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Abstract This paper aims to lay the foundations for a combinatorial study, via orthogonal functions
and intertwining operators, of category O for the rational Cherednik algebra of type G(r, p, n). As a first
application, a self-contained and elementary proof of the analogue for the groups G(r, p, n), with r > 1,
of Gordon’s Theorem (previously Haiman’s Conjecture) on the diagonal co-invariant ring is given. No
restriction is imposed on p; the result for p �= r has been proved by Vale using a technique analogous
to Gordon’s. Because of the combinatorial application to Haiman’s Conjecture, the paper is logically
self-contained except for standard facts about complex reflection groups. The main results should be
accessible to mathematicians working in algebraic combinatorics who are unfamiliar with the impressive
range of ideas used in Gordon’s proof of his theorem.
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1. Introduction

The aim of this paper is twofold. First, we introduce intertwining operators for the
rational Cherednik algebra (RCA) H of type G(r, p, n) and carry out sufficient calculation
of the relations they satisfy to be useful for a combinatorial study of the representation
theory of H. This work forms the basis for the sequels [15, 16], where we study the
combinatorics of the ordinary co-invariant ring and begin the combinatorial study of the
lattice of submodules of each standard module for the rational Cherednik algebra. Our
goal is the construction of canonical bases for the standard modules M(V ) and their
composition factors, including the irreducible quotients L(V ).

Second, we use the intertwining operators to give a new and self-contained (modulo
standard facts about complex reflection groups) proof of the analogue of Gordon’s The-
orem [12,25] on the diagonal co-invariant ring for G(r, p, n). The proof here works only
when r > 1 but does not place any restriction on p; Vale [25] establishes the result for
p �= r. We use neither the KZ functor and cyclotomic Hecke algebras (as in [12, 25])
nor degeneration from the double affine Hecke algebra (as in [5]) as there is no double
affine Hecke algebra available for the groups G(r, p, n) with r > 2, although we found
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420 S. Griffeth

the ideas of those papers inspirational. The existence of this paper also owes much to the
foundational papers [9,11].

One of our goals being self-containment, we begin in § 2 with definitions and a sketch of
the proof of the Poincaré–Birkhoff–Witt Theorem for rational Cherednik algebras. In § 3
we explain the formalism that connects the rational Cherednik algebra to quotients of the
diagonal co-invariant ring of the type conjectured by Haiman [17]. In § 4 we specialize to
the case of the groups G(r, p, n) and review the construction given in [9] of an important
commutative subalgebra of the rational Cherednik algebra H. We study the intertwining
operators and their basic properties in § 5 and study their action on a particular basis
of the polynomial representation in § 6. We determine the submodule structure of the
polynomial representation of G(r, p, n) in the cases that we will use for the study of the
diagonal co-invariant ring in § 7. The results of § 7 are similar to, but more detailed than,
those contained in [6]. The extra detail is crucial for the material of § 8, where we study
the H-modules fulfilling the requirements of § 3 and relevant to the diagonal co-invariant
ring.

2. Definitions and the Poincaré–Birkhoff–Witt Theorem

Let V be a finite-dimensional vector space over a field k, and let W ⊆ GL(V ) be a finite
subgroup. Let TV be the tensor algebra of V and let kW be the group algebra of W

over k, with basis tw for w ∈ W and multiplication twtv = twv. The semi-direct product
TV � W is TV ⊗k kW with multiplication

(f ⊗ tw)(g ⊗ tv) = f(wg) ⊗ twv for f, g ∈ TV and w, v ∈ W. (2.1)

From now on we will drop the tensor signs when it will not cause confusion. Fix a
collection of skew-symmetric forms indexed by the elements of W :

〈· , ·〉w : V × V → k for w ∈ W. (2.2)

The Drinfel ′d–Hecke algebra H corresponding to these data is the quotient of the algebra
TV ⊗k kW by the relations

xy − yx =
∑

w∈W

〈x, y〉wtw for x, y ∈ V. (2.3)

Now let h be a finite-dimensional k-vector space. A reflection is an element s ∈ GL(h)
such that codim(fix(s)) = 1. A reflection group is a finite subgroup W ⊆ GL(h) that is
generated by the set of reflections it contains. Assume now that W is a reflection group,
let T be the set of reflections it contains, and put V = h∗ ⊕ h. Write 〈x, y〉 = x(y) for
x ∈ h∗ and y ∈ h. For each s ∈ T , fix αs ∈ h∗ and α∨

s ∈ h with

sx = x − 〈x, α∨
s 〉αs for all x ∈ h

∗, (2.4)

and define skew symmetric bilinear forms 〈· , ·〉s on V by the requirements

〈x, y〉s =

{
0 if x, y ∈ h or x, y ∈ h∗,

cs〈αs, y〉〈x, α∨
s 〉 if x ∈ h∗ and y ∈ h,

(2.5)
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where cs ∈ k satisfy cwsw−1 = cs for all s ∈ T and w ∈ W . It is straightforward to check
that 〈· , ·〉s does not depend on the choice of αs and α∨

s satisfying (2.4). We extend the
pairing 〈· , ·〉 between h and h∗ to a symplectic form on V by requiring that h and h∗ be
isotropic.

The rational Cherednik algebra corresponding to a reflection group W is the quotient
of the semi-direct product TV � W by the relations

yx − xy = κ〈x, y〉 −
∑
s∈T

〈x, y〉sts for x, y ∈ V, (2.6)

where κ ∈ k. It is thus a special case of the Drinfel′d–Hecke algebra. Note that by the
definitions of 〈· , ·〉 and 〈· , ·〉s, we have

yx − xy = 0 if x, y ∈ h or x, y ∈ h
∗, (2.7)

and hence there are canonical maps S(h) → H and S(h∗) → H.
Now assume that H is the Drinfel′d–Hecke algebra associated to a collection 〈· , ·〉w of

skew symmetric forms as above. We say that the PBW Theorem holds for H if, for any
basis x1, . . . , xn of V , the collection {xi1xi2 · · ·xip

tw | 1 � i1 � i2 � · · · � ip � n, w ∈
W} is a basis for H. The following theorem was stated in [8] and many proofs have now
appeared (see, for example, [2,10,11,18,23]). Our proof has the virtue of working in
arbitrary characteristic; more importantly, it is conceptually extremely simple.

Theorem 2.1 (the Poincaré–Birkhoff–Witt Theorem for Drinfel′d–Hecke
algebras). The Poincaré–Birkhoff–Witt (PBW) Theorem holds for H if and only if the
following two conditions hold:

(a) 〈vx, vy〉vwv−1 = 〈x, y〉w for all x, y ∈ V and v, w ∈ W , and

(b) 〈x, y〉w(wz − z) + 〈y, z〉w(wx − x) + 〈z, x〉w(wy − y) = 0 for all x, y, z ∈ V and
w ∈ W .

Proof. First assume that the PBW Theorem holds for H. Let x, y ∈ V and v ∈ W .
Equating coefficients on both sides of∑

w∈W

〈vx, vy〉wtw = [vx, vy] = tv[x, y]t−1
v =

∑
w∈W

〈x, y〉wtvwv−1 (2.8)

implies that (a) holds. Let x, y, z ∈ V . By the Jacobi identity,

0 = [[x, y], z] + [[y, z], x] + [[z, x], y]

=
[ ∑

w∈W

〈x, y〉wtw, z

]
+

[ ∑
w∈W

〈y, z〉wtw, x

]
+

[ ∑
w∈W

〈z, x〉wtw, y

]

=
∑

w∈W

(〈x, y〉w(wz − z) + 〈y, z〉w(wx − x) + 〈z, x〉w(wy − y))tw.

Now, equating coefficients of tw on both sides implies that (b) holds.
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Conversely, assume that (a) and (b) hold. The defining relations for H evidently imply
that, given any basis x1, x2, . . . , xn of V , the set {xi1xi2 · · ·xiptw | 1 � i1 � i2 � · · · �
ip � n, w ∈ W} spans H. We will show that these elements are also linearly independent
by mimicking the standard proof of the PBW Theorem for universal enveloping algebras
of Lie algebras: we construct the module that ought to be the left regular representation
of H. Let M be the vector space with basis consisting of the words {xi1xi2 · · ·xiptw |
1 � i1 � i2 � · · · � ip � n, w ∈ W}. Define operators lx and lv on M for x ∈ V and
v ∈ W inductively as follows:

lx · tw = xtw, lv · tw = tvw, (2.9)

and, for p � 1,

lxi · xi1 · · ·xiptw =

⎧⎪⎨
⎪⎩

xixi1 · · ·xip
tw if i � i1,

lxi1
· lxi

· xi2 · · ·xip
tw +

∑
v∈W

〈xi, xi1〉vlv · xi2 · · ·xip
tw if i > i1,

(2.10)
and

lv · xi1 · · ·xip
tw = lvxi1

· lv · xi2 · · ·xip
tw. (2.11)

A straightforward but lengthy calculation shows that these operators satisfy the defining
relations for H. It follows that M is an H-module, with x acting by lx and tw acting by
lw. Suppose that there is a relation in H of the form∑

w∈W,
1�i1�···�ip�n

ai1···ip,wxi1 · · ·xiptw = 0,

with ai1···ip,w ∈ k. Applying both sides of this relation to the element 1 = t1 ∈ M implies
that all the coefficients ai1···ip,w are zero, and the proof is complete. �

Corollary 2.2. Let H be the rational Cherednik algebra corresponding to the reflec-
tion group W . Then the multiplication map S(h∗)⊗kS(h)⊗kkW → H is an isomorphism.

Proof. The result follows from the previous theorem once we check that conditions (a)
and (b) of that theorem hold. Condition (a) is straightforward to verify. Condition (b)
holds trivially for w /∈ T . If s ∈ T and z ∈ fixV (s), then the definitions (2.4) and (2.5)
imply 〈z, x〉s = 0 for all x ∈ V . Therefore, the radical of 〈· , ·〉s has codimension at most 2.
If 〈· , ·〉s �= 0, then we may choose x, y ∈ V with 〈x, y〉s = 1, and for any z ∈ V we have

z = 〈x, z〉sy − 〈y, z〉sx + f with f ∈ fixV (s). (2.12)

Applying s − 1 to both sides and rearranging terms shows that the identity (b) holds
for x, y and arbitrary z. In general, identity (b) holds trivially if every two of x, y, z

are linearly dependent modulo the radical of 〈· , ·〉s, so we are reduced to the case just
treated. �
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There is an important filtration of H defined by

H�m = k-span{xi1 · · ·xil
tw | l � m, w ∈ W and xij ∈ h

∗ ⊕ h}. (2.13)

By the PBW Theorem for H, the associated graded algebra of H with respect to this
filtration is the semidirect product S(h∗ ⊕ h) � W .

Our next proposition is a fundamental computation. It expresses some commutators
in H as linear combinations of derivatives and divided differences of elements of S(h∗)
and S(h). For y ∈ h, we write ∂y for the derivation of S(h∗) determined by

∂y(x) = 〈x, y〉 for x ∈ h
∗, (2.14)

and we define a derivation ∂x of S(h) analogously.

Proposition 2.3. Let y ∈ h and f ∈ S(h∗). Then

yf − fy = κ∂yf −
∑
s∈T

cs〈αs, y〉f − sf

αs
ts. (2.15)

Similarly, for x ∈ h∗ and g ∈ S(h), we have

gx − xg = κ∂xg −
∑
s∈T

cs〈x, α∨
s 〉ts

g − s−1g

α∨
s

. (2.16)

Remark 2.4. Note the placement of ts in the second formula. In practice, it is some-
times convenient to rewrite it as

gx − xg = κ∂xg −
∑
s∈T

cs〈x, α∨
s 〉sg − g

sα∨
s

ts. (2.17)

Proof. Observe that if f = x ∈ h∗, the first formula to be proved is

yx − xy = κ〈x, y〉 −
∑
s∈T

cs〈αs, y〉x − sx

αs
ts,

and the right-hand side may be rewritten as

κ〈x, y〉 −
∑
s∈T

cs〈αs, y〉〈x, α∨
s 〉ts,

so that the formula to be proved is one of the defining relations for H. We proceed by
induction on the degree of f . Assume we have proved the result for h ∈ Sd(h∗) and all
d � m. For f, g ∈ S�m(h∗) and y ∈ h we have

[y, fg] = [y, f ]g + f [y, g]

=
(

κ∂y(f) −
∑
s∈T

cs〈αs, y〉f − sf

αs
ts

)
g + f

(
κ∂y(g) −

∑
s∈T

cs〈αs, y〉g − sg

αs
ts

)

= κ(∂y(f)g + f∂y(g)) −
∑
s∈T

cs〈αs, y〉
(

f − sf

αs
sg + f

g − sg

αs

)
ts

= κ∂y(fg) −
∑
s∈T

cs〈αs, y〉fg − s(fg)
αs

ts,
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by using the inductive hypothesis in the second equality and the Leibniz rule for ∂y and
a skew Leibniz rule for the divided differences in the fourth equality. This proves the first
commutator formula, and the proof of the second one is exactly analogous. �

Let V be a kW -module and define an S(h) � kW action on V by

f · v = f(0)v and tw · v = wv for w ∈ W, f ∈ S(h). (2.18)

The standard module corresponding to V is

M(V ) = IndH

S(h)�kW V. (2.19)

The PBW Theorem shows that H is a free S(h) � kW -module, so that the additive
functor V 	→ M(V ) is exact and, as a k-vector space,

M(V ) 
 S(h∗) ⊗k V. (2.20)

In particular, when V = 1 is the trivial kW -module, we obtain from Proposition 2.3 that

M(1) 
 S(h∗) with y · f = κ∂yf −
∑
s∈T

cs〈αs, y〉f − sf

αs
(2.21)

for y ∈ h and f ∈ S(h∗). These are the famous Dunkl operators. From our point of
view, the fact that they commute is a consequence of the PBW Theorem, though it is
possible to prove the commutativity independently (see, for example, [9]) and then use
it to establish the PBW Theorem.

The definition (2.19) implies that the module M(V ) has the following universal prop-
erty: given an H-module M and a W -stable subspace U ⊆ M such that V ∼= U as
W modules and y · U = 0 for all y ∈ h, there is a unique H-module homomorphism
M(V ) → M which restricts to the given isomorphism V ∼= U .

Define the element h ∈ H by

h =
n∑

i=1

xiyi +
∑
s∈T

cs(1 − ts), (2.22)

where xi is a basis of h∗ and yi is the dual basis of h. Calculations using the defining
relations for H show that

[h, x] = κx, [h, y] = −κy and [h, tw] = 0 (2.23)

for x ∈ h∗, y ∈ h and w ∈ W . Thus, if κ = 1 and V is an irreducible W -module, the h

action on the Verma module M(V ) is given by

h · fv = (deg(f) + cV )fv for f ∈ S(h∗) homogeneous and v ∈ V, (2.24)

where cV is the scalar by which
∑

s∈T cs(1 − ts) acts on V .
When κ = 1 the formula (2.24) implies that each standard module M(V ) has a unique

irreducible quotient L(V ). This paper is primarily concerned with the module L(1) in
those cases related to diagonal co-invariants, but the techniques developed will be applied
in the sequel, [16], to obtain detailed information on the submodule structure of M(V )
for more general representations V .
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3. Diagonal co-invariants

We now describe a situation in which we can relate L(1) to the diagonal co-invariant
ring

R = S(h∗ ⊕ h)/I, where I = S(h∗ ⊕ h)W
+ S(h∗ ⊕ h). (3.1)

Recall the filtration (2.13) of H with h∗ ⊕h in degree 1 and CW in degree 0. By (2.6) and
the PBW Theorem, the associated graded algebra of H with respect to this filtration is
S(h∗ ⊕h)�W . It is this fact that was used in [12] (and that we will use in Theorem 3.2)
to make the connection to diagonal co-invariants.

In this section, we assume that we are working with an irreducible complex reflection
group W of rank n. When A is a graded vector space, we write Ai for the ith graded
piece.

Lemma 3.1. Assume that there is an irreducible module V of dimension n such that
there is an exact sequence M(V ) → M(1) → L(1) → 0 with L(1) finite dimensional.
Then the Koszul complex

0 → S(h∗) ⊗ ΛnV → · · · → S(h∗) ⊗ Λ1V → S(h∗) → L(1) → 0

is exact and the maps are maps of H-modules. The graded W -character of L(1) is

∑
i�0

tr(w, L(1)i)ti =
det(1 − tkwV )
det(1 − twh∗)

,

where the image of V in M(1) lies in degree k and wV and wh∗ denote w regarded as an
endomorphism of V and h∗, respectively.

Proof. Since V is n-dimensional and L(1) is finite dimensional, the image of V under
the map M(V ) → M(1) is spanned by a regular sequence. Hence, the Koszul complex
is exact. As a vector space M(ΛiV ) ∼= S(h∗) ⊗ ΛiV and, using this identification, the
vector spaces in the Koszul complex are H-modules. By assumption, the first map is a
map of H-modules; its kernel is therefore an H-submodule. The kernel is generated as an
S(h∗)-submodule by Λ2V and it follows that the second map in the Koszul complex is a
map of H-modules. One proves in the same way, by induction on i, that the ith map in
the Koszul complex is a map of H-modules. That the graded W -character of L(1) is as
asserted is a routine calculation using the Koszul resolution. �

If V is an irreducible W -module of dimension l, its exponents are the integers e1 �
e2 � · · · � el defined by the equation

∑
i�0

[(S(h∗)/J)i : V ]ti =
r∑

i=1

tei ,

where J is the ideal generated by the positive degree elements of the invariant ring
S(h∗)W and (S(h∗)/J)i denotes the ith graded piece. Since W is a complex reflection
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group, the invariant ring S(h∗)W is generated by n algebraically independent polynomials
f1, . . . , fn with degrees d1 � d2 � · · · � dn.

An irreducible representation V is free if (S(h∗) ⊗ Λ∗V ∗)W is a free exterior algebra
over S(h∗)W . By [21, Theorem 3.1], V is free if e1+· · ·+el is the (unique) exponent of ΛlV .
By the proof of [21, Theorem 3.3], the Galois conjugates of the reflection representation
h are all free. In Lemma 8.1 we will give some other examples of free representations of
the group G(r, p, n) that will be relevant to the diagonal co-invariant ring.

Theorem 3.2. With assumptions as in Lemma 3.1, assume moreover that V is free
and the image of V in M(1) lies in degree k for an integer k such that the multisets
{k − ei}n

i=1 and {di}n
i=1 are equal. Then there is a unique occurrence of ΛnV in L(1),

lying in degree e1 + · · · + en. Let v ∈ L(1) span this occurrence of ΛnV , and filter L(1)
by

L(1)�i = H�i · v.

Then the map gr H → gr L(1) restricts to a surjection R → gr L(1), which has
W -character given by Lemma 3.1. Finally, the image in gr L(1) of S(h∗) is isomorphic to
the ordinary co-invariant ring S(h∗)/J .

Proof. In light of Lemma 3.1, the occurrences of ΛnV in L(1) are given by the formula∑
[L(1)j : ΛnV ]tj =

∑
(−1)i[S(h∗)j−ik ⊗ ΛiV : ΛnV ]tj ,

and we compute the occurrences of ΛnV in S(h∗) ⊗ Λ∗V by use of the W -equivariant
isomorphism ΛiV ⊗ ΛnV ∗ ∼= Λn−iV ∗. Thus,

[S(h∗)j ⊗ ΛiV : ΛnV ] = dimC(S(h∗)j ⊗ Λn−iV ∗)W .

On the other hand, the assumption that (S(h∗) ⊗ Λ∗V ∗)W is a free exterior algebra over
S(h∗)W implies that

∑
dimC(S(h∗)j ⊗ ΛiV ∗)W qitj =

n∏
i=1

1 + qtei

1 − tdi
.

Thus, ∑
[L(1)j : ΛnV ]tj =

∑
(−1)i[S(h∗)j ⊗ ΛiV : ΛnV ]tj+ik

=
∑

(−1)i dimC(S(h∗)j ⊗ Λn−iV ∗)W tj+ik

=
∑

(−1)n−i dimC(S(h∗)j ⊗ ΛiV ∗)W tj+(n−i)k

= (−1)ntnk

[∑
dimC(S(h∗)j ⊗ ΛiV ∗)W qitj

]
q=−t−k

= (−1)ntnk
n∏

i=1

1 − tei−k

1 − tdi

= te1+···+en

n∏
i=1

1 − tk−ei

1 − tdi

= te1+···+en .
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Upon filtering L(1) and taking the corresponding associated graded module as in the
statement of the theorem, it follows that there is a unique copy of ΛnV in grL(1). Since
L(1) is an irreducible H-module, the map

gr H → gr L(1),

f → f · v,

}
(3.2)

is surjective. By the PBW-theorem, gr H = S(h∗ ⊕h)⊗CW , and the above map remains
surjective upon restriction to S(h∗ ⊕ h). Since v is the unique occurrence of ΛnV in
gr L(1), we have S(h∗ ⊕ h)W

+ · v = 0 and it follows that grL(1) is a quotient of the
diagonal co-invariant ring.

Let N = |T | be the number of reflections in W ; it is a standard fact that the socle of
the ordinary co-invariant ring S(h∗)/J is spanned by

∏
s∈T αs and hence lies in degree N .

The equation N = d1 − 1 + d2 − 1 + · · · + dn − 1 is also well known. By Lemma 3.1 and
the hypotheses of the theorem, the top degree piece of L(1) lies in degree

n(k − 1) = e1 + · · · + en + d1 + · · · + dn − n = e1 + · · · + en + N.

Since L(1) is irreducible the map

S(h∗) ⊗ S(h) → gr L(1),

f → f · v,

}
(3.3)

is surjective. It follows that the socle of S(h∗)/J is not in the kernel of the induced map,
and hence the co-invariant ring is the image of S(h∗). �

If in addition to the hypotheses of Lemma 3.1 we assume that V ∗ is free, then an
analogous calculation shows that

∑
dimC L(1)W

i ti =
n∏

i=1

1 − tk+e′
i

1 − tdi
, (3.4)

where e′
1, . . . , e

′
n are the exponents of V ∗. This fact establishes a connection to the con-

jectural t-analogue of the W -Catalan number discovered by Bessis and Reiner [4]: if, with
the assumptions of Lemma 3.1, W is a complex reflection group that can be generated
by n reflections, k = h+1, where h = dn is the largest degree (i.e. Coxeter number), and
V = h∗, then ∑

dimC L(1)W
i ti =

n∏
i=1

1 − th+di

1 − tdi
. (3.5)

It does not seem unreasonable to expect that, for most of the exceptional complex reflec-
tion groups W and appropriate values of the parameters in the definition of H, the module
L(1) gives rise to both a nice quotient of the diagonal co-invariant ring and a t-analogue
of the W -Catalan number.
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4. The rational Cherednik algebra for G(r, p, n)

Let G(r, 1, n) be the group of n × n monomial matrices whose entries are rth roots of 1.
Let

ζ = e2πi/r and ζl
i = diag(1, . . . , ζl, . . . , 1) for 1 � i � n. (4.1)

Let
si = si,i+1, where sij = (ij) for 1 � i < j � n, (4.2)

is the transposition interchanging i and j. There are r conjugacy classes of reflections in
G(r, 1, n):

(a) the reflections of order 2,

ζl
isijζ

−l
i for 1 � i < j � n, 0 � l � r − 1, (4.3)

and

(b) the remaining r − 1 classes, consisting of diagonal matrices

ζl
i for 1 � i � n, 1 � l � r − 1, (4.4)

where ζl
i and ζk

j are conjugate if and only if k = l.

Let
yi = (0, . . . , 1, . . . , 0)t and xi = (0, . . . , 1, . . . , 0)

have 1s in the ith position and 0s elsewhere, so that y1, . . . , yn is the standard basis of
h = Cn and x1, . . . , xn is the dual basis in h∗. If

αs = ζ−l−1xi, α∨
s = (ζl+1 − ζ)yi for s = ζl

i ,

and

αs = xi − ζlxj , α∨
s = yi − ζ−lyj for s = ζl

isijζ
−l
i .

then, with 〈· , ·〉 denoting the canonical pairing between h∗ and h,

sx = x − 〈x, α∨
s 〉αs and s−1(y) = y − 〈αs, y〉α∨

s ,

for s ∈ T , x ∈ h∗ and y ∈ h. We relabel the parameters defining H by letting

c0 = cs1 and ci = cζi
1

for 1 � i � r − 1. (4.5)

Proposition 4.1. The rational Cherednik algebra for W = G(r, 1, n) with parameters
κ, c0, c1, . . . , cr−1, is the algebra generated by C[x1, . . . , xn], C[y1, . . . , yn] and tw for
w ∈ W with relations

twtv = twv, twx = (wx)tw and twy = (wy)tw,
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for w, v ∈ W , x ∈ h∗ and y ∈ h,

yixj = xjyi + c0

r−1∑
l=0

ζ−ltζl
isijζ−l

i
(4.6)

for 1 � i �= j � n, and

yixi = xiyi + κ −
r−1∑
l=1

cl(1 − ζ−l)tζl
i
− c0

∑
j �=i

r−1∑
l=0

tζl
isijζ−l

i
(4.7)

for 1 � i � n.

Proof. This is just a matter of rewriting formula (2.6) using our G(r, 1, n)-specific
notation. For 1 � i < j � n,

yixj = xjyi + κ〈xj , yi〉

− c0

∑
1�k<m�n

r−1∑
l=0

〈xk − ζlxm, yi〉〈xj , yk − ζ−lym〉tζl
kskmζ−l

k

−
n∑

k=1

r−1∑
l=1

cl〈ζ−l−1xk, yi〉〈xj , (ζl+1 − ζ)yk〉tζl
k

= xjyi + κ · 0 − c0

r−1∑
l=0

(−ζ−l)tζl
isijζ−l

i
− 0

= xjyi + c0

r−1∑
l=0

ζ−ltζl
isijζ−l

i
.

The calculation for 1 � j < i � n is similar. For i = j,

yixi = xiyi + κ〈xi, yi〉

− c0

∑
1�k<m�n

r−1∑
l=0

〈xk − ζlxm, yi〉〈xi, yk − ζ−lym〉tζl
kskmζ−l

k

−
n∑

k=1

r−1∑
l=1

cl〈ζ−l−1xk, yi〉〈xi, (ζl+1 − ζ)yk〉tζl
k

= xiyi + κ − c0

∑
1�i<m�n

r−1∑
l=0

tζl
isimζ−l

i

− c0

∑
1�k<i�n

r−1∑
l=0

tζl
ksikζ−l

k
−

r−1∑
l=1

cl(1 − ζ−l)tζl
i
.

�
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Most of the equations that occur later on are simpler in terms of a certain repara-
metrization. For j ∈ Z define

dj =
r−1∑
l=1

ζljcl. (4.8)

It follows that d0 + d1 + · · · + dr−1 = 0 and that, for 1 � l � r − 1,

cl =
1
r

r−1∑
j=0

ζ−ljdj . (4.9)

The defining relation (4.7) becomes

yixi = xiyi + κ −
r−1∑
j=0

(dj − dj−1)εij − c0

∑
j �=i

r−1∑
l=0

tζl
isijζ−l

i
, (4.10)

where, for 0 � j � r − 1, the primitive idempotents for the cyclic reflection subgroup of
W generated by ζi are

εij =
1
r

r−1∑
l=0

ζ−ljtζl
i
. (4.11)

The complex reflection group G(r, p, n) is the subgroup of G(r, 1, n) consisting of those
matrices so that the product of the non-zero entries is an r/pth root of 1. The reflections
in G(r, p, n) are

(a) ζl
isijζ

−l
i for 1 � i < j � n and 0 � l � r − 1, and

(b) ζlp
i for 1 � i � n and 0 � l � r/p − 1.

When n � 3, the rational Cherednik algebra for G(r, p, n) is the subalgebra of the rational
Cherednik algebra H for G(r, 1, n) with parameters

cl = 0 if p does not divide l,

generated by C[x1, . . . , xn], C[y1, . . . , yn] and CG(r, p, n). Although this is not strictly
speaking true for n = 2, our results on the diagonal co-invariant ring still hold in that
case except when p = r = 2.

Although not strictly necessary for the results of this paper, it seems worthwhile to
mention here that when cl = 0 for l not divisible by p there is a cyclic group of automor-
phisms, generated by

x 	→ x, y 	→ y, si 	→ si, tζj 	→ ζr/ptζj , (4.12)

for x ∈ h∗, y ∈ h, 1 � i � n − 1, and 1 � j � n, of the rational Cherednik algebra H

for G(r, 1, n) so that the rational Cherednik algebra for G(r, p, n) is the fixed subalgebra.
The version of Clifford theory given in [22] therefore applies to deduce representation
theoretic results for the G(r, p, n) RCA from those for the G(r, 1, n) RCA.
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From now on, p dividing r will be fixed and we work with the rational Cherednik
algebra H for G(r, p, n). Note that, with the parameters cl = 0 for l not divisible by p,
we have dj = dk if j = k mod r/p.

Our first goal is identify a certain commutative subalgebra t of H. Later on we will use
the subalgebra t to diagonalize the standard module M(1) (as in [9]), a result which is
generalized in the paper [16]. For 1 � i � n define

zi = yixi + c0φi, where φi =
∑

1�j<i

r−1∑
l=0

tζl
isijζ−l

i
. (4.13)

The following proposition is proved in [9].

Proposition 4.2. The elements z1, . . . , zn of H are pairwise commutative:

zizj = zjzi for 1 � i, j � n.

Proof. We begin by computing

[yixi, yjxj ] = yixiyjxj − yjxjyixi

= yi(xiyj − yjxi)xj + yj(yixj − xjyi)xi

= −yi

(
c0

r−1∑
l=0

ζ−ltζl
jsijζ−l

j

)
xj + yj

(
c0

r−1∑
l=0

ζ−ltζl
isijζ−l

i

)
xi

= −yixi

(
c0

r−1∑
l=0

tζl
jsijζ−l

j

)
+

(
c0

r−1∑
l=0

tζl
isijζ−l

i

)
yixi

= −
[
yixi, c0

r−1∑
l=0

tζl
isijζ−l

i

]
.

Thus, [
yixi, yjxj + c0

r−1∑
l=0

tζl
isijζ−l

i

]
= 0 (4.14)

Let

ψi = φ1 + · · · + φi =
∑

1�j<k�i

r−1∑
l=0

tζl
ksjkζ−l

k
.

Then ψi is a conjugacy class sum and therefore a central element of the group algebra
of G(r, 1, i). It follows that ψi commutes with ψ1, . . . , ψi. Therefore, ψ1, ψ2, . . . , ψn are
pairwise commutative and hence φ1, . . . , φn are pairwise commutative.
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Using the commutativity of the φi, the commutator formula (4.14), and the fact that
yjxj commutes with φi for i < j, we assume that i < j and compute

[zi, zj ] = [yixi + c0φi, yjxj + c0φj ]

= [yixi, yjxj + c0φj ]

=
[
yixi, yjxj + c0

r−1∑
l=0

tζl
isijζ−l

i
+ c0

∑
1�k �=i<j

r−1∑
l=0

tζl
jsjkζ−l

j

]

= 0.

�

As observed in [7, Proposition 1.1], the relations in the following lemma imply that
the subalgebra of H generated by G(r, p, n) and z1, . . . , zn is isomorphic to the graded
Hecke algebra for G(r, p, n) defined in [23, § 5] (the elements z1, . . . , zn are algebraically
independent over C by the PBW Theorem).

Proposition 4.3. Working in the rational Cherednik algebra H for G(r, 1, n), we have

zitζj
= tζj

zi for 1 � i, j � n, (4.15)

zitsi = tsizi+1 − c0

r−1∑
l=0

tζl
iζ−l

i+1
for 1 � i � n, (4.16)

zitsj
= tsj

zi for 1 � i � n and j �= i, i + 1. (4.17)

Proof. First we observe that the elements tζi
and φj commute for all 1 � i, j � n.

This is clear if i > j; if i = j, then

tζj φjt
−1
ζj

= tζj

∑
1�k<j

r−1∑
l=0

tζl
jsjkζ−l

j
t−1
ζj

=
∑

1�k<j

r−1∑
l=0

tζl+1
j sjkζ−l−1

j
= φj ;

a similar computation handles the case i < j. Then (4.15) follows from

tζiyixi = ζyitζi
xi = ζζ−1yixitζi

= yixitζi
for 1 � i, j � n.

For (4.16),

zitsi =
(

yixi + c0

∑
1�j<i

r−1∑
l=0

tζl
isijζ−l

i

)
tsi

= tsi

(
yi+1xi+1 + c0

∑
1�j<i

r−1∑
l=0

tζl
i+1si+1,jζ−l

i+1

)

= tsizi+1 − tsi
c0

r−1∑
l=0

tζl
i+1si+1,iζ

−l
i+1

= tsizi+1 − c0

r−1∑
l=0

tζl
iζ−l

i+1
.
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Finally, we observe that if j �= i, i + 1, then tsj
commutes with φi and with yixi, and

hence with zi = yixi + c0φi. �

Let
t = C[z1, . . . , zn, tζ1ζ−1

2
, . . . , tζn−1ζ−1

n
, tζp

1
, . . . , tζp

n
]. (4.18)

By Proposition 4.2 and Lemma 4.3, the subalgebra t is a commutative subalgebra of H.
Our goal is to use t in much the same way as a Cartan subalgebra of a semisimple Lie
algebra.

5. Intertwiners

In this section we will prove many formulae using elements of G(r, 1, n) that are not
in G(r, p, n); since the rational Cherednik algebra for G(r, p, n) is a subalgebra of a
specialization of that for G(r, 1, n), these formulae have consequences in the rational
Cherednik algebra for G(r, p, n).

The following lemma is a generalization of (4.16) and (4.17). Let

πi =
r−1∑
l=0

tζl
iζ−l

i+1
. (5.1)

Lemma 5.1. Let f be a rational function of z1, . . . , zn. Then

tsi
f = (sif)tsi

− c0πi
f − sif

zi − zi+1
for 1 � i � n − 1. (5.2)

Proof. Observe that if f is zi, zi+1 or zj for j �= i, i + 1, then the relation to be
proved follows from (4.16) and (4.17). Assume that the relation (5.2) is true for rational
functions f and g. Then it is evidently true for f + g and af for all a ∈ C, and we
compute

tsi
fg = (tsi

f − (sif)tsi
)g + (sif)(tsi

g − (sig)tsi
) + (sifg)tsi

=
(

− c0πi
f − sif

zi − zi+1

)
g + (sif)

(
− c0πi

g − sig

zi − zi+1

)
+ (sifg)tsi

= (sifg)tsi − c0πi
fg − sifg

zi − zi+1
,

so (5.2) is true for fg. Assuming it is true for the rational function f , we compute

(tsi1/f − (1/sif)tsi)f(sif) = tsisif − 1/sif

(
(sif)tsi − c0πi

f − sif

zi − zi+1

)
sif

= c0πi
f − sif

zi − zi+1
,

and dividing by f(sif) proves that the relation holds for 1/f . Since it holds for z1, . . . , zn,
it is true for all rational functions in z1, . . . , zn. �
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The intertwining operators σi for 1 � i � n − 1 are

σi = tsi +
c0

zi − zi+1
πi, where πi =

r−1∑
l=0

tζl
iζ−l

i+1
, (5.3)

and we define intertwining operators Φ and Ψ by

Φ = xntsn−1sn−2···s1 and Ψ = y1ts1s2...sn−1 . (5.4)

The intertwiner Φ was first defined in [19, § 4], where it is used for the symmetric group
case. The other intertwiners were defined for the first time in the author’s thesis [14],
where some of the results that follow were also recorded.

The intertwiner σi is well defined when πi = 0 or zi − zi+1 �= 0. The intertwiners are
important because, as Lemma 5.3 shows, they permute the zis from (4.13). Our first
task is to compute the squares σ2

i of the intertwiners and the products ΦΨ and ΨΦ. Since
these compositions all lie in t, this calculation is useful for deciding when the intertwiners
applied to a t-eigenvector (or generalized eigenvector) are non-zero.

Lemma 5.2.

(a) For 1 � i � n − 1,

σ2
i = 1 −

(
c0πi

zi − zi+1

)2

.

(b)

ΨΦ = z1 and ΦΨ = zn − κ +
r−1∑
j=0

(dj − dj−1)εnj .

Proof. Using Lemma 5.1,

σ2
i =

(
tsi +

c0πi

zi − zi+1

)(
tsi +

c0πi

zi − zi+1

)

= 1 + tsi

c0πi

zi − zi+1
+

c0πi

zi − zi+1
tsi +

(
c0πi

zi − zi+1

)2

= 1 +
c0πi

zi+1 − zi
tsi − c0πi

zi − zi+1

(
c0πi

zi − zi+1
− c0πi

zi+1 − zi

)

+
c0πi

zi − zi+1
tsi +

(
c0πi

zi − zi+1

)2

= 1 −
(

c0πi

zi − zi+1

)2

.

This proves (a), and (b) follows from the definition (5.4) and the relation (4.10). �
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We define a symmetric group action on t by letting Sn simultaneously permute
z1, z2, . . . , zn and tζ1 , . . . , tζn . We also define an automorphism φ of t by

φ(tζi) = tζi+1 for 1 � i � n − 1, φ(tζn) = ζ−1tζ1 (5.5)

and

φ(zi) = zi+1 for 1 � i � n − 1 and φ(zn) = z1 + κ −
r−1∑
j=0

(dj−1 − dj−2)ε1j , (5.6)

where, as in (4.11), ε1j are the primitive idempotents for the cyclic reflection sub-
group generated by ζ1. There are corresponding operators on the space of homomor-
phisms HomC−alg(t, C). Identify such an algebra homomorphism α with the sequence
(α(z1), . . . , α(zn), α(ζ1), . . . , α(ζn)). Then Sn acts by permutations, and the operators φ

and ψ are as follows:

φ · (α1, . . . , αn, ζβ1 , . . . , ζβn)

= (α2, . . . , αn, α1 + κ − dβ1−1 + dβ1−2, ζ
β2 , . . . , ζβn , ζβ1−1). (5.7)

Let ψ = φ−1, so that

ψ · (α1, . . . , αn, ζβ1 , . . . , ζβn)

= (αn − κ + dβn
− dβn−1, α1, . . . , αn−1, ζ

βn+1, ζβ1 , . . . , ζβn−1). (5.8)

Lemma 5.3.

(a) For 1 � i � n − 1 and f ∈ t,
σif = (si · f)σi.

(b) For f ∈ t,
fΦ = Φ(φ · f) and fΨ = Ψ(φ−1 · f).

Proof. The commutation relation (4.16) for zi and tsi gives

ziσi = zi

(
tsi +

c0πi

zi − zi+1

)

= tsizi+1 − c0

r−1∑
l=0

tζl
iζ−l

i+1
+

c0πizi

zi − zi+1

= σizi+1 − c0πizi+1

zi − zi+1
− c0πi +

c0πizi

zi − zi+1

= σizi+1.

The proof that zi+1σi = σizi is exactly analogous, and the fact that σi and zj commute
if j �= i, i + 1 is obvious.
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Using the relation tζi
πi = πitζi+1 ,

tζiσi = tζi

(
tsi +

c0πi

zi − zi+1

)
= tsi

tζi+1 +
c0πi

zi − zi+1
tζi+1 = σitζi+1 .

The proof that tζi+1σi = σitζi
is the same, and the fact that σi and tζj

commute if
j �= i, i + 1 is obvious. This proves (a).

Using the commutation formula (4.10) for yn and xn,

ynxnΦ =
(

xnyn + κ −
r−1∑
j=0

(dj − dj−1)εnj − c0φn

)
xntsn−1 · · · ts1

= Φy1x1 + κΦ − Φ

r−1∑
j=0

(dj − dj−1)ε1,j+1 − c0φnΦ.

Hence,

znΦ = (ynxn + c0φn)Φ = Φ

(
z1 + κ −

r−1∑
j=0

(dj−1 − dj−2)ε1j

)
.

Let 1 � i < n. Since

yixiΦ = yixixntsn−1···s1

=
(

xnyi + c0

r−1∑
l=0

ζ−ltζl
isinζ−l

i

)
xitsn−1···s1

= Φyi+1xi+1 + Φc0

r−1∑
l=0

tζl
i+1si+1,1ζ−l

i+1

and

φiΦ =
∑

1�j<i

r−1∑
l=0

tζl
isijζ−l

i
xntsn−1···s1

= xntsn−1···s1

∑
1�j<i

r−1∑
l=0

tζl
i+1si+1,j+1ζ−l

i+1

= Φ

(
φi+1 −

r−1∑
l=0

tζl
i+1si+1,1ζ−l

i+1

)
,

it follows that

ziΦ = (yixi + c0φi)Φ

= Φyi+1xi+1 + Φc0

r−1∑
l=0

tζl
i+1si+1,1ζ−l

i+1
+ Φc0

(
φi+1 −

r−1∑
l=0

tζl
i+1si+1,1ζ−l

i+1

)

= Φzi+1.
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Finally,

tζiΦ = tζixntsn−1···s1 = xntsn−1···s1tζi+1 = Φtζi+1

and

tζnΦ = tζnxntsn−1···s1 = xntsn−1···s1ζ
−1tζ1 = Φ(ζ−1tζ1)

for 1 � i < n. This proves the formula involving Φ. The formula for Ψ follows from that
for Φ by using the relations in part (b) of Lemma 5.2. �

6. An eigenbasis of M(1)

Let C[x1, x2, . . . , xn] = M(1) be the polynomial representation of H. We will show that,
for generic choices of the parameters κ and ci, the ring C[x1, . . . , xn] has an t-eigenbasis
indexed by the set Zn

�0 and we will describe how the intertwining operators act on this
basis.

For µ ∈ Zn
�0, let wµ be the maximal length permutation such that

wµ · µ = µ−, where µ− is the non-decreasing (anti-partition) rearrangement of µ.
(6.1)

We write µ+ for the partition rearrangement of µ, and define a partial order on Zn
�0 by

λ < µ ⇐⇒ λ+ <d µ+ or λ+ = µ+ and wλ < wµ, (6.2)

where we use the Bruhat order on Sn, and <d denotes dominance order on Zn
�0, given

by

λ �d µ if µ − λ ∈
n−1∑
i=1

Z�0(εi − εi+1). (6.3)

If µi > µi+1, then

µ > si · µ + k(εi − εi+1) for 0 � k < µi − µi+1. (6.4)

The next theorem is the analogue of [20, Theorem 2.6] in our setting. It shows that the
zis are upper triangular as operators on C[x1, . . . , xn] with respect to the order on Zn

�0
defined in (6.2). Equivalent results are proved [9] by reduction to the symmetric group
case. The proof we give below is generalized to the modules M(V ) for all irreducible
CW -modules V in [16].

Theorem 6.1.

(a) The actions of tpζi
, tζ−1

i ζi+1
, and zi on M(1) are given by

tpζi
· xµ = ζ−pµixµ, tζ−1

i ζi+1
· xµ = ζµi−µi+1xµ,

and, with dj as in (4.8),

zi · xµ = (κ(µi + 1) − (d0 − d−µi−1) − r(wµ(i) − 1)c0)xµ +
∑
ν<µ

cνxν .
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(b) Assuming that the parameters are generic, so k = C(κ, c0, d1, . . . , dr/p−1), for each
µ ∈ Zn

�0 there exists a unique t-eigenvector fµ ∈ M(1) such that

fµ,T = xµ + lower terms.

The t-eigenvalue of fµ is determined by the formulae in part (a).

Proof. The statements about the action of tζp
i

and tζiζ
−1
i+1

follow from the com-
mutation relation in the definition of the rational Cherednik algebra and the defini-
tion of the representation M(1). Using the commutation formula in Proposition 2.3 for
f ∈ C[x1, . . . , xn] and y ∈ h and the geometric series formula to evaluate the divided
differences, we obtain the following formula for the action of yixi on xµ:

yi · xµ+εi = κ(µi + 1)xµ − c0

∑
1�j<k�n

r−1∑
l=0

〈xj − ζlxk, yi〉
xµ+εi − ζl

jsjkζ−l
j xµ+εi

xj − ζlxk

−
∑

1�j�n

r/p−1∑
l=1

clp〈xj , yi〉
xµ+εi − ζlp

j xµ+εi

xj

= κ(µi + 1)xµ − c0

∑
j �=i

r−1∑
l=0

xµ+εi − ζl
isijζ

−l
i xµ+εi

xi − ζlxj

−
r/p−1∑

l=1

clp(1 − ζ−lp(µi+1))xµ

=
(

κ(µi + 1) −
r/p−1∑

l=1

clp(1 − ζ−lp(µi+1))
)

xµ

− c0

∑
j �=i,

µi�µj

(xµ + ζlxµ+(εj−εi) + · · · + ζl(µi−µj)xsijµ)

+ c0

∑
j �=i,

µj>µi

µj−µi−1∑
k=1

ζ−lkxµ+k(εi−εj).

Using this equation and (6.4) to identify lower terms,

zi · xµ =
(

yixi + c0

∑
1�j<i

∑
0�l�r−1

tζl
isijζ−l

i

)
xµ

= yi · xµ+εi + c0

∑
1�j<i

r−1∑
l=0

tζl
isijζ−l

i
· xµ
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=
(

κ(µi + 1) −
r/p−1∑

l=1

clp(1 − ζ−lp(µi+1))
)

xµ − c0

∑
1�j<i,
µj�µi,

0�l�r−1

ζl(µi−µj)xsijµ

− c0

∑
1�j<i,
µj<µi,

0�l�r−1

xµ − c0

∑
i<j�n,
µj�µi,

0�l�r−1

xµ + c0

∑
1�j<i,

0�l�r−1

ζl(µi−µj)xsijµ + lower terms

=
(

κ(µi + 1) −
r/p−1∑

l=1

clp(1 − ζ−lp(µi+1)) − c0r(wµ(i) − 1)
)

xµ + lower terms,

where to obtain the last line we used the formula

wµ(i) = |{j < i | µj < µi}| + |{j > i | µj � µi}| + 1.

Now, rewriting in terms of the djs from (4.8) proves part (a) of the theorem.

For part (b), simply observe that the coefficient of κ in the formula for the action of
zi on xµ is µi+1; it follows that the t-eigenspaces are all one dimensional, and hence a
simultaneous eigenbasis exists. �

Define the weight wt(µ) of µ ∈ Zn
�0 to be the t-homomorphism mapping zi to

κ(µi + 1) − (d0 − d−µi−1) − r(wµ(i) − 1)c0

and ζi to ζ−µi . Let Sn act on Zn
�0 by permuting coordinates, and define operators φ and

ψ as follows:
φ · (µ1, . . . , µn) = (µ2, µ3, . . . , µn, µ1 + 1),

ψ · (µ1, . . . , µn) = (µn − 1, µ1, . . . , µn−1).

}
(6.5)

Lemma 6.2. The action of the intertwiners on the basis fµ is given by

σi · fµ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

fsi·µ if µi < µi+1 or µi �= µi+1 mod r,

0 if µi = µi+1,

(δ − rc0)(δ + rc0)
δ2 fsi·µ if µi = µi+1 mod r and µi > µi+1,

(6.6)

where

δ = κ(µi − µi+1) − c0r(wµ(i) − wµ(i + 1)),

Φ · fµ = fφ·µ, (6.7)

and

Ψ · fµ =

{
0 if µn = 0,

(κµn − (d0 − d−µn) − c0r(wµ(n) − 1))fψ·µ if µn �= 0.
(6.8)
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Proof. We will establish the formulae for σi; the formulae for Φ and Ψ are proved in
an analogous fashion. If µi < µi+1, then for all ν � µ one has si · ν � si · µ and it follows
that the leading term of σi · fµ is xsi·µ. Since σi · fµ is a t-eigenvector by Lemma 5.3, we
have σi · fµ = fsi·µ. If µi > µi+1 then by Lemma 5.2 one has

σi · fµ = σ2
i · fsi·µ

=
(zi − zi+1 − c0πi)(zi − zi+1 + c0πi)

(zi − zi+1)2
fsi·µ

=

⎧⎪⎨
⎪⎩

fsi·µ if µi �= µi+1 mod r,

(δ − rc0)(δ + rc0)
δ2 fsi·µ if µi = µi+1 mod r.

�

Corollary 6.3. Suppose that κ = 1. Then the t-eigenspaces of M(1) are all one
dimensional provided that c0 /∈

⋃n
j=1(1/j)Z>0.

Proof. We assume there is a two-dimensional t-eigenspace and prove that c0 ∈⋃n
j=1(1/j)Z>0. Let µ, ν ∈ Zn

�0 be distinct and assume that wt(µ) = wt(ν); since
wt(w · µ) = w · wt(µ) for all w ∈ Sn, we may assume that µ = µ+ is a partition.
Write w = wν . Thus, µi − µi+1 = νi − νi+1 mod r for 1 � i � n − 1 and

µi − νi = r(n − i + 1 − w(i))c0 (6.9)

for 1 � i � n. Since µ �= ν, c0 ∈ Q is a rational number. Let i be minimal with
w(i) �= n − i + 1. Then w(i) < n − i + 1 and there is some k > i with w(k) = n − i + 1.
Therefore, if c0 < 0, then

µi − νi = r(n − i + 1 − w(i))c0 < 0,

µk − νk = r(n − k + 1 − (n − i + 1))c0 > 0,

}
(6.10)

whence µi < νi and µk > νk. But µk > νk � νi > µi contradicts µ = µ+, and it follows
that c0 > 0. Now for 1 � i � n − 1 we have

µi − νi − (µi+1 − νi+1)
r

= (n − i + 1 − w(i) − (n − i − w(i + 1)))c0

= (1 + w(i + 1) − w(i))c0 (6.11)

and the corollary follows unless w(i + 1) − w(i) = −1 for 1 � i � n − 1. But in that case
w = w0 and µ = ν, which is a contradiction. �

In fact, the preceding corollary can be sharpened somewhat: provided that either p = 1
or n does not divide r, the t-eigenspaces are one dimensional as long as

c0 /∈
n−1⋃
j=1

(1/j)Z>0.

We will not need this fact in this paper.
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7. Koszul resolutions of some finite-dimensional H-modules

We assume for the rest of the paper that r > 1. For 1 � k � n and j ∈ Z>0 with
j �= 0 mod r define (affine) hyperplanes

Hj,k = {(c0, d1, . . . , dr/p−1) | d0 − d−j + rc0(n − k) = j} ⊆ Cr/p (7.1)

and, for x ∈ (1/n)Z>0,

Hx = {(c0, d1, . . . , dr/p−1) | c0 = x}. (7.2)

The hyperplane Hj,1 was introduced (modulo different conventions for the parameters)
in [6], where it was called Ej . Chmutova and Etingof [6, Theorems 4.2 and 4.3] have
proved that there is a finite-dimensional quotient of M(1) when the parameter lies on
Hj,1 for j �= 0 mod r, and that if p = 1, this quotient is irreducible for generic choices of
the parameters. Also, Dunkl and Opdam have proved [9, § 3.4] that M(1) is reducible
exactly if the parameter is on some Hj,k for some positive j �= 0 and 1 � k � n mod r

or Hx for some x ∈ (1/j)Z>0 − Z with 2 � j � n. The following theorem describes the
structure of the module M(1) in the case in which grL(1) is the quotient of the diagonal
co-invariant ring predicted by Haiman. It has the advantage of working for arbitrary
divisors p or r: this is what makes our strengthening of Vale’s result possible.

Theorem 7.1. Suppose that κ = 1, that k ∈ Z>0 with k �= 0 mod r, that
(c0, d1, . . . , dr/p−1) ∈ Hk,1 and that the parameters do not lie on any other hyperplane
Hl,j or Hx for 1 � l � n, j ∈ Z>0 and x ∈ (1/n)Z>0. Then the unique proper submodule
of M(1) is

C{fλ | λ has at least one part of size at least k}.

Proof. By Corollary 6.3 the t-eigenspaces of M(1) are all one dimensional, and hence
the Jack polynomials fµ are all well defined. Suppose that M is a proper non-zero sub-
module of M(1). Then M contains fµ for some µ ∈ Zn

�0. By our assumption on the
parameters and Lemma 6.2, σi · fµ is a non-zero multiple of fsi·µ whenever µi �= µi+1,
and it follows that M also contains fsi·µ for all 1 � i � n − 1. Hence, M contains fµ− ,
where µ− is the non-decreasing rearrangement of µ. By Lemma 6.2, we have Ψ · fµ = 0
exactly if µn = 0 or

µn = d0 − d−µn + r(wµ(n) − 1)c0. (7.3)

The latter equation holds exactly if µn = k and wµ(n) = n or, equivalently, exactly
if µn = k is strictly larger than all other parts of µ. It follows that if all the parts of
µ are of size less than k, then M contains f0 = 1, contradicting the fact that M is a
proper submodule. On the other hand, if µ has at least one part of size k, it follows from
the preceding discussion that by applying an appropriate sequence of intertwiners to fµ

we may obtain a non-zero multiple of fν , where ν = (k, 0, . . . , 0). Since fν generates
C{fλ | λ has at least one part of size at least k} as an H-module the result follows. �

In [16, Theorem 7.5] the author generalizes Theorem 7.1 to the case of a Verma
module M(V ) with one-dimensional t-eigenspaces, giving a combinatorial description
of the submodule structure (which can be much more intricate than the situation we
study in this paper).
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8. Diagonal co-invariants for G(r, p, n)

We continue to assume that r > 1. The Coxeter number of G(r, p, n) is

h =

{
r(n − 1) + r/p if p < r,

r(n − 1) if p = r.
(8.1)

This agrees with the usual definition of the Coxeter number (the largest degree of a basic
invariant) when r > 1 and p = 1 or p = r. The following theorem constructs an analogue
for the groups G(r, p, n) of the quotient of the diagonal co-invariant ring discovered by
Gordon in [12]. For p < r, a very similar theorem is proved in [25]. Our techniques
(which are conceptually very similar to those of [5], but work directly in H) allow us to
handle the case p = r in the same way as p < r.

Lemma 8.1. Let m be a positive integer not divisible by r and let V be the repre-
sentation C{xm

1 , . . . , xm
n }. Then V is free. If m = h + 1 and e1, . . . , en are the exponents

of V , then the multisets {h + 1 − ei}n
i=1 and {di}n

i=1 are equal.

Proof. Let m̄ and m′ be the integers determined by

0 � m̄ < r, 0 � m′ < r/p, m̄ = m mod r and m′ = m mod r/p. (8.2)

Observe that the representation ΛnV is εδ−m, where ε and δ are the one-dimensional
G(r, 1, n)-representations determined by ε(ζl

isijζ
−l
i ) = −1, ε(ζl

i) = 1, δ(ζl
isijζ

−l
i ) = 1 and

δ(ζl
i) = ζl. This is carried by the non-zero element

(x1 · · ·xn)m′ ∏
1�i<j�n

(xr
i − xr

j)

of the ordinary co-invariant ring.
For 1 � i, j � n, let

fi,j = x
(i−1)r+m̄
j and put vj = xr−m̄+m′

1 · · ·xm′

j · · ·xr−m̄+m′

n . (8.3)

When p = 1, the functions fi,j for 1 � j � n span a copy of V , and, when p > 1,
v1, . . . , vn span a copy of V . One computes

det(fi,j)n
i,j=1 = (x1 · · ·xn)m̄

∏
1�i<j�n

(xr
i − xr

j) (8.4)

and if A is the matrix whose nth row is v1, v2, . . . , vn and whose ith row for 1 � i < n is
fi,1, fi,2, . . . , fi,n, then

det(A) = (−1)n(x1 · · ·xn)m′ ∏
1�i<j�n

(xr
i − xr

j). (8.5)

It follows by [21, Theorem 3.1] that V is free and the exponents of V are

ei(V ) = m̄ + (i − 1)r for 1 � i � n if p = 1, (8.6)
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and
ei(V ) = m̄ + (i − 1)r for 1 � i � n − 1,

en(V ) = (n − 1)(r − m̄) + nm′ if p > 1.

}
(8.7)

The degrees of G(r, p, n) are r, 2r, . . . , (n − 1)r, n(r/p) if p < r and r, 2r, . . . , (n − 1)r, n if
p = r. When m = h + 1 it is straightforward to verify the last claim. �

Theorem 8.2. Suppose that G(r, p, n) acts irreducibly on Cn. With h as in (8.1) and
V = C{xh+1

1 , . . . , xh+1
n }, there is a W -equivariant quotient L of the diagonal co-invariant

ring R of G(r, p, n) such that, for each w ∈ W ,

∑
tr(w, (L ⊗ ΛnV )i)ti =

det(1 − th+1wV )
det(1 − twh∗)

,

where wV and wh∗ denote w regarded as an endomorphism of V and h∗, respectively.
The image of S(h∗) in L is isomorphic to the ordinary co-invariant ring.

Proof. The theorem will follow from Theorem 3.2, with L = grL(1)⊗ΛnV ∗, once we
verify its hypotheses. Let µi ∈ Zn

�0 have an h + 1 in the ith position and 0s elsewhere.
Then one checks that with cs = (h + 1)/h for all reflections s ∈ G(r, p, n) the hypotheses
as in Theorem 7.1 are satisfied for k = h + 1. Thus, the radical of M(1) is generated by
C{fµ1 , . . . , fµn

}. Lemma 6.2 shows that, as W -modules,

C{fµ1 , . . . , fµn} ∼= V = C{xh+1
1 , . . . , xh+1

n }. (8.8)

Thus, the hypotheses of Lemma 3.1 hold, with k = h + 1. Lemma 8.1 shows that the
remaining hypotheses of Theorem 3.2 hold. �

For an arbitrary irreducible complex reflection group W we define the ‘Coxeter’ number
of W to be

h =
N + N∗

n
, (8.9)

where n is the dimension of the reflection representation of W , N is the number of reflec-
tions in W and N∗ is the number of reflecting hyperplanes for W . This definition agrees
with (8.1) for the groups G(r, p, n) whenever they are irreducible. By a straightforward
modification of [3, Proposition 2.3], when c = 1/h there is a one-dimensional H-module
with a Bernstein–Gelfand–Gelfand (BGG) resolution.

Question 8.3. Is it possible that, for every complex reflection group W and every
integer m coprime to the ‘Coxeter’ number h, when c = (m/h) the H-module L(1) is mn

dimensional with BGG resolution

0 → M(ΛnV ) → · · · → M(Λ1V ) → M(1) → L(1) → 0, (8.10)

where V is an irreducible CW -module of dimension n?
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This question is related to [4, Conjecture 4.3]: Bessis and Reiner conjecture that for an
irreducible complex reflection group of dimension n that can be generated by n reflections,
there is a homogeneous system of parameters in each degree ±1 mod h that carries either
the reflection representation or its dual. The existence of such a homogeneous system of
parameters implies an interpretation of the q-Fuss/Catalan numbers as Hilbert series
(see [1] for a survey of ‘Catalan phenomena’ and non-crossing partitions). We expect
that, at parameters cs = 1+1/h, if W can be generated by n reflections, then L(1) gives
rise to a nice quotient of the diagonal co-invariant ring; the results of [24, § 5] are sure
to be relevant here.

Note added in proof

Question 8.3 is answered in [13], assuming that the Hecke algebra of W is free of rank
|W |.
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