is a finite group H of order 2/?3 and there are kH-
modules VX,V2, ... ,V such that dim Vt = 2i, dim V is countably infinite,
and Endfc// Vi = Endfcff V — k. In particular, these modules are indecom-
posable. Furthermore, the centralizer of the image of H in the corresponding
projective group is trivial.

More generally, let k be any field of characteristic p > 0, and let G be
any nontrivial finite group such that Op(G) = 1. It is easy to see that the
kernels of the nontrivial irreducible representations of G intersect trivially,
and so G has a faithful representation a over k leaving no nonzero vector
invariant. Let a have dimension d and m be any multiple of d. Let
U be an w-dimensional vector space over k and let sl = 1 + Z)^7* et /+i
and s2 be the transpose of sx as before. Let p be the direct sum of m/d
copies of a, viewed as a representation of 6 on U. Then by Lemma 3.2, the
centralizer of the image in PGL(K) of H = (p*(G), B) is trivial. This image
is isomorphic to H, and there is an exact sequence l-*B—*H—>G—*l,
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where 2? is the normal closure of B under p*(G). Clearly \B\ divides
/?3'G', and so the same group occurs as H infinitely often as m increases.
Since the determinants of the matrices a(g) (g € G) are |G|th roots of 1,
we can arrange that H < SL(F) for infinitely many values of m. This gives
the following.

PROPOSITION C2. Let p be any prime and k a field of characteristic p.
Let G be any nontrivial group such that Op{G) = 1. Then there exists a
finite group H of the form AxG, where A is an elementary abelian normal
p-subgroup of G, such that H can be embedded in infinitely many groups
PSL(«, k) as a subgroup with trivial centralizer.
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