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Abstract

Let a, b, c, x and y be positive integers. In this paper we sharpen a result of Le by showing that the
Diophantine equation

axm
− byn

= c, gcd(ax, by)= 1

has at most two positive integer solutions (m, n) satisfying min(m, n) > 1.
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1. Introduction

The Diophantine equation

axm
− byn

= c, a, b, c, x, y, m, n ∈ Z (1.1)

has a long and rich history. Philippe de Vitry asked the following question: ‘Can
3m
± 1 be a power of 2?’ The answer that m = 2 and n = 3 was given by Levi Ben

Gerson (see, for example, [6]). Many authors (for example, Fermat, Euler, Lagrange,
Gauss, etc.) were interested in the special case a = b = 1, c =±1, particularly the
Catalan equation that was solved by Mihailescu [12] in 2004. In general, for given a,
b and c one can consider three cases. First, one can solve (1.1) for x , y assuming
that m and n are fixed. Second, the equation can be solved for the exponents m
and n when x, y are fixed. Finally, the difficult case consists of finding all of the
variables x, y, m, n of (1.1). Chapter 7 of [17] is devoted to some particular cases of
the problem. One can also see [6] for more details about the history of the equation.

The first author was supported by the Applied Basic Research Foundation of Sichuan Provincial Science
and Technology Department (No. 2009JY0091). The second author is grateful to Purdue University
North Central for the support.
c© 2010 Australian Mathematical Publishing Association Inc. 0004-9727/2010 $16.00

177

https://doi.org/10.1017/S0004972709001002 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972709001002


178 B. He and A. Togbé [2]

In this paper, we consider the second case, that is Equation (1.1) where a, b, c,
x and y are given positive integers with x > 1, y > 1 and gcd(ax, by)= 1. For the
rest of the paper, we suppose that a, b, c, x and y are fixed positive integers. As we
mentioned above, the first result was obtained by Levi Ben Gerson who proved the
following theorem.

THEOREM 1.1. If m, n ≥ 2 and 3m
− 2n
=±1, then m = 2, n = 3.

Other proofs of this theorem were given by Langevin and Franklin (see [17]). If
a = b = 1, Pillai [14] studied the equation and conjectured that if x = 3 and y = 2
then |c|> 13. In 1982, this conjecture was solved by Stroeker and Tijdeman [19].
LeVeque [10] proved that if a = b = c = 1, then Equation (1.1) has at most one
solution (m, n). If a = b = 1 and c ≤ 2, Cao [4] showed that the number of solutions
(m, n) of (1.1) is at most four. In the general case, Shorey [18] proved that (1.1) has
at most nine solutions (m, n) with axm > 953c6. Le [9] gave a series of results and in
particular he proved the following theorem.

THEOREM 1.2. If min(x, y)≥ ee and min(m, n) > 1, then (1.1) with gcd(ax, by)= 1
has at most three solutions.

The goal of this paper is to sharpen the above result. Here are the main results for
the equation

axm
− byn

= c, gcd(ax, by)= 1. (1.2)

THEOREM 1.3. If min(m, n) > 1, then (1.2) has at most two positive integer solutions
(m, n), except when

(x, y) or (y, x) ∈ {(2, 3), (2, 5), (2, 7), (2, 15), (2, 21), (3, 5), (3, 10),

(3, 11), (3, 13), (3, 20), (3, 22), (3, 44), (3, 55), (3, 110), (3, 220),

(5, 6), (6, 7), (7, 15), (7, 20), (7, 30), (11, 12), (13, 14), (19, 28)}.

Then, using Theorem 1.3 and considering the exceptional cases, we have the
following result.

THEOREM 1.4. Equation (1.2) has at most three positive integer solutions (m, n).

Furthermore, the upper bound of number of solutions of (1.2) is lower for some
special parameters a, b and c. For example, in [7], the authors sharpened a result
of Bugeaud and Shorey [3] on the Goormaghtigh equation by proving the following
result.

THEOREM 1.5. Let Y > X > 1 be given integers. Then the equation

Xm
− 1

X − 1
=

Y n
− 1

Y − 1
, m > 1, n > 1 (1.3)

has at most one solution (m, n).
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To see this, one can rewrite (1.3) in the form

(Y − 1)Xm
− (X − 1)Y n

= Y − X.

Then the above equation becomes (1.2) with (a, b, c)= (y − 1, x − 1, y − x).
Bennett [1] and Bugeaud and Luca [2] have also studied some particular cases
of (1.1) and proved that the equation has at most one solution. In fact, Bennett
showed that if a, b and c are positive integers with a, b ≥ 2 and c ≥ b2a2 log a (or
if a is prime, c ≥ ba), then the equation ax

− by
= c has at most one solution. (See

[1, Theorem 1.3].) He also has another similar result and two other results where the
equation has at most two solutions. One can refer to [1] for more details. For their part,
Bugeaud and Luca considered a fixed, finite set of prime numbers P = {p1, . . . , pt }

and S = {±pα1
1 . . . pαt

t | αi ≥ 0, i = 1, . . . , t} the set of all nonzero integers whose
prime factors belong to P . They showed that if b is fixed, there exists a positive
constant a0 depending on b and S such that for any nonzero integer c, for any a ≥ a0,
and for every positive integers A, B in S , the more general equation Aax

− Bby
= c

has at most one solution. (See [2, Corollary 2.2].) Corollary 2.3 is a similar result.
One result is more general but not the best.

We organize the paper as follows. In Section 2, we recall some useful results due
to Le [9], Ribenboim [16], and Matveev [11]. The proof of Theorem 1.3 is given
in Section 3. In fact, we suppose that (1.2) has three solutions. We use the result
due to Le, cited in Section 2, and Baker’s method to prove that the largest solution
(n3, m3) verifies max(m3, n3) < 8.5 · 1016. Then we use some congruence properties
to obtain 2≤ y ≤ 439 682. To completely solve the equation, we ran a program written
in PARI/GP [13] to obtain the exceptional solutions. In Section 4, we use a similar
method to prove Theorem 1.4.

2. Some lemmas

The following result is contained in the proof of Theorem 3 by Le, see [9,
Formulas (12) and (15)]. We write these properties as a lemma.

LEMMA 2.1. If (1.2) possesses three positive integers solutions (mi , ni ) for any
i = 1, 2, 3 with 2≤ m1 < m2 < m3 and 2≤ n1 < n2 < n3, then we have

yn2−n1 | m3 − m2 and xm2−m1 | n3 − n2. (2.1)

We recall the following result on linear forms in logarithms due to Matveev [11].

LEMMA 2.2. Denote by α1, . . . , αn algebraic numbers, not 0 or 1, by
log α1, . . . , log αn determinations of their logarithms, by D the degree over Q of
the number field K=Q(α1, . . . , αn), and by b1, . . . , bn rational integers. Define
B =max{|b1|, . . . , |bn|}, and Ai =max{Dh(αi ), |log αi |, 0.16} for all 1≤ i ≤ n,
where h(α) denotes the absolute logarithmic Weil height of α. Assume that the number
3= b1 log α1 + · · · + bn log αn does not vanish; then

|3| ≥ exp{−C(n, ~)D2 A1 · · · An log(eD) log(eB)},
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where ~ = 1 if K⊂ R and ~ = 2 otherwise and

C(n, ~)=min
{

1
~

(
1
2

en

)~
30n+3n3.5, 26n+20

}
.

Finally, we recall a result obtained by Ribenboim (see [16, (C6.5), pp. 276–278]).
In fact, if a, b are two positive integers such that gcd(a, b)= 1, we define m(a, b) and
n(a, b) to be positive integers such that

bn(a,b)
= 1+ lam(a,b) (2.2)

with l an integer, gcd(l, a)= 1, m(a, b)≥ 2 and n(a, b) minimal. Such m(a, b) and
n(a, b) exist and we have the following lemma.

LEMMA 2.3. Suppose that a and b are relatively prime integers with a, b ≥ 2. If
N , M ≥ 2 are positive integers with M ≥ m(a, b) and bN

≡ 1 mod aM , then N is
divisible by n(a, b)aM−m(a,b).

3. Proof of Theorem 1.3

Suppose that (1.2) has at least three positive integer solutions (mi , ni ) for any
i = 1, 2, 3 with 2≤ m1 < m2 < m3 and 2≤ n1 < n2 < n3. Without loss of generality,
we assume that x or y is not a perfect power.

From (1.2),
axm1 − byn1 = axm2 − byn2 . (3.1)

This implies
axm1(xm2−m1 − 1)= byn1(yn2−n1 − 1).

Since gcd(ax, by)= 1, we have axm1 | yn2−n1 − 1. Lemma 2.1 implies yn2−n1 |

m3 − m2. So we obtain
c < axm1 < yn2−n1 ≤ m3. (3.2)

Let us consider the linear form

3= m3 log x − n3 log y + log(a/b).

From (1.2) and as c < yn2−n1 ,

3< e3 − 1=
c

byn3
=

c

yn2−n1
·

1
byn3−n2+n1

<
1

by2 ≤
1
4
.

Let z = (c/axm3). We obtain z = (c/(byn3 + c))≤ 1
5 . Therefore,

|3| = |log(1− z)|< z(z + 1) <
6
5

z =
1.2c

axm3
. (3.3)

Then we deduce that
log |3|< log(1.2c)− m3 log x, (3.4)
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and also
log |3|< log c − n3 log y. (3.5)

Now we apply Lemma 2.2 with D = 1, n = 3, α1 = x , α2 = y, and α3 = a/b.
Therefore, we take

A1 = log x, A2 = log y, A3 =max(a, b), B =max(m3, n3).

So we have

log |3|>−1.391 · 1011(log x)(log y)(log max(a, b))(log max(em3, en3)). (3.6)

We consider the upper bound for m3 in two cases. First, if m3 ≥ n3, then from (3.4)
and (3.6)

m3 <
log(1.2c)

log x
+ 1.391 · 1011(log y)(log max(a, b))(log(em3)).

Using (3.2), we have log(1.2c) < log(1.2m3). This and the fact that 1/log x ≤
1/log 2< 1.45 lead to

m3 < 1.392 · 1011(log y)(log max(a, b))(log(em3)). (3.7)

Again (1.2) and (3.2) imply max(a, b) < axm1 < m3 and y ≤ yn2−n1 < m3. Then (3.7)
gives us

m3

(log m3)2(log(em3))
< 1.392 · 1011.

It follows that
m3 < 8.5 · 1016. (3.8)

Second, if m3 < n3, then from (3.5) and (3.6),

n3 <
log c

log y
+ 1.391 · 1011(log x)(log max(a, b))(log(en3)).

Using Lemma 2.1, we have xm2−m1 < n3 − n2 < n3. Notice that c < m3 < n3 and
max{a, b}< m3 < n3. Then we use a similar argument to obtain

n3 < 8.5 · 1016. (3.9)

Since m3 < n3, then m3 is also bounded by above inequality.
From the above two cases, we have an upper bound for m3 that is given by (3.8).

Equation (3.1) and axm1 > byn1 imply xm2−m1 < yn2−n1 . Combining this with (3.2)
and (3.8), we obtain

xm2−m1 < yn2−n1 < 8.5 · 1016. (3.10)

As x, y ≥ 2, we have m2 − m1 < 57 and n2 − n1 < 57 .
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Now, we suppose that min(m1, n1)=min(m, n) > 1 and we consider the equation

axm1(xm2−m1 − 1)= byn1(yn2−n1 − 1) with gcd(ax, by)= 1.

Then there exist positive integers m′ = m2 − m1 and n′ = n2 − n1, such that

yn′
≡ 1 mod x2 (3.11)

and
xm′
≡ 1 mod y2. (3.12)

Since n1 ≥ 2, from byn1 < xm2−m1 < yn2−n1 we then have n′ = n2 − n1 ≥ 3. This
result and (3.10) lead to

y <
3
√

8.5 · 1016 < 439 683.

The congruences (3.11) and (3.12), with the upper bound given by (3.10), have a
few solutions. To see this, we used PARI/GP [13] to write a short program for the
computations. Here we give some details about the algorithm.

First, we searched for pairs (y, n′) such that yn′
− 1 has a square factor with

2≤ y ≤ 439 682 and n′ ≤ 56. Also n′ is bounded by 3≤ n′ < log(8.5 · 1016)/log y.
For fixed y and n′, the largest nonsquare-free divisor of yn′

− 1 has the form X =
ps1

1 ps2
2 · · · pst

t (si ≥ 2). Then every possible x in (3.11) must be a divisor of X .
Second, for each x ≥ 2, a fixed divisor of X , we searched for integers m′ such that

1≤ m′ < log(8.5 · 1016)/log x . If y2 is a divisor of xm′
− 1, then we output the pairs

(x, y).
It took about 6 minutes to run the program. In all cases, we obtain x, y ≤ 220. The

pairs (x, y) that satisfy (3.11) and (3.12) are

(x, y) or (y, x) ∈ {(2, 3), (2, 5), (2, 7), (2, 15), (2, 21), (3, 5), (3, 10),
(3, 11), (3, 13), (3, 20), (3, 22), (3, 44), (3, 55), (3, 110), (3, 220),
(5, 6), (6, 7), (7, 15), (7, 20), (7, 30), (11, 12), (13, 14), (19, 28)}.

(3.13)

This completes the proof of Theorem 1.3.

4. Proof of Theorem 1.4

If (x, y) is not on the list (1.3), since there was at most one solution satisfying
min(m, n)= 1, then the theorem holds by Theorem 1.3. Therefore, we need only to
consider (x, y) in (1.3). Suppose that (1.2) has at least four positive integer solutions
(mi , ni ) for all i = 1, 2, 3, 4 with 1≤ m1 < m2 < m3 < m4 and 1≤ n1 < n2 < n3 <

n4. Also, we assume that x or y is not a perfect power.
From (1.2),

axm1(xm j−m1 − 1)= byn1(yn j−n1 − 1) for j = 2, 3, 4.
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Eliminating axm1 and byn1 , we obtain

xmk−m1 − 1
xm2−m1 − 1

=
ynk−n1 − 1
yn2−n1 − 1

for k = 3, 4. (4.1)

If m2 − m1 = 1, then it is obvious to see that (xm2−m1 − 1) | (xmk−m1 − 1). Thus,
we have also (yn2−n1 − 1) | (ynk−n1 − 1). Then we obtain (n2 − n1) | (nk − n1).
Therefore, the equation

X M
− 1

X − 1
=

Y N
− 1

Y − 1
, M > 1, N > 1,

with (X, Y )= (xm2−m1, yn2−n1), has two positive integer solutions

(M, N )=

(
m3 − m1

m2 − m1
,

n3 − n1

n2 − n1

)
and

(
m4 − m1

m2 − m1
,

n4 − n1

n2 − n1

)
.

This and Theorem 1.5 lead to a contradiction. Similarly, n2 − n1 cannot be equal to 1.
Thus, we assume

m2 − m1 ≥ 2 and n2 − n1 ≥ 2. (4.2)

It follows that m2, n2 ≥ 3.
Note that 2≤ m2 < m3 < m4 and 2≤ n2 < n3 < n4, according to the proof of

Theorem 1.3, see (3.10),

xm3−m2 < yn3−n2 < 8.5 · 1016, (4.3)

and then m3 − m2 < 57 and n3 − n2 < 57. From (1.2), we obtain

axm2(xm3−m2 − 1)= byn2(yn3−n2 − 1).

As gcd(ax, by)= 1, this implies that axm2 divides yn3−n2 − 1 and byn2 divides
xm3−m2 − 1. There exist positive integers m′′ = m3 − m2 and n′′ = n3 − n2 such that

yn′′
≡ 1 mod x3, xm′′

≡ 1 mod y3. (4.4)

Again, we use PARI/GP [13] to write a short program for the computations. We
found that only (x, y)= (2, 3), (3, 2) satisfy congruences (4.4).

Let us consider the two remaining cases. When (x, y)= (2, 3), Equation (1.2)
becomes

a · 2m
− b · 3n

= c. (4.5)

Using Lemma 2.3 and knowing that 26
= 1+ 7 · 32 and 2m3−m2 ≡ 1 mod 3n2 , then we

have
6 · 3n2−2

| m3 − m2. (4.6)

Since m3 − m2 < 57, then n2 − 2≤ 2. As n2 ≥ 3, we have n2 = 3 or 4. As 1≤ n1 ≤

n2 ≤ n3,
(n1, n2)= (1, 3), (1, 4) or (2, 4).
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If (n1, n2)= (1, 3) or (2, 4), then one can see that n2 − n1 = 2. Thus, from a · 2m1 |

3n2−n1 − 1= 8, we have a · 2m1 = 2k for all 1≤ k ≤ 3. Since b · 3n1 < a · 2m1 ≤ 8,
then b = 1. Equation (4.5) becomes

2m
− 3n
= c.

Using the well-known theorem of Stroeker and Tijdeman [19] for Pillai’s
conjecture [15], the above equation has at most two positive integer solutions (m, n).

Now we consider (n1, n2)= (1, 4). From a · 2m1 | 3n2−n1 − 1, we have a ≤ 13.
Moreover, the inequalities a · 2m1 ≤ 26 and b · 3n1 < a · 2m1 give us b · 3n1 ≤ 25, then
b ≤ 25/3. Therefore, one has b ≤ 8. Now we apply Lemma 2.2 with

A1 = log 2, A2 = log 3, A3 = 13, B =max{m4, n4}.

This is similar to what we have done previously. If m4 ≥ n4, from (3.7) we obtain

m4 < 3.923 · 1011 log(em4).

This implies that n4 < m4 < 1.2 · 1013. If n4 > m4, then we obtain the same
result. Using the new bound, as 2m3−m2 < 1.2 · 1013, we obtain m3 − m2 < 44.
Therefore, (4.6) implies n2 − 2≤ 1. However, n2 = 4, so this contradicts the
hypothesis.

Finally, when (x, y)= (3, 2), we use the same argument to the equation

a · 3m
− b · 2n

= c

and we obtain a contradiction on m2. This completes the proof of Theorem 1.4.
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