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Abstract
This paper describes how to compute algorithmically certain twisted signature invariants of a knot K using twisted
Blanchfield forms. An illustration of the algorithm is implemented on (2, q)-torus knots. Additionally, using satellite
formulas for these invariants, we also show how to obstruct the sliceness of certain iterated torus knots.

1. Introduction

This paper, which is the last in a series of three [1, 2], illustrates how to compute algorithmically certain
signature invariants of a knot K, twisted by a representation π1(XK) → GLd(F[t±1]), where XK denotes
the exterior of K. Before describing this algorithm, we provide some background on twisted Blanchfield
forms and twisted signature invariants.

1.1. Classical knot theory

Classical knot theory is concerned with knot invariants that are extracted from the algebraic topol-
ogy of the knot exterior. Here, given a knot K, customary notation involves using ν(K) for an open
tubular neighbourhood of K and XK := S3 \ ν(K) for the exterior of K. Textbook examples of classical
knot invariants include the Alexander polynomial �K and the Levine-Tristram signature σK : S1 →Z
[27, 38].

Both of these invariants are extracted from the infinite cyclic cover X∞
K → XK and can be calculated

using Seifert surfaces, that is, compact, connected, oriented surfaces in S3 with boundary K. Indeed,
given a Seifert matrix A for K, the Alexander polynomial and signature at ω ∈ S1 can be expressed as

�K(t) = det(tA − AT),

σK(ω) = sign((1 −ω)A + (1 −ω)AT).

The same goes for the Alexander module H1(XK; Z[t±1]) := H1(X∞
K ) which is presented, as a Z[t±1]-

module, by the matrix tA − AT .
Another classical knot invariant, that appears less frequently in textbooks, is a non-singular,

sesquilinear, Hermitian form

Bl(K) : H1(XK; Z[t±1]) × H1(XK; Z[t±1]) →Q(t)/Z[t±1],
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known as the Blanchfield form. Sesquilinearity refers to the fact that Bl(K)(px, qy) = pqBl(K)(x, y) for
every x, y ∈ H1(XK; Z[t±1]) (where, given a rational function p := p(t) ∈Q(t), we write p := p(t−1))
and Bl(K) being Hermitian means that Bl(K)(y, x) = Bl(K)(x, y). The Blanchfield form can also be
expressed using Seifert matrices [13, 21]. The data of the pair (H1(XK; Z[t±1]), Bl(K)) encapsulate both
the Alexander polynomial and the signature: H1(XK; Z[t±1]) determines �K and Bl(K) determines σK .

Applications of classical invariants include the study of the unknotting number, the 3-genus,
fibredness as well as questions related to 4-dimensional topology and knot concordance. Here knot
concordance refers to the study of (topologically) slice knots, that is, knots that bound a locally flat disc
in D4.

1.2. Twisted knot invariants

More recently, knot theorists have taken up the study of invariants of pairs (K, β), where K is a knot
and β : π1(XK) → GLd(F[t±1]) is a representation; (in fact, instead of the exterior XK , it is often conve-
nient to use the closed 3-manifold MK obtained from S3 by 0-framed surgery on K). The idea is that
classical invariants correspond to the case where β is induced by abelianisation, whereas non-abelian
representations capture more information about the fundamental group.

The first papers on the topic, such as [23, 28], focused on twisted Alexander polynomials, but the
theory has also been leveraged to construct signature invariants [8, 14, 23, 26, 34] and arguably has its
root in earlier work of Casson and Gordon [6, 7]. Many of the applications and successes of twisted knot
invariants are discussed in [16] but we simply note that one common area of application again concerns
the study of knot concordance; see for example, [14, 15, 19, 22, 24, 30, 31, 32].

More recently, taking inspiration from the work of Cochran-Orr-Teichner [11], Miller and Powell
initiated the study of the twisted Blanchfield form Blβ(K), also with an eye towards applications to knot
concordance group [33]. The absence of computational tools (such as the Seifert matrix in the classical
case) has however limited further applications.

The goal of our sequence of papers is to further develop the theory of twisted Blanchfield forms and
signatures, address computational aspects, and obtain further results in knot concordance. Our theory
was applied in [9] to study the subgroup of the knot concordance group generated by iterated torus knots;
see also [10].

1.3. Twisted Blanchfield forms and twisted signatures

Given a knot K ⊂ S3 and a unitary acyclic representation β : π1(MK) → GLd(C[t±1]) (we call β acyclic if
the C[t±1]-module H1(MK; C[t±1]d

β
) is torsion for each i), the twisted Blanchfield form is a non-singular,

sesquilinear Hermitian pairing

Blβ(K) : H1(MK; F[t±1]
d

β
) × H1(MK; F[t±1]

d

β
) →C(t)/C[t±1].

Details will be recalled in Section 3, but we nevertheless note two facts. First, when β is induced by
abelianisation, Blβ(K) reduces to the classical Blanchfield form Bl(K). Secondly, while Blβ(K) has
been studied by Powell [35, 36] and Miller-Powell [33], extracting concrete computable invariants from
Blβ(K) has remained challenging. For instance, while Blβ(K) has been used to obstruct certain satellite
knots from being slice [33], no explicit calculations have been possible for low crossing knots.

In the first two papers of this series [1, 2], we proved a classification result for linking forms over
F[t±1], where F=R, C, and described how to use this result to extract computable signature invariants
from Blβ(K), including a new twisted signature function

σK,β : S1 →Z
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that reduces to σK for abelian β and that is related to the Casson-Gordon invariants [6, 7] for metabelian
β. We note that the Blanchfield form Blβ(K) (and therefore the signature function σK,β) only depends on
the conjugacy class of β.

Thanks to results from [2] and to formulas for the behaviour of Blβ(K) under satellite operations
from [1], this paper shows how twisted signature invariants of iterated torus knots can be understood
explicitly.

Remark 1.1. The relationship between σK,β and Casson-Gordon invariants arises by considering a
representation αK(n, χ ) : π1(MK) → GLn(C[t±1]), where χ : H1(
n(K); Z) →Zm is a character; here,

n(K) denotes the n-fold branched cover of K. The definition of this representation will be recalled in
Section 4, but, from now on, we refer to Blα(n,χ )(K) as a metabelian Blanchfield form and to the
corresponding signatures as metabelian signatures.

1.4. Twisted signatures of iterated torus knots

In order to describe our computation of twisted signatures for (iterated) torus knots, we briefly recall
from [1] how σK,β is constructed; more details will be given in Section 3. As we review in Section 2,
given a torsion C[t±1]-module M, our work from [2] associates with every linking form λ : M × M →
C(t)/C[t±1] a locally constant signature function

σ(M,λ) : S1 →Z.

The twisted signature σK,β is obtained as the signature function of the linking form Blβ(K). In practice
however, instead of describing the signature function, it is often more convenient to describe its value
at the points ξ ∈ S1 where it jumps. Without going into details, given ξ ∈ S1, these values are captured
by the signature jump

δσ(M,λ)(ξ ) ∈Z,

the collection of which determines σM,λ up to an additive constant. In turn, the signature jumps can be
explicitly calculated if one knows the isometry type of the linking form (M, λ). Indeed, every linking
form decomposes uniquely as

(M, λ) =
⊕
ni ,εi ,ξi

i∈I

e(ni, εi, ξi, C) ⊕
⊕
ξj

j∈J

f(nj, ξj, C) (1.1)

where the summands are explicit linking forms (whose definitions are recalled in Subsection 2) and the
value of δσ(M,λ)(ξ ) can be read off this decomposition.

Remark 1.2. In the decomposition of (1.1), the parameters ni ∈N>0 and ξi ∈C can be read off the
primary decomposition of the module H; the knowledge of the linking form is not necessary. The signs
εi ∈ {±1} can be obtained if one knows the value of the linking form on every pair of elements of the
module F[t±1]/Fni

ξi
that supports e(ni, εi, ξi, C).

Summarising, given a linking form (M, λ), Remark 2.6 below describes an algorithm to obtain the
aforementioned decomposition of (M, λ) and to read off its signature jumps. Thanks to this algorithm,
the following theorem leads to a calculation of certain metabelian signatures of the (2, 2k + 1)-torus
knots.

Theorem 1.3. For any k> 0, there are 2k + 1 characters H1(
2(T2,2k+1)) →Z2k+1 which are denoted by
χθ for θ = 0, . . . , 2k. Each of the unitary representations α(2, χθ ) is acyclic and, for θ = 1, . . . , k, the
representation α(2, χθ ) is conjugate to α(2, χ2k−θ ).
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Set ξ = exp
(

2π i
2k+1

)
. For 1 ≤ θ ≤ k, there exists an isometry

Blα(2,χθ )(T2,2k+1) ∼= λeven
θ

⊕ λodd
θ

,

where the linking forms λeven
θ

and λodd
θ

are as follows:

λodd
θ

=
⊕
1≤e≤k
2�θ+e

(
e(1, 1, ξ e, C) ⊕ e(1, −1, ξ−e, C)

)
,

and
λeven
θ

=
⊕
1≤e<θ
2|θ+e

(
e(1, 1, ξ e, C) ⊕ e(1, −1, ξ−e, C)

)⊕

⊕
θ<e≤k
2|θ+e

(
e(1, −1, ξ e, C) ⊕ e(1, 1, ξ−e, C)

)
.

Thanks to Theorem 1.3, and to our satellite formula for metabelian Blanchfield forms (see
Theorem 4.3), we are able to calculate twisted signatures of linear combinations of iterated torus knots
of the form T2,q1;2,q2; ...; 2,qn . Here, T�,d;r,s denotes the (r, s)-cable of the (�, d)-torus knot. As should be appar-
ent from Theorem 1.3, a general formula for the twisted signatures of such knots is prone to be quite
unruly. Therefore instead of stating such a result, we illustrate our methods by obstructing the sliceness
of T2,3;2,13#T2,15# − T2,3;2,15# − T2,13, an example already considered by Hedden, Kirk and Livingston [20].

1.5. The algorithm

Finally, we describe how to compute the twisted signature jumps of a knot associated with representa-
tions that take values in GLd(C[t±1]) (e.g. for the metabelian representation α(n, χ )). In particular, this
is the procedure we follow to prove Theorem 1.3.

Fix a unitary acyclic representation β : π1(MK) → GLd(C[t±1]). As was alluded to in Remark 1.2,
the twisted signature jumps can be computed if one knows the (primary decomposition of the) twisted
Alexander module H1(MK; C[t±1]d

β
) and the value of the twisted Blanchfield pairing Blβ(K) on every

pair of elements on this module; the latter is possible thanks to work of Powell [35] that we recall in
Subsection 3.2. The procedure to compute the twisted signature σK,β is now as follows.

Step 0 Fix a handle decomposition of the 0-surgery MK , consider the induced presentation 〈x1, . . . , xn |
r1, . . . , rn−1〉 of π1(MK), and calculate the Fox derivatives ∂xi/∂xj. Note that a handle
decomposition of MK arises from a Wirtinger presentation of π1(XK), as explained in [33,
Section 3.1].

Step 1 Determine the primary decomposition of the twisted Alexander module over C[t±1]. For some
positive integers ni and some ξi ∈ S1, the primary decomposition of the torsion C[t±1]-module
H1(MK , C[t±1]d

β
) takes the form

H1(MK , C[t±1]d
β
) =

⊕
ξi ,ni

C[t±1]/(t − ξi)
ni ⊕ H′, (1.2)

where H′ is aC[t±1]-module on which multiplication by (t − ξ ) is an isomorphism for all ξ ∈ S1.
The parameters ξi ∈C and ni ∈N>0 that appear in this decomposition determine the ξi and the ni

from the e-forms in the decomposition of Blβ(K) displayed in (1.1). Thus, the twisted Alexander
module determines the mod 2 value of the twisted signature jumps. This step can be carried
out using the Fox derivatives that were calculated in Step 0.

Step 2 Determine the data needed to calculate the twisted Blanchfield pairing Blβ(K). Let (C∗(M̃K), δ)
be the cochain complex of left Z[π1(MK)]-modules of the universal cover M̃K . Use the

https://doi.org/10.1017/S0017089524000077 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089524000077


Glasgow Mathematical Journal 5

presentation for π1(MK), the Fox derivatives and [33, Equation following Theorem 3.15] to
obtain a matrix for the Z[π1(MK)]-linear symmetric structure map � : C2(Ñ) → C1(Ñ) (i.e.
informally speaking ‘Poincaré duality on the chain level’: see Remark 3.1 for details). Passing
to twisted chain complexes, δ and � induce maps

β(δ) : C1(MK; C[t±1]d
β
) → C2(MK; C[t±1]d

β
),

β(�) : C2(MK; C[t±1]d
β
) → C1(MK; C[t±1]d

β
).

Matrices are assumed to act on row vectors from the right and the cohomological differen-
tials are determined by the homological differentials via the formula β(δi) = ( − 1)iβ(∂i)#T ,
where # denotes the involution on C[t±1] given by p(t) �→ p(t−1), as described at the end of
the introduction. The twisted Blanchfield pairing is isometric to the pairing

H2(N; C[t±1]d
β
) × H2(N; C[t±1]d

β
) →C(t)/C[t±1]

([v], [w]) �→ 1

s

(
v · β(�) · Z#T

)#T
,

where v, w ∈ C2(MK; C[t±1]d
β
) and Z ∈ C1(MK; C[t±1]d

β
) satisfy Zβ(δ) = sw for some s ∈

C[t±1] \ {0}; see (3.3).
Step 3 Determine the twisted Blanchfield pairing on the generators of the cyclic summandsC[t±1]/(t −

ξi)ni . More precisely, determine the signs εi in the decomposition (1.1) of the twisted Blanchfield
pairing. Given ξ ∈ S1, a complex polynomial r(t) is called ξ -positive if (t−1 − ξ )r(t) is a com-
plex symmetric polynomial and the function θ �→ (e−iθ − ξ )r(eiθ ) changes sign from positive to
negative as θ crosses the value θ0 for which eiθ0 = ξ . Let 1ξi ,ni be a generator of the cyclic module
C[t±1]/(t − ξi)ni displayed in (1.2). Write the expression for Blβ(K)(1ξi ,ni , 1ξi ,ni ) obtained in Step
2 as

Blβ(K)(1ξi ,ni , 1ξi ,ni ) = h

(t − ξi)ni
,

where we think of h as an element of C[t±1] determined modulo f := (t − ξi)ni . With this
notation, εi = 1 if h

f
(t − ξi)(ni+1)/2(t−1 − ξ i)

(ni−1)/2 is ξi-positive, and εi = −1 otherwise.
Step 4 Collect the data from the previous steps and compute the signature jumps. Using Steps 1 and 3,

one can read off the decomposition of Blβ(K) displayed in (1.1): Step 1 provides the parameters
ni ∈N>0 and ξi ∈C, while Step 3 describes how to obtain the signs εi. The signature jump is
now obtained as

δσ(M,λ)(ξ ) =
∑
n odd
ε=±1

εP(n, ε, ξ , C),

where P(n, ε, ξ , C) is the number of times e(n, ε, ξ , C) enters the decomposition of (M, λ).

1.6. Discussion of the algorithm

In order to catalogue the difficulties that can arise when implementing this algorithm, we first list some
familiar problems that occur in such settings but purposefully avoid the terminology of computational
complexity theory (our aim is to describe the limitations of our algorithm, not analyse it formally):

(i) problems that can be solved algorithmically using reasonable time and memory relative to the
size of the problem;

(ii) problems that can be solved algorithmically using significant time and memory relative to the
size of the problem;

(iii) problems for which there is no algorithm that produces an exact solution.
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We now analyse our algorithm in light of these familiar problems; the initial data we are given are a
diagram for our knot K.

Step 0 Determining a presentation, Fox derivatives and a longitude are each problem of type (i).
Step 1 Determining the primary decomposition of the twisted Alexander module over C[t±1] involves

problems of types (i),(ii) and (iii) as we now explain in more detail.

• Calculating the twisted chain complex from the Fox derivatives is a problem of type
(i) whereas calculating the homology of this chain complex of C[t±1]-modules typically
involves finding the Smith normal form of the differentials; a problem of type (ii).

• Finding the primary decomposition of a C[t±1]-module involves finding the roots of a
complex polynomial (the order of the module) and this is a problem of type (iii).

Step 2 Determining the data needed to calculate the twisted Blanchfield pairing Blβ(K) consists of
calculating further Fox derivatives, as well as finding an identity for the presentation of π1(MK)
(see Section 7.1 for details) both of which are problems of type (i).

Step 3 Determining the twisted Blanchfield pairing on the generators of the cyclic summands
C[t±1]/(t − ξi)ni is a problem of type (i) if exact values for the roots of the twisted Alexander
polynomial are known; otherwise, it is a problem of type (iii).

Step 4 Collecting the data from the previous steps and computing the signature jumps is a problem of
type (i).

Summarising, if one puts aside issues related to the size of the knot, the main issue with our algorithm
lies in finding the roots of the twisted Alexander polynomial.

The reason we are able to make such explicit calculations with torus knots is now apparent: the knot
group π1(XTp,q ) admits a presentation with two generators and one relation (so there are few Fox deriva-
tives to calculate), and the roots of our twisted Alexander polynomials can be determined explicitly;
see Proposition 7.8 as well as [9, Proposition 3.3 and Corollary 3.4]. Note however that this requires we
overcome an additional difficulty: in step zero of the algorithm, we cannot use the handle decomposition
of MTp,q arising from the Wirtinger presentation of π1(XTp,q ) as in [33, Section 3.1]: in Section 7, we are
forced to find a handle decomposition of MTp,q that induces this presentation.

1.7. Organisation

In Section 2, we review the classification of linking forms over C[t±1] and the definition of signature
jumps. In Section 3, we discuss the twisted Blanchfield form, we describe Powell’s algorithm to cal-
culate it on any pair of elements and we recall the definition of twisted signature jumps. In Section
4, we review metabelian Blanchfield forms and their satellite formulas. In Section 5, we collect some
facts about identities of group presentations and the cellular chain complex of the universal cover of a
3-dimensional CW complex. In Section 6, we use identities to describe the symmetric structure on the
chain complex of the universal cover of a 3-manifold. In Section 7, we give an explicit description of the
metabelian Blanchfield forms of (2, 2k + 1)-torus knots. Finally, in Section 8, we combine these calcula-
tions with the satellite formulas to obstruct the sliceness of certain linear combinations of iterated torus
knots.

Convention 1.4. If R is a commutative ring and f , g ∈ R, we write f
.= g if there exists a unit u ∈ R such

that f = ug. For a ring R with involution, we denote this involution by x �→ x#; the symbol x is reserved
for the complex conjugation. In particular, for R =C[t±1] the involution ( − )# is the composition of
the complex conjugation with the map t �→ t−1. For example, if p(t) = t − i, then p#(i) = 0, but p(i) = 2i.
Given an R-module M, we denote by M# the R-module that has the same underlying additive group as
M, but for which the action by R on M is precomposed with the involution on R. For a matrix A over R,
we write A#T for the transpose followed by the involution.
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2. Signatures of linking forms

We recall from [2] the construction of certain signature invariants associated with a linking form over
C[t±1]. The main input is a classification of linking forms over C[t±1] which we also recall.

2.1. Classification of linking forms

A linking form will refer to a pair (M, λ), where M is a torsion C[t±1]-module and λ : M × M →
C(t)/C[t±1] is a non-degenerate sesquilinear Hermitian pairing. In order to state our classification of
linking forms, we recall some terminology.

Definition 2.1. Given ξ ∈ S1, a complex polynomial r(t) is called ξ -positive if (t−1 − ξ )r(t) is a complex
symmetric polynomial and the function θ �→ (e−iθ − ξ )r(eiθ ) changes sign from positive to negative as θ
crosses the value θ0 for which eiθ0 = ξ .

While it is helpful to work with arbitrary ξ -positive polynomials, having a concrete example some-
times also proves useful: if ξ �= ±1, then r(t) = 1 − ξ t is ξ -positive if Im(ξ )> 0 and −(1 − ξ t) is
ξ -positive if Im(ξ )< 0. Next, we refer to

Cξ (t) =
⎧⎨⎩(t − ξ ), if |ξ | = 1,

(t − ξ )(t−1 − ξ ), if |ξ | ∈ (0, 1),

as basic polynomials and define the building blocks for our classification of linking forms.

Definition 2.2. Fix an integer n> 0 and ε = ±1. For |ξ | = 1, the basic linking form e(n, ε, ξ , C) is
defined as

C[t±1]/Cξ (t)
n ×C[t±1]/Cξ (t)

n →C(t)/C[t±1],

(x, y) �→ εxy#

Cξ (t)
n
2 Cξ̄ (t−1)

n
2

, if n is even, (2.1)

(x, y) �→ εr(t)xy#

Cξ (t)
n+1

2 Cξ̄ (t−1)
n−1

2

, if n is odd (2.2)

where r(t) is a ξ -positive polynomial1. For |ξ |< 1, the basic linking form f(n, ξ , C) is

C[t±1]/Cξ (t)
n ×C[t±1]/Cξ (t)

n →C(t)/C[t±1],

(x, y) �→ xy#

Cξ (t)n
. (2.3)

We can now state the classification of linking forms over C[t±1] that was proved in [2].

Theorem 2.3. Every linking form (M, λ) over C[t±1] can be presented as a direct sum

(M, λ) =
⊕
ni ,εi ,ξi

i∈I

e(ni, εi, ξi, C) ⊕
⊕
ξj

j∈J

f(nj, ξj, C)

for some finite set of indices I and J. Here, the ni ≥ 0 are integers, the εi equal ±1 and the ξi and ξj are
non-zero complex numbers. The presentation is unique up to permuting summands.

1 The isometry type of e(n, ε, ξ , C) does not depend on the choice of r.
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2.2. Signatures of linking forms

Given n ≥ 0, ξ ∈C and ε = ±1, we define the Hodge number P(n, ε, ξ , C) of a linking form (M, λ) over
C[t±1] as the number of times e(n, ε, ξ , C) enters the decomposition in Theorem 2.3.

Definition 2.4. The signature jump of a linking form (M, λ) over C[t±1] at ξ ∈ S1 is defined as the
following integer:

δσ(M,λ)(ξ ) =
∑
n odd
ε=±1

εP(n, ε, ξ , C). (2.4)

We collect some properties of signature jumps for later use; details can be found in [2].

Theorem 2.5. Signature jumps satisfy the following properties:

1. The signature jump of (M, λ) vanishes at ξ ∈ S1 if ξ is not a root of the order �M of M.
2. The signature jump is additive: if (M1, λ1) and (M2, λ2) are linking forms, then the following

equality holds for every ξ ∈ S1:

δσ(M1⊕M2,λ1⊕λ2)(ξ ) = δσ(M1,λ1)(ξ ) + δσ(M2,λ2)(ξ ).

3. A linking form is metabolic if and only if all its signature jumps vanish.2

Next, we describe how to calculate signature jumps algorithmically. This underlies several of the steps
of the algorithm from Subsection 1.5 of the introduction.

Algorithm 2.6. Given a linking form (H, λ), here is how to calculate δσ(H,λ)(ξ ) for ξ ∈ S1.

1. Determine the (t − ξ )-primary summand Hξ of H; the linking form λ restricts to a linking form
λξ : Hξ × Hξ →C(t)/C[t±1].

2. Decompose (Hξ , λξ ) as an orthogonal sum of pairings over cyclic modules

(Hξ , λξ ) = (H1
ξ
, λ1

ξ
) ⊕ · · · ⊕ (H

rξ
ξ , λ

rξ
ξ ).

The orthogonalisation procedure is algorithmic; see [3, Lemma 4.3];
3. By Theorem 2.3, for each j, (Hj

ξ , λ
j
ξ ) is isometric to a e(nj, ξ , εj, C), where nj is such that Hj

ξ =
C[t±1]/(Cξ (t))nj , and where εj = ±1 is obtained as described in the next step.

4. If nj is even, (Hj
ξ , λ

j
ξ ) does not contribute to the signature jump, and so we disregard it. If nj is

odd, εj can be determined as follows. Pick a generator x of the cyclic module Hj
ξ and write

λ
j
ξ (x, x) = r(t)

Cξ (t)
n+1

2 Cξ̄ (t−1)
n−1

2

for some polynomial r(t). This polynomial has the property that (t − ξ )r(t) takes real values on
the unit circle. We set εj = +1 if r(t) is ξ -positive and εj = −1 if −r(t) is ξ -positive.

5. To obtain δσ(H,λ)(ξ ), sum up the εj for each (Hj
ξ , λ

j
ξ ) obtained so far.

The algorithm (except for the last step) is used for linking forms over Z with odd determinant; see [4,
Sections 9 and 10]. The case of linking forms over C[t±1] is analogous, because both Z and C[t±1] are
principal ideal domains.

2 Recall that (M, λ) is metabolic if there exists a submodule L ⊂ M such that P = P⊥.
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In the introduction, given a linking form (M, λ), we not only mentioned the signature jumps δσ(M,λ)

but also the signature function σ(M,λ) : S1 →Z. While the use of the latter is conceptually enlightening,
this paper only makes use of the former.

3. Twisted Blanchfield forms

We briefly review the definition of twisted homology and some first facts about twisted Blanchfield
forms; references include [1, 33]. While we do not recall the definition of these pairings, we describe an
algorithm to calculate them (due to Powell [35]) that may just as well be taken as a definition. Throughout
this section, we assume that F is either R or C.

3.1. Twisted Blanchfield pairings

Let X be a space with universal cover p : X̃ → X. We assume that X has the homotopy type of a finite CW
complex. The left action of π1(X) on X̃ endows the singular chain groups of C∗(X̃) with the structure
of left Z[π1(X)]-modules. Given a representation β : π1(X) → GLd(F[t±1]), use F[t±1]d

β
to denote the

(F[t±1], Z[π1(X)])-bimodule whose right Z[π1(X)]-module structure is given by right multiplication by
β(γ ) on row vectors. The chain complexes

C∗(X; F[t±1]
d

β
) := F[t±1]

d

β
⊗Z[π1(X)] C∗(X̃)

C∗(X; F[t±1]
d

β
) := Homright −Z[π1(X)](C∗(X̃)#, F[t±1]

d

β
)

of left F[t±1]-modules will be called the (co)chain complexes of X twisted by β. The corresponding
homology of left F[t±1]-modules H∗(X; F[t±1]d

β
) and H∗(X; F[t±1]d

β
) will be called the (co)homology of

X twisted by β. The representation β is acyclic if the chain complex F(t) ⊗F[t±1] C∗(X; F[t±1]d
β
) is acyclic

and unitary if β(γ ) = β(γ −1)#T .
We now assume that N is a closed, oriented 3-manifold. If β : π1(N) → GLd(F[t±1]) is a representa-

tion that is both acyclic and unitary, then the F[t±1]-module H1(N; F[t±1]d
β
) is endowed with a linking

form

Blβ(N) : H1(N; F[t±1]
d

β
) × H1(N; F[t±1]

d

β
) → F(t)/F[t±1], (3.1)

called a twisted Blanchfield pairing. The definition of this pairing on x, y ∈ H1(N; F[t±1]d
β
) is as

Blβ(N)(x, y) =�(y)(x) where � is the composition

� : H1(N; F[t±1]d
β
)

PD−1−−→ H2(N; F[t±1]d
β
)

BS−1−−→ H1(N; (F(t)/F[t±1])d
β
)

ev−→ HomF[t±1](H1(N; F[t±1]d
β
), F(t)/F[t±1])#

of the inverse of the Poincaré duality isomorphism, the inverse of a Bocktein isomorphism and an
evaluation map.

While we do not give further details on the definition of this pairing (referring instead to
[1, 33, 36]), the next subsection instead describes an algorithm to compute its value on any pair of
elements of H1(N; F[t±1]d

β
).

3.2. A review of Powell’s algorithm

We briefly recall Powell’s algorithm to compute the Blanchfield pairing [35]. In [36] Powell defines
twisted Blanchfield pairings for arbitrary 3-dimensional symmetric chain complexes. When N is
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a closed, oriented 3-manifold and β : π1(N) → GLd(F[t±1]) is a unitary acyclic representation, his
definition yields a non-singular linking form

Blβ(N) : H2(N; F[t±1]
d

β
) × H2(N; F[t±1]

d

β
) → F(t)/F[t±1]

on the twisted cohomology of N whose relation to Blβ(N) is described in Remark 3.3 below. We now
focus on the algorithm described in [33, 35] to compute Blβ(N), and take the result as our definition of
Blβ(N).

Remark 3.1. Fixing a handle decomposition of N (which we will do below) merely gives rise to a CW
structure on a space homotopy equivalent to N. As a consequence, the singular chain complex of N
is chain homotopy equivalent to the cellular chain complex of this auxiliary space The same can be
said for the chain complexes of the universal covers viewed as chain complexes over Z[π1(N)]; see for
example, [25, Lemma 4.2]. Following [33], we nevertheless slightly abuse notation by writing C∗(Ñ)
and C∗(Ñ, ∂Ñ) instead of invoking the space to which N is homotopy equivalent. Here the point is
that the algorithm in [33, 35] only depends on the chain homotopy type of a given symmetric chain
complex.

Fix a handle decomposition of N and choose a chain representative [N] ∈ C3(N) for the fundamen-
tal class of N. Here, as indicated in Remark 3.1, we are technically working in the chain complex
of a space homotopy equivalent to N. Use Ñ to denote the universal cover of N and let (C∗(Ñ), ∂∗)
be the resulting cochain complex of left Z[π1(N)]-modules. As explained in [33, Proposition 2.10]
the choice of [N] together with the symmetric construction [37] leads to a Z[π1(N)]-chain homotopy
equivalence

� : C3−∗(Ñ) → C∗(Ñ) (3.2)

which should be thought of as a chain level version of Poincaré duality. We will not delve into the details
of the symmetric construction, but instead note that passing to twisted chain complexes, ∂∗ and� induce
maps

β(∂∗) : C∗(N; F[t±1]
d

β
) → C∗+1(N; F[t±1]

d

β
),

β(�) : C3−∗(N; F[t±1]
d

β
) → C∗(N; F[t±1]

d

β
).

For later use, we also recall that matrices are assumed to act on row vectors from the right and that
the cohomological differentials are determined by the homological differentials via the formula β(∂ i) =
( − 1)iβ(∂i)#T .

The following definition is due to Powell [36] (see also [33]).

Definition 3.2. Let N be a closed, oriented 3-manifold and let β : π1(N) → GLd(F[t±1]) be a unitary
acyclic representation. Fix a handle decomposition of N and a chain representative [N] ∈ C3(N) of the
fundamental class and let � : C3−∗(Ñ) → C∗(Ñ) be the chain homotopy equivalence resulting from the
symmetric construction. The cohomological twisted Blanchfield is defined as

Blβ(N) : H2(N; F[t±1]
d

β
) × H2(N; F[t±1]

d

β
) → F(t)/F[t±1]

([v], [w]) �→ 1

s

(
v · β(�) · Z#T

)#T
, (3.3)

where v, w ∈ C2(N; F[t±1]d
β
) and Z ∈ C1(N; F[t±1]d

β
) satisfies Zβ(∂2) = sw for some s ∈ F[t±1] \ {0}. The

fact that this pairing does not depend on any of the choices involved was proved in [36].
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The next remark summarises the relation between the cohomological pairing of Definition 3.2 and
the homological pairing mentioned in Subsection 3.1.

Remark 3.3. The cohomological twisted Blanchfield pairing Blβ(N) is isometric to the twisted
Blanchfield pairing Blβ(N) from Subsection 3.1. Indeed [33, Proposition 5.3] implies that for x, y ∈
H1(N; F[t±1]d

β
), the pairings are related by

Blβ(N)(x, y) = Blβ(N)(�−∗(x),�−∗(y)),

where �−∗ = (�∗)−1 denotes the inverse of the homomorphism on (co)homology induced by �. We
emphasise that the reader should consider Definition 3.2 as a computational device: as far as the
definitions go, the approach outlined in Subsection 3.1 is more satisfactory.

Remark 3.4. Suppose that N = MK is obtained by 0-surgery on a knot K. In this case, [33,
Construction 3.2] shows how to associate with any reduced diagram D of K with c ≥ 3 crossings a spe-
cific handle decomposition of MK with two 3-handles h3

1 and h3
2. The cohomological twisted Blanchfield

form that Miller and Powell work with is then constructed by applying the symmetric construction to the
fundamental cycle [MK] := −h3

1 − h3
2 [33, Remark 3.12]. It is with respect to this handle decomposition

and fundamental cycle that Miller-Powell describe an explicit algorithm to calculate the differentials
and � in terms of a Wirtinger presentation for π1(S3 \ K) associated with the diagram D [33, Section 3
and Theorem 3.9]. It is in this sense that computing the twisted Blanchfield pairing is algorithmic.

3.3. Twisted signatures

We briefly recall the definition of the twisted signature invariants from [1]. As we mentioned in the
introduction, given a knot K and a unitary acyclic representation β : π1(MK) → GLd(C[t±1]), the twisted
signature jump of (K, β) is the signature jump of the linking form Blβ(K):

δσK,β(ξ ) := δ(H1(MK ; C[t±1]n
β ),Blβ (K)).

Properties of δσK,β can be deduced from the properties of δ(M,λ) listed in Theorem 2.5. We record two
additional remarks for later use:

Remark 3.5. When β : π1(MK) → GL1(C[t±1]) is the map induced by abelianisation, the twisted
Blanchfield form reduces to the classical Blanchfield form and the twisted signature jumps reduce to
the jumps of the classical Levine-Tristram signature [1].

Remark 3.6. Thanks to the algorithm described in Remark 2.6, the twisted signature jumps δσK,β(ξ )
can be calculated algorithmically from a knot diagram. Indeed, the key point is that the fourth step
of Algorithm 2.6 requires that we be able to calculate elements of the form Blβ(K)(x, x), where x ∈
H1(MK; C[t±1]n

β
). This is possible thanks to the algorithm as described in Subsection 3.2. The whole

process was summarised in Subsection 1.5 from the introduction and is illustrated in Section 7 in the
case of (2, 2k + 1)-torus knots.

4. Metabelian Blanchfield forms

We now restrict to a specific class of twisted Blanchfield pairing associated with certain metabelian
representations that arise in Casson-Gordon theory [14, 19, 33]. For a knot K, this representation is of
the form
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αK(n, χ ) : π1(MK) → GLn(C[t±1]),

where χ : H1(
n(K); Z) →Zm is a prime power order character on the first homology of 
n(K), the
n-fold cyclic branched cover of S3 branched along K. After reviewing the definition of αK(n, χ ), we list
some properties of the resulting metabelian Blanchfield forms.

4.1. Metabelian representations

The abelianisation homomorphism φ : π1(MK)
∼=−→Z= 〈tK〉 endows Z[t±1

K ] with a right Z[π1(MK)]-
module structure. This gives rise to the twisted homology Z[t±1

K ]-module H1(MK; Z[t±1
K ]). As in [13,

Corollary 2.4], identify H1(
n(K); Z) with the quotient module H1(MK; Z[t±1
K ])/(tn

K − 1). Consider the
semidirect product Z� H1(
n(K); Z), where the group law is given by (ti

K , v) · (tj
K , w) = (ti+j

K , t−j
K v + w).

Next, let γK(n, χ ) be the homomorphism:

γK(n, χ ) : Z� H1(
n(K); Z) → GLn (C[t±1])

(tj
K , v) �→

⎛⎜⎜⎜⎜⎜⎝
0 1 · · · 0

...
...
. . .

...

0 0 · · · 1

t 0 · · · 0

⎞⎟⎟⎟⎟⎟⎠

j ⎛⎜⎜⎜⎜⎜⎜⎝

ξχ (v)
m 0 · · · 0

0 ξχ (tK ·v)
m · · · 0

...
...

. . .
...

0 0 · · · ξ
χ (tn−1

K ·v)
m

⎞⎟⎟⎟⎟⎟⎟⎠ . (4.1)

Identify the module H1(MK; Z[t±1
K ]) with the quotient π1(MK)(1)/π1(MK)(2) and consider the following

composition of canonical projections

qK : π1(MK)(1) → H1(MK; Z[t±1
K ]) → H1(
n(K); Z). (4.2)

Fix an element μK in π1(MK) such that φK(μK) = tK . For every g ∈ π1(MK), we have φK(μ−φK (g)
K g) = 1 and

so μ−φK (g)
K g ∈ π1(MK)(1). As a consequence, we obtain the following map:

ρ̃K : π1(MK) →Z� H1(
n(K); Z)

g �→ (φK(g), qK(μ−φK (g)
K g)).

The unitary representation αK(n, χ ) is obtained as the composition

αK(n, χ ) : π1(MK)
ρ̃K→Z� H1(
n(K); Z)

γK (n,χ )−→ GLn (C[t±1]).

This representation is unitary, and if m is a prime power and χ : H1(
n(K); Z) →Zm is non-trivial,
then αK(n, χ ) is acyclic; see [12] and [33, Lemma 6.6]. Furthermore, when the knot is clear from the
context, we will often write α(n, χ ) instead of αK(n, χ ).

Definition 4.1. For a prime power order representation χ : H1(
n(K); Z) →Zm, we refer to the twisted
Blanchfield form Blα(n,χ )(K) as a metabelian Blanchfield form.

The relevance of Blα(n,χ )(K) to knot concordance stems from the following theorem of Miller-Powell
[33, Theorem 6.9] which itself builds on work of Casson and Gordon [7].

Theorem 4.2. Suppose K is a slice knot. Then for any prime power n, there exists a metaboliser P of the
linking pairing H1(
n(K); Z) × H1(
n(K); Z) →Q/Z such that for any prime power qa and any non-
trivial character χ : H1(
n(K); Z) →Zqa vanishing on P, the Blanchfield form Blα(n,χb)(K) is metabolic
for some b ≥ a, where χb is the composition of χ with the inclusion Zqa ↪→Zqb .
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The take-away from Theorem 4.2 is that if we can find enough representations χ for which Blα(n,χb)(K)
is not metabolic, then we can show that K is not slice. To obstruct Blα(n,χb)(K) from being metabolic, we
will use signature jumps.

4.2. The satellite formula for the metabelian Blanchfield form

Let P, K ⊂ S3 be knots, and let η be a simple closed curve in the complement of P. The satellite knot
P(K, η) with pattern P, companion K, and infection curve η is the image of P under the diffeomorphism
(S3 \N (η)) ∪∂ (S3 \N (K)) ∼= S3, where the gluing of the exteriors of η and K identifies the meridian of
η with the zero-framed longitude of K and vice versa. The zero-surgery on the satellite knot P(K, η) can
be obtained by the infection of MP by K along η⊂ S3 \ P ⊂ MP:

MP(K,η) = MP \N (η) ∪∂ S3 \N (K). (4.3)

Let μη denote a meridian of η. A representation β : π1(MP(K,η)) → GLd(F[t±1]) induces representations
on π1(MP \N (η)) and π1(S3 \N (K)). In turn, as explained in [1, Section 3.3], these representations
extend to representations

βP : π1(MP) → GLd(F[t±1]), βK : π1(MK) → GLd(F[t±1]).

provided β(μη) = id and det(id − β(η)) �= 0, in which case we say that β is η-regular.
Thus, given a character χ : H1(
n(P(K, η)); Z) →Zm, if the representation α(n, χ ) is η-regular, then

it gives rise to representations α(n, χ )P on π1(MP) and α(n, χ )K on π1(MK). The representation α(n, χ )P

can be shown to agree with α(n, χP), where χP is the character induced by χ on H1(
n(P); Z), as in [29,
Section 4]. The main step in the proof of the metabelian satellite formula is to decompose α(n, χ )K into
h := gcd (n, w) representations. To describe the outcome, for i = 1, . . . , h, one considers the character

χi : H1(
n/h(K); Z) →Zm

v �→ χ (tQ(ιn(v))),

where tQ denotes the generator of the deck transformation group of the infinite cyclic cover of MP(K,η)

and ιn : H1(
n/h(K); Z) → H1(
n(P(K, η)); Z) is inclusion induced; we refer to [29] and [1] for further
details on this later map.

Additionally, use μQ to denote a meridian of P(K, η) and define the map

qQ : π (1)
1 (MP(K,η)) → H1(
n(P(K, η)); Z)

as in (4.2). The satellite formula for the metabelian Blanchfield form now reads as follows in the winding
number w := �k(η, P) �= 0 case; we refer to [1] for the general statement.

Theorem 4.3. Let K, P be two knots in S3, let η be an unknotted curve in the complement
of P with meridian μη, let w = lk(η, P) �= 0, let n> 1 and set h = gcd (n, w). For any character
χ : H1(
n(P(K, η)); Z) →Zm of prime power order, the metabelian representation α(n, χ ) is η-regular.
Moreover,

1. if w is divisible by n, then there exists an isometry of linking forms

Blα(n,χ )(P(K, η)) ∼= Blα(n,χP)(P) ⊕
n⊕

i=1

Bl(K)(ξ
χi(qQ(μ−w

Q η))
m tw/n);

2. if w is not divisible by n, then Blα(n,χ )(P(K, η)) is Witt equivalent to

Blα(n,χP)(P) ⊕
h⊕

i=1

Blα(n/h,χi)(K)(ξ
χi(qQ(μ−w

Q η))
m tw/h).
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Theorem 4.3 takes a particularly simple form for connected sums. In this case, we have w = 1 (so
h = 1) as well as η=μP.

Corollary 4.4. Let K, P be two knots. If χ : H1(
n(K#P); Z) →Zm is a character of prime power order,
then Blα(n,χ )(K#P) is Witt equivalent to Blα(n,χP)(P) ⊕ Blα(n,χK )(K).

5. Identities of presentations and 3-dimensional CW complexes

Given a 3-manifold M, the goal of the next two sections is to describe how Fox derivatives can be used
to calculate the differentials in the handle chain complex Chnd

∗ (M; Z[π1(M)]) as well as the symmetric
structure it supports. The main difficulty in these calculations lies in understanding the third differential
and the symmetric structure.

This section focuses on the third differential. In order to explain the procedure needed to calculate
it, we will need some facts about identities of group presentations. After recalling some terminology
on crossed modules in Section 5.1, Section 5.2 focuses on identities and, given a 3-dimensional CW
complex Y , Section 5.3 builds on these notions to describe the (chain homotopy type of the) cellular
chain complex of Ỹ .

With some effort, the main result of this section, namely Proposition 5.10, can be deduced from results
in [5, Part 1] or by combining the work of Whitehead [41] and Trotter [39]. Since these results do not
seem to be frequently used by the low-dimensional topology community, we include both recollections
and detailed proofs.

Remark 5.1. In [33, Section 3.1], Miller and Powell explain how a Wirtinger presentation of π1(XK)
gives rise to a handle decomposition of MK , as well as how to calculate the Z[π1(MK)]-handle chain
complex of MK and its symmetric structure. The work we carry out in this section and the next stems
both from the fact that we plan to use a handle decomposition that does not arise from a Wirtinger
presentation and because we felt the need to supplement more details to the paragraph in [33, proof
Theorem 3.9] that begins with ‘Note that there is a correspondence between 3-cells and identities of a
presentation’: compare that paragraph with (the proofs of) Proposition 5.10 and Corollary 5.11.

5.1. Crossed modules

In this section, we give a brief summary of the theory of crossed modules. For more details refer to the
Part 1 of [5]. The reason for considering crossed modules is that for 2-complexes, they provide a con-
venient formalism to relate identities of presentations (which we need to calculate the third differential
and the symmetric structure of our chain complex) and π2; see Proposition 5.9.

Definition 5.2.

• Given a group π , a crossed π -module is a pair (G, ∂) consisting of a group G upon which π
acts from the left and a group homomorphism ∂ : G → π such that

∂(γ · g) = γ ∂(g)γ −1

for every γ ∈ π and every g ∈ G. We often refer to (G, ∂) as a crossed π -module.
• Suppose we are given a group π , a set S, and a map m : S → π . Let H be the free group on the

set S × π and extend the map m to a map
∂m : H → π , ∂m(x, γ ) = γm(x)γ −1.

For two elements a, b ∈ H, we define their Peiffer commutator
[[a, b]]P = aba−1(∂m(a) · b)−1.
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We denote by [[H, H]]m the subgroup of H generated by Peiffer commutators.
• Given a group π , a set S, and a map m : S → π , we construct the free crossed π -module

(FCπ (S, m), ∂) generated by the pair (S, m). As a group, FCπ (S, m) is the quotient

FCπ (S, m) = H/[[H, H]]m,

where, as in the previous item, H is the free group on the set S × π . In other words, for any
x, y ∈ S and γ1, γ2 ∈ π , the following relation holds in FCπ (S, m):

(y, γ1)(x, γ2)(y, γ1)
−1 ∼ (x, γ1m(y)γ −1

1 γ2).

The action of π on FCπ (S, m) comes from the natural left action of π on itself, that is, γ1 ·
(x, γ2) = (x, γ1γ2). Furthermore, since the map ∂m : H → π vanishes on [[H, H]]m, it descends
to a map defined on FCπ (S, m), and we define ∂ := ∂m.

Let us note the following facts whose proofs are left to the reader.

Lemma 5.3. Let (G, ∂) be a crossed π -module.

1. The image ∂(G) ⊂ π is a normal subgroup.
2. The subgroup ker(∂) ⊂ G is abelian.
3. The action of π on G descends to an action of π/∂(G) on ker(∂).

Example 5.4. Let P = 〈x | r〉 be a finite presentation of a group π , let X denote the 2-dimensional
presentation CW complex of P and denote by X1 the 1-skeleton of X. It is known (see e.g. [40]) that the
pair (π2(X, X1), ∂) is a crossed π1(X1)-module, where

∂ : π2(X, X1) → π1(X
1),

is the connecting homomorphism from the long exact sequence of the pair (X, X1).
Whitehead [40, Section 16] proved that (π2(X, X1), ∂) is isomorphic to the free crossed π1(X1)-

module generated by the set R = {f 2
r : r ∈ r} of characteristic maps f 2

r : (D2, ∂D2) → (X, X1) of the 2-cells
{e2

r : r ∈ r} of X. Furthermore, the map m : R → π1(X1) is given by the formula m(f 2
r ) = r.

5.2. Identities of presentations

This section is concerned with identities of group presentations. As will become apparent in the next
section, this is the algebra that underlies the calculation of the third differential in the chain complex of
the universal cover of a 3-dimensional CW complex.

Let P = 〈x | r〉 be a presentation of a group G, let F be the free group generated by x, and let
P = 〈ρr : r ∈ r〉 be the free group generated by symbols ρr, for r ∈ r. Moreover, following Trotter [39,
Section 2.1], consider the homomorphism

ψ : F ∗ P → F

defined on generators by ψ(x) = x, for x ∈ x, and ψ(ρr) = r for r ∈ r.

Definition 5.5. Let P = 〈x | r〉 be a presentation of a group G. Denote by N(P) the normal subgroup of
F ∗ P generated by P:

N(P) := 〈〈P〉〉� F ∗ P.

An identity of the presentationP is an element of ker(ψ) ∩ N(P). We write I(P) for the group of identities
of P:

I(P) := ker(ψ) ∩ N(P).
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More explicitly, an identity is an element of ker(ψ), which can be written as a product of words of the
form wρεr w−1, where w lies in F, ε = ±1, and r ∈ r.

Construction 5.6. Given a group G, following Trotter [39, page 473], we outline the definition of a
3-dimensional chain complex of free left Z[G]-modules

C•(x, r, s) =
(

C3
∂3−→ C2

∂2−→ C1
∂1−→ C0

)
associated with a presentation P = 〈x | r〉 of G and a set s of identities of P . The chain complex
C•(x, r, s) satisfies H0(C•(x, r, s)) ∼=Z (where Z is endowed with the Z[G]-module structure induced
by augmentation), H1(C•(x, r, s)) = 0.

The chain module C0 is free of rank one on an element v, C1 is free on elements {ax : x ∈ x}, C2 is free
on elements {br : r ∈ r}, and C3 is free on the set {cs : s ∈ s}. The differentials are defined in terms of Fox
derivatives

∂1(ax) = (x − 1)v, for x ∈ x,

∂2(br) =
∑
x∈x

∂r

∂x
ax, for r ∈ r,

∂3(cs) =
∑
r∈r

∂s

∂ρr

br, for s ∈ s,

where the Fox derivatives ∂s
∂ρr

are computed in F ∗ P. The fact that H0(C•(x, r, s)) ∼=Z and
H1(C•(x, r, s)) = 0 follows because Fox derivatives calculate the differentials in the cellular chain
complex of the universal cover.

Definition 5.7. LetP = 〈x | r〉 be a presentation of a group G. We say that a set of identities s is complete
if H2(C•(x, r, s)) = 0.

When s is a complete set of identities for a presentation P , we can think of C•(x, r, s) as a truncation
of a free resolution of the trivial Z[G]-module Z.

5.3. Identities and 3-dimensional CW complexes

We use identities to describe the chain complex of the universal cover of a 3-dimensional CW complex.
Let P = 〈x | r〉 be a presentation of a group G. As in the previous section, we write F for the free

group on the set x, P for the free group generated by symbols ρr with r ∈ r, and

ψ : F ∗ P → F

for the homomorphism defined on generators by ψ(x) = x, for x ∈ x, and ψ(ρr) = r for r ∈ r. We also
recall that

N(P) := 〈〈P〉〉� F ∗ P.

Observe that F acts on N(P) by conjugation.
Let X denote a 2-dimensional presentation CW complex of P . In particular, X is built of 1-cells e1

x ,
for x ∈ x, and 2-cells e2

r , for r ∈ r.

Construction 5.8. There is a group homomorphism κN : N(P) → π2(X, X1) given by the formula

κN(wρεr w−1) = (w · f 2
r )ε ,

where f 2
r : (D2, ∂D2) → (X, X1) is the characteristic maps of the 2-cell e2

r .
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This uniquely defines κN because, as we now assert, N(P) is freely generated by words of the form
wρrw−1, for r ∈ r and w ∈ F. Consider the canonical projection p : F ∗ P → F with ker(p) = N(P) and
(F ∗ P)/N(P) ∼= F. Therefore, N(P) = π1(Y), where Y → K(F ∗ P, 1) is the covering associated with the
projection p. The space Y can be constructed as a pullback of the universal cover K̃(F, 1) → K(F, 1)
along the map K(F ∗ P, 1) → K(F, 1) induced by the projection p. Both K(F, 1) and K(F ∗ P, 1) are
bouquets of circles and we write (Wf )f ∈F for the lifts of the single 0-cell of K(F, 1). The aforementioned
pullback of K̃(F, 1) → K(F, 1) can be build by attaching a copy of K(P, 1) at every 0-cell of K̃(F, 1), that
is, at every wf . It follows that Y is homotopy equivalent to a bouquet of K(Pw, 1), where Pw = wPw−1 ⊂
F ∗ P and w ∈ F, that is, Y �∨

w∈F K(Pw, 1). Hence, N(P) is freely generated by words of the form
wρrw−1, asserted and κN is defined.

The following proposition, though not explicitly stated, is a consequence of the results of Section 16
of [40] and of Section 2.3 in [39].

Proposition 5.9. Let X be a 2-dimensional CW complex realising a presentation P of a group G. The
map κN : N(P) → π2(X, X1) is surjective and descends to an isomorphism of crossed F-modules

κN :
(
N(P)/[[N(P), N(P)]]ψ ,ψ

) ∼=−→ (
π2(X, X1), ∂

)
.

The restriction of κN to I(P) induces an isomorphism of left Z[G]-modules

κI : I(P)/[[N(P), N(P)]]ψ → π2(X),

where, by abuse of notation, we denote by ψ the restriction of the map ψ : F ∗ P → F to N(P).

Proof. First, we argue that κN is surjective and that ker(κN) = [[N(P), N(P)]]ψ . As in Definition 5.2,
we denote by H the free group generated by the set S × F, where S = {e2

r : r ∈ r} is the collection of
2-cells of X. It follows that the map

θ : N(P) � wρrw
−1 �→ (f 2

r , w) ∈ H

defines a group isomorphism. Indeed, this follows from the fact that N(P) is freely generated by words
of the form wρrw−1, where w ∈ F.

This group homomorphism fits into the commutative diagram

N P H

π2 X,X1 ,

θ,

κN
q

(5.1)

where q : H → π2(X, X1) is given on generators by the formula q(fr, w) = w · fr. Set F := π1(X1). As
noted in Example 5.4, π2(X, X1) is a free F-crossed module, meaning that the homomorphism q is
surjective with kernel ker(q) = [[H, H]]∂H , where ∂H denotes the map

∂H : S × F → F = π1(X1), ∂H(f 2
r , w) = wrw−1.

Since θ and q are both surjective, the commutativity of (5.1) implies that so is κN .
We now show that ker(κN) = [[N(P), N(P)]]ψ . Since ker(q) = [[H, H]]∂H , the commutativity of (5.1)

implies that

ker(κN) = θ−1(ker(q)) = θ−1([[H, H]]∂H ).
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In order to understand the subgroup θ−1([[H, H]]∂H ), consider the diagram

N P H

F π1 X1 .

θ

ψ H

(5.2)

whose commutativity implies the required equality:

ker(κN) = θ−1(ker(q)) = θ−1([[H, H]]∂H ) = [[N(P), N(P)]]ψ .

In particular, κN induces an isomorphism

N(P)/[[N(P), N(P)]]ψ ∼= π2(X, X1).

It remains to show that the restriction of κN to I(P) gives rise to the claimed isomorphism. Consider the
following diagram with exact rows:

1 I P N P F

1 π2 X π2 X,X1 π1 X1 .

κI

ψ

κN id

(5.3)

The right-hand side square of (5.3) is commutative because for any wρεr w−1 ∈ N(P), we have

(∂ ◦ κN)(wρεr w−1) = ∂((f 2
r , w)ε) = wrεw−1 =ψ(wρεr w−1).

The commutativity of this diagram and the exactness of its rows gives the required isomorphism:
π2(X) = ker(∂) ∼= ker(ψ)/ ker(κN) = I(P)/[[N(P), N(P)]]ψ .

This concludes the proof of the proposition.

Roughly speaking, the next proposition describes how a set of identities s for a group presentation P
determines a 3-dimensional CW complex that realises the data of P and s.

Proposition 5.10. Let P = 〈x | r〉 be a presentation of a group G, and let s be a collection of identities
of P . These data determine a 3-dimensional CW complex Z := Z(x, r, s) such that:

1. Z is connected and π1(Z) ∼= G,
2. Z2 realises the presentation P ,
3. the 3-cells of Z are in bijection with s,
4. π2(Z) ∼= π2(Z2)/S, where S denotes the left Z[G]-submodule of π2(Z2) ∼= I(P)/[[N(P), N(P)]]ψ

generated by elements of s.
5. there is an identification Ccell

• (̃Z) ∼= C•(x, r, s) of Z[G]-chain isomorphism where C•(x, r, s) is
the chain complex from Construction 5.6.

In particular, if s is a complete set of identities, then Z is the 3-skeleton of a model for the classifying
space BG.

Proof. Let X be a presentation 2-complex ofP . By Proposition 5.9, the set s determines a collection of
elements {[gs]}s∈s ofπ2(X). Construct Z by adjoining 3-cells {e3

s }s∈s, where e3
s is attached using gs ∈ π2(X).

For later use, we denote the characteristic map of the 3-cell e3
s by

f 3
s : (D3, ∂D3) → (Z, Z2).

The first three points of the proposition now follow immediately from the construction of Z. We prove
the fourth point. Since Z is a 3-complex, the relative homotopy group π3(Z, Z2) is a free Z[G]-module
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generated by homotopy classes of characteristic maps {f 3
s }s∈s [41, Chapter V.1, Theorem 1.1]. Using the

exact sequence

π3(Z, Z2)
∂−→ π2(Z2) → π2(Z) → 0

we conclude that π2(Z) ∼= π2(Z2)/ im ∂ . Observe that the boundary map in the exact sequence maps the
homotopy class of the characteristic map [fs] to the homotopy class of the corresponding attaching map
[gs], for s ∈ s. Observe that for any s ∈ s, κI([gs]) = s, where κI is the isomorphism from Proposition 5.9.
Therefore, κ−1

I maps im ∂ isomorphically onto the Z[G]-submodule of I(P)/[[N(P), N(P)]]ψ generated
by identities s ∈ s, as desired. This concludes the proof of the fourth point.

We prove the fifth and last point. For each k, the chain groups underlying the chain complex Ccell
• (̃Z)

are Ccell
k (̃Z) = Hk (̃Zk, Z̃k−1) and the boundary maps are given by the composition

∂ cell
k+1 : Ccell

k+1(̃Z) = Hk+1(̃Zk+1, Z̃k)
∂−→ Hk (̃Z

k)
j−→ Hk (̃Z

k, Z̃k−1) = Ccell
k (̃Z),

where the maps ∂ and j come from the exact sequence of the pairs (̃Zk+1, Z̃k) and (̃Zk, Z̃k−1), respectively.
The expressions for ∂ cell

1 and ∂ cell
2 are well-known (see e.g. [39, page 473]) and agree with the formulas

given in Construction 5.6. Therefore, we focus only on identifying the differential ∂ cell
3 .

Consider the following commutative diagram

I P N P

π3 Z,Z2 π2 Z2 π2 Z2, Z1

π3 Z,Z2 π2 Z2 π2 Z2, Z1

H3 Z,Z2 H2 Z2 H2 Z2, Z1 ,

j

κI κN

j

h3

j

h2 h2,rel

j

where the vertical map κ comes from Proposition 5.9, the vertical maps between the third and the second
row are induced by the covering map q : Z̃ → Z, and the vertical maps between the third and fourth row
come from the (relative) Hurewicz Theorem. In particular, (relative) Hurewicz Theorem implies that h3

and h2 are isomorphisms and that h2,rel induces an isomorphism

π2(̃Z
2, Z̃1)ab ∼= H2(̃Z2, Z̃1).

Note that the map ∂ cell
3 : H3(̃Z, Z̃2) → H2(̃Z2, Z̃1) appears as the composition of the maps on the last row

of this diagram. Since H3(̃Z, Z̃2) ∼= π3(̃Z, Z̃2) ∼= π3(Z, Z2) is freely generated as a Z[G]-module by the
characteristic maps f 3

s : (D3, ∂D3) → (Z, Z2), it remains to understand

∂ cell
3 ([f 3

s ]) = j ◦ ∂([f 3
s ]).

For [f 3
s ] ∈ H3(̃Z, Z̃2), we have ∂([f 3

s ]) = [f 3
s |∂D2 ] = [gs], where gs ∈ π2(Z2) = π2(X) are the maps along

which we glued the 3-cells. It follows that s ∈ κ−1(q∗(h
−1
2 ({[gs]}))) and therefore the commutativity of

the diagram gives

∂ cell
3 ([f 3

s ]) = (j ◦ ∂)([f 3
s ]) = j([gs]) = h2,rel(q

−1
∗ (κ(j(s)))).

We calculate this last expression. Observe that for any x = wρr0 w−1 ∈ N(P) with r0 ∈ r we have

h2,rel(q
−1
∗ (κ(x))) = w · f 2

r0
= ∂x

∂ρr0

· f 2
r0

=
∑
r∈r

∂x

∂ρr

· f 2
r .

Here the Fox derivatives ∂x
∂ρr

are calculated in F ∗ P and we used that ∂x
∂ρr0

= w and ∂x
∂ρr

= 0 for r �= r0.
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One then verifies that for any y ∈ N(P), we have

h2,rel(q
−1
∗ (κ(y))) =

∑
r∈r

∂y

∂ρr

· f 2
r .

Plugging this into the previous calculation, we obtain

∂ cell
3 ([f 3

s ]) = h2,rel(q
−1
∗ (κ(j(s)))) =

∑
r∈r

∂s

∂ρr

· [f 2
r ],

This concludes the proof of the proposition.

Corollary 5.11. Any 3-complex Y determines a presentation P = 〈x | r〉 of π1(Y) and a collection of
identities s of P , that is well-defined modulo Peiffer commutators.

Furthermore, Y is homotopy equivalent to the 3-complex Z(x, r, s) from Proposition 5.10.

Proof. The 2-skeleton of Y determines a presentation P = 〈x | r〉 of π1(Y). Using the isomorphism
π2(Y2) ∼= I(P)/[[N(P), N(P)]]ψ from Proposition 5.9, we see that the attaching maps of the 3-cells of Y
determine identities s ∈ I(P), which are well-defined modulo Peiffer commutators.

The homotopy equivalence Y � Z(x, r, s) follows from the fact that there is a bijection between
cells of Y and Z(x, r, s) in each dimension, and the corresponding cells are attached via homotopic
maps.

6. Symmetric structures of aspherical 3-manifolds and identities of presentation

Given a 3-manifold M, this section builds on Section 5 to describe the symmetric structure on the
handle chain complex Chnd

∗ (M; Z[π1(M)]). Section 6.1 recalls some facts about the handle chain com-
plex. Section 6.2 records a technical result concerning the identities. Section 6.3 recalls work of Trotter
according to which the symmetric structure can be calculated using identities and Fox calculus. When
M admits a handle decomposition with a single 3-handle, the results of this section and Section 5 are
summarised in Proposition 6.6.

6.1. The handle chain complex

Let M be a connected n-manifold that admits a handle decomposition. Assume that the handles are
attached in increasing order of index. In what follows we denote the n-handles of M by hn

i and, for d ≥ 0,
write M(d) for the submanifold of M obtained by taking the union of all handles of indices ≤ d.

For d ≥ 0, the associated handle chain complex has chain groups

Chnd
d (M) = Hd(M(d), M(d−1))

and differentials

∂hnd
d+1 : Chnd

d+1(M) = Hd+1(M(d+1), M(d))
∂−→ Hd(M(d))

j−→ Hd(M(d), M(d−1)) = Chnd
d (M),

where ∂ is the connecting homomorphism in the long exact homology sequence of the pair (M(d+1), M(d))
and j is induced by inclusion of pairs (M(d), ∅) ⊂ (M(d), M(d−1)).

Let p : M̃ → M be the universal covering projection. The handle decomposition of M lifts to a handle
decomposition of M̃ and we write M̃(d) = p−1(M(d)). We can now consider the handle chain complex
of M̃:

Chnd
∗ (M; Z[π1(M)]) := Chnd

∗ (M̃).

Using the action of π1(M) on M̃, each chain group Chnd
d (M; Z[π1(M)]) becomes a free left Z[π1(M)]-

module. These chainZπ1(M)-modules are generated by a collection of lifts of the d-dimensional handles
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of M where we choose one lift for each handle. In what follows, we implicitly choose (arbitrarily) such
lifts and use them as a basis for the relevant chain groups.

Construction 6.1. By contracting each handle to its core, one obtains a 3-complex X that embeds in
M, ι : X ↪→ M and onto which M deformation retracts via a map r : M → X. We write ej

i for the j-
dimensional cell of X which forms the core of the handle hj

i.

Lemma 6.2. The inclusion map ι : X ↪→ M induces chain isomorphisms

ι∗ : Ccell
• (X) ∼= Chnd

• (M), ι∗ : Ccell
• (X; Z[π1(X)]) ∼= Chnd

• (M; Z[π1(M)]).

Every cell ed
j of X gives rise to a generator [ed

j ] in Ccell
d (M; Z[π1(M)]), and every handle hd

j of M
gives rise to a generator hd

j ∈ Chnd
d (M; Z[π1(M)]). The map induced by ι, maps each generator ed

j to
the corresponding generator hd

j .

Proof. Since ι preserves the respective filtrations {X(d)}d of X and {M(d)}d of M, it follows that ι induces
isomorphisms of respective chain groups. The naturality of the exact sequence of a pair in homology
implies that ι is a chain map, and hence, the lemma follows.

6.2. Aspherical 3-manifolds and identities of presentation

This short section records a technical lemma concerning identities. A 1- and 2- handles in the handle
decomposition H of a connected manifold M determine a presentation PH of π1(M). The next lemma
notes that the 3-handles of M determine identities for this presentation.

Lemma 6.3. If M is a closed, connected, oriented, aspherical 3-manifold admitting a handle decompo-
sition H with k + 1 3-handles, for some k ≥ 0, then the presentation PH of π1(M) admits a complete set
of identities

s1, . . . , sk+1 ∈ I(PH)

such that, modulo Peiffer commutators, any other identity can be written (uniquely up to order of factors)
as a product of conjugates of the si.

Proof. Since M is aspherical, it follows that Hi(M̃) = 0, for i ≥ 1. The Hurewicz theorem and the long
exact sequence of the pair (M̃, M̃(2)) gives rise to isomorphisms

π2(M(2)) ∼= H2(M̃(2)) ∼= H3(M̃, M̃(2)) ∼=Z[π1(M)]k+1

Let f1, . . . , fk+1 ∈ π2(M(2)) be a Z[π1(M)]-basis and consider the isomorphism

κI : I(PH)/[[N(PH), N(PH)]]ψ ∼= π2(M
(2))

from Proposition 5.9. A complete set of identities with the required properties is now given by
considering si = κ−1

I (fi), for i = 1, 2, . . . , k + 1.

Taking k = 0 in the previous lemma gives the following result.

Proposition 6.4. If M is a closed, connected, oriented, aspherical 3-manifold admitting a handle decom-
positionH with a single 3-handle, then the presentationPH of π1(M) admits a unique (up to conjugation
and modulo Peiffer commutators) identity

s ∈ I(PH).
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6.3. Explicit formulas for the symmetric structure of a closed aspherical 3-manifold

Given a 3-manifold M, this section collects the work from Section 5 to describe the differentials and
symmetric structure on chain complex Chnd

∗ (M, Z[π1(M)]).
Given a closed, connected, oriented, aspherical 3-manifold M, with a handle decomposition H, we

would like to obtain an explicit formula for the map

� : C2
hnd(M; Z[π1(M)]) → Chnd

1 (M; Z[π1(M)])

induced by the symmetric structure on C3−∗(M; Z[π1(M)]).
For the 3-complex X obtained from M by deformation retracting each handle to its core (as in

Construction 6.1), the most important ingredient that goes into the calculation of the map� (namely the
diagonal chain map) was worked out by Trotter [39, Section 2.4], see also [33, Section 3.3]. Building
on this result we obtain the following proposition.

Proposition 6.5. Let M be a closed, connected, oriented, aspherical 3-manifold that admits a handle
decomposition H. Let

PH = 〈x | r〉
denote the presentation of π1(M) determined by H and let s denote the set of identities from Lemma 6.3.
Each s ∈ s can be written in the form

s =
ls∏

j=1

ws,jρ
εs,j
rs,j

w−1
s,j , (6.1)

where rs,j ∈ r and εs,j ∈ {±1}, for all s and j.
Endow Chnd

2 (M; Z[π1(M)]) with a basis h2
r , for r ∈ r, induced by the handle structure H. Denote by

(h2
r )#, for r ∈ r, the dual basis of C2

hnd(M; Z[π1(M)]). With respect to these bases, the coefficients of the
matrix of the map � are given by the formula

�((h2
r )

#) =
∑

(s,j)∈I(r)

∑
x∈x

εs,jw
−1
s,j

∂ws,j

∂x
h1

x ,

where I(r) = {(s, j) ∈ s ×Z>0 : rs,j = r}, for r ∈ r. In other words, for a specified r ∈ r, in the interior sum
includes only the terms ws,jρrs,j w

−1
s,j coming from (6.1) which are conjugates of ρ±1

r .

Proof. This formula can be deduced from [33, Section 3.3].

For later use, we summarise the considerations of this section and the previous one in the case of an
aspherical 3-manifold endowed with a handle decomposition with a single 3-handle.

Proposition 6.6. Let M be a closed, connected, oriented, aspherical 3-manifold admitting a handle
decomposition H with a single 0-handle and a single 3-handle, and let

s =
l∏

j=1

wjρ
εj
rj

w−1
j .

be the identity of the presentation PH = 〈x | r〉 of π1(M) from Proposition 6.4.

• The handle chain module Chnd
0 (M; Z[π1(M)]) is freely generated by the class of a lift the 0-

handle h0.
• The handle chain module Chnd

1 (M; Z[π1(M)] is freely generated by classes of lifts of the 1-
handles {h1

x : x ∈ x}.
• The handle chain module Chnd

2 (M; Z[π1(M)] is freely generated by the classes of lifts of the
2-handles {h2

r : r ∈ r},
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Figure 1. A diagram of T2,2k+1 together with generators of the knot group. Arrows indicate the orientation
of the respective meridian when going under the knot. The blue loop is a = x2kx2k+1 = x1x2.

• The handle chain module Chnd
3 (M; Z[π1(M)] is freely generated by the class of a lift of the

3-handle h3
s .

The differentials can be expressed in terms of Fox derivatives as

∂1(h
1
x) = (x − 1)h0, for x ∈ x,

∂2(h
2
r ) =

∑
x∈x

∂r

∂x
h1

x , for r ∈ r,

∂3(h
3
s ) =

∑
r∈r

∂s

∂ρr

h2
r ,

where the Fox derivatives ∂s
∂ρr

are computed in F ∗ P.
With respect to these bases, the map � is given by the formula

�((h2
r )#) =

∑
x∈x

∑
j∈I(r)

εjw
−1
j

∂wj

∂x
h1

x ,

where I(r) = {j ∈Z>0 : rj = r}, for r ∈ r.

Proof. The calculation of the handle chain complex follows from Corollary 5.11 and Lemma 6.2. The
formula for the symmetric structure comes from Proposition 6.5.

7. Explicit computations for the torus knot T2,2k+1

We now describe how to apply the algorithm mentioned in Subsection 1.5 (see also Algorithm 2.6 and
Remark 3.6) to metabelian Blanchfield forms of (2, 2k + 1)-torus knots. In the notation of Section 4,
these pairings are of the form Blα(2,χ )(T2,2k+1), where χ : H1(
2(T2,2k+1)) →Z2k+1 is a character.3 In more
detail, Subsection 7.1 describes the chain complex C∗(M̃T2,2k+1 ); Subsection 7.2, uses Powell’s algorithm
(as described in Subsection 3.2) to understand Blα(2,χ )(T2,2k+1)(x, x) for any x ∈ H1(MT2,2k+1 ; C[t±1]2

α(2,χ ))
(in fact we will be working with cohomological pairing) and Subsection 7.3 applies the algorithm
from Remark 2.6 to deduce the isometry type of Blα(2,χ )(T2,2k+1), thus proving Theorem 1.3 from the
introduction.

Throughout this section, we will be working with the diagram of T2,2k+1 depicted in Figure 1.

3 In Section 4, the characters were assumed to be of prime power order to ensure that αK (n, χ ) is acyclic. In this section,
αT2,2k+1 (2, χ ) will turn out to be acyclic for any χ and so no prime power assumption is needed.
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7.1. The chain complex of the universal cover

In this subsection, we explicitly describe the chain complex of the universal cover of the 0-framed surgery
MT2,2k+1 .

We start by providing a presentation for the fundamental group of MT2,2k+1 . Such a presentation can
be computed from the knot group once a word for the longitude of T2,2k+1 is known. Using Figure 1, a
Wirtinger presentation of the fundamental group of the complement of T2,2k+1 is

π := π1(S3 \ T2,2k+1) = 〈x1, x2, . . . , x2k+1 | r1, r2, . . . , r2k〉,
where ri = xixi+1x

−1
i+2x−1

i+1 and the indices are taken mod 2k + 1. We will now simplify the presentation. A
standard argument is recalled, because it is used to describe the presentation of the fundamental group
of MT2,2k+1 .

Lemma 7.1. There exists an isomorphism φ : π → G := 〈a, b | a2k+1b2〉 such that

φ(x2(k−s)+1) = as(akb)−1a−s, 0 ≤ s ≤ k,

φ(x2(k−s)) = as(ak+1b)a−s, 0 ≤ s ≤ k − 1.

Proof. We first prove that π is generated by x2k and x2k+1. Notice that the relation ri implies that
the equality xixi+1 = xi+1xi+2 holds. As a consequence, we obtain xixi+1 = xi+sxi+s+1 for any i and s and,
applying this formula recursively, we obtain

x2k−1
r2k−1= x2kx2k+1x−1

2k ,

x2k−2
r2k−2= x2k−1x2kx

−1
2k−1 = (x2kx2k+1)x2k(x2kx2k+1)−1,

x2k−3
r2k−3= x2k−2x2k−1x−1

2k−2

= (x2kx2k+1x2kx
−1
2k+1x−1

2k )(x2kx2k+1x−1
2k )(x2kx2k+1x−1

2k x−1
2k+1x−1

2k )

= (x2kx2k+1)x2kx2k+1x−1
2k (x2kx2k+1)−1.

As a consequence, we eliminate the generators x1, x2, . . . , x2k−1 and the relations r1, r2, . . . , r2k−1 since
we have the following equalities:

x2(k−s)+1 = (x2kx2k+1)s−1x2kx2k+1x−1
2k (x2kx2k+1)−s+1, 1 ≤ s ≤ k,

x2(k−s) = (x2kx2k+1)sx2k+1(x2kx2k+1)s, 1 ≤ s ≤ k − 1.

Reformulating, we have proved that π is indeed generated by x2k and x2k+1 and we have obtained the
presentation π = 〈x2k, x2k+1 | r′

2k〉, where

r′
2k = x2kx2k+1x−1

1 x−1
2k+1 = x2kx2k+1(x2kx2k+1)k−1x2kx

−1
2k+1x−1

2k (x2kx2k+1)−k+1x−1
2k+1

= (x2kx2k+1)kx2k(x2kx2k+1)−kx−1
2k+1.

Using this presentation of π , it is now straightforward to verify that φ : π → G is a group isomorphism,
where the inverse is defined by setting φ−1(a) = x2kx2k+1 and φ−1(b) = (x−1

2k+1x−1
2k )kx−1

2k+1. This concludes
the proof of the lemma.

As a consequence, we can describe the fundamental group of the 0-framed surgery on T2,2k+1.

Lemma 7.2. The fundamental group of the 0-surgery on T2,2k+1 admits the following presentation:

G0 = 〈a, b | a2k+1b2, (akb)2k+1a2k+1(akb)2k+1〉. (7.1)

Proof. Let (μ, λ) be the meridian-longitude pair of T2,2k+1 expressed in words of π . Using van
Kampen’s theorem, to prove the proposition, it suffices to show that φ(λ) = (akb)2k+1a2k+1(akb)2k+1,
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(A) (B) (C)

Figure 2. Left frame: the standard genus 1 Heegaard decomposition of S3. Central frame: the knots K1

and K2 lying in the Heegaard torus T . Right frame: the neighbourhoods ν(K1) and ν(K2) of K1 and K2

that satisfy T = ν(K1) ∪ ν(K2) and ν(K1) ∩ ν(K2) = ∂ν(K1) = ∂ν(K2).

where φ is the isomorphism described in Lemma 7.1. Working with the Wirtinger presentation arising
from Figure 1, we choose (μ, λ) as follows:

μ= x2k+1, λ= x−2k−1
2k+1 x1x3x5 · · · x2k+1x2x4 · · · x2k.

Next, the definition of φ gives φ(x1x3 · · · x2k+1) = ak(b−1a−k−1)k+1a = a2k+1(a−k−1b−1)k+1a−k and
φ(x2x4 . . . x2k) = ak(akb)k. Since the relation a2k+1b2 = 1 holds, we have a−k−1b−1 = akb, we deduce that
φ(x1x3 · · · x2k+1x2 · · · x2k) = a2k+1(akb)2k+1, and the lemma is now concluded by recalling the definition
of λ.

We now describe a handle decomposition for MT2,2k+1 . Recall from Remark 3.4 that it is possible to
obtain a handle decomposition of MT2,2k+1 from a reduced diagram for T2,2k+1 and that this decomposition
can be used to calculate twisted Blanchfield forms. While this handle decomposition is easy to describe,
it has one serious disadvantage: the number of handles grows with k. To be able to perform computations
for the whole family of torus knots T2,2k+1, for k ≥ 1, we use a handle decomposition with far fewer
handles.

Construction 7.3. We describe an explicit handle decomposition for the exterior XT2,2k+1 . Our strategy
is to first describe XT2,2k+1 as a union of three solid tori U1, U2 and V1. We will then read off a handle
decomposition for XT2,2k+1 from a handle decomposition of the solid tori.

Consider the standard genus one Heegaard decomposition S3 = H1 ∪∂ H2 with Heegaard surface the
torus T = H1 ∩ H2. The solid tori H1 and H2 are sketched on the left frame of Figure 2. Pick two parallel
copies K1, K2 ⊂ T of the torus knot T2,2k+1 that lie on the torus T as illustrated in the central frame of
Figure 2. The right-hand side of this figure shows closed neighbourhoods ν(K1), ν(K2) ⊂ T that satisfy

T = ν(K1) ∪ ν(K2) and ν(K1) ∩ ν(K2) = ∂ν(K1) = ∂ν(K2).

Shrink the solid tori H1
∼= S1 × D2 and H2

∼= S1 × D2 to obtain half-sized solid tori S1 × D2
1
2

∼= Ui ⊂ Hi.
It follows that V := S3 \ (U1 ∪ U2) is a tubular neighbourhood of T ⊂ S3 and can be identified with
V ∼= T × I ∼= (ν(K1) ∪ ν(K2)) × I. Since we shrank the solid tori H1 and H2 but expanded the torus
T = ν(K1) ∪ ν(K2), we obtain

S3 = V ∪ U1 ∪ U2 = (ν(K1) × I) ∪ (ν(K2) × I) ∪ U1 ∪ U2.

Recall that K2 ⊂ T is a copy of the torus knot T2,2k+1. Thus when we remove ν(K2) ∼= K2 × ◦
D2 from S3,

and write V1 := ν(K1) × I, we obtain the following decomposition of XT2,2k+1:

XT2,2k+1 = U1 ∪ V1 ∪ U2. (7.2)
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Figure 3. The solid torus V1
∼= S1 × I2 and its decomposition as a union of two 3-balls, B1 (red) and B2

(the remaining part of V1). The attaching region ∂+B1 = ∂+,1B1 � ∂+,2B1 of B1, thought of as a 1-handle,
is also shown.

The intersection V1 ∩ Ui consists a normal push-off of the neighbourhood ν(K1) ⊂ T into Ui. Put dif-
ferently, V1 ∩ Ui is diffeomorphic to ν(Ki

′) ∼= Ki
′ × I, where Ki

′ ⊂ Ui is a normal push-off of the knot
Ki ⊂ T .

The solid tori Ui have handle decompositions with a single 0-handle and a single 1-handle, say
Ui = h0

i ∪ h1
i , and we will obtain a handle decomposition for XT2,2k+1 by decomposing V1 as a union of

two 3-balls B1 and B2 and showing that adding V1 to U1 � U2 is the same as adding a 1-handle followed
by a 2-handle.

Fix a diffeomorphism ψ : S1 × I2
∼=−→ V1 such that N1 = V1 ∩ T =ψ(S1 × I × {1/2}), and V1 ∩ Ui =

ψ(S1 × I × {i − 1}). Define B1 =ψ([0, π ] × I2) ⊂ V1 and B2 =ψ([π , 2π ] × I2) ⊂ V1. Note that both B1

and B2 are diffeomorphic to 3-balls and that V1 = B1 ∪ B2, as illustrated in Figure 3. In what follows, we
will be thinking of B1 as a 3-dimensional 1-handle and of B2 as a 3-dimensional 2-handle. The attaching
region ∂+B1 = ∂+,1B1 � ∂+,2B1 of B1 can be also be seen in Figure 3.

• When V1 is glued to U1 � U2, the 1-handle h1
3 = B1 is attached to the union U1 � U2 as illustrated

in the top frame of Figure 4. In more detail, we consider the aforementioned normal push offs
K ′

1 ⊂ U1 and K ′
2 ⊂ U2 of K1, K2 ⊂ T , and the attaching regions of B1 and B2 are identified with

a small 2-disc neighbourhood of an unknotted portion of K ′
1 and K ′

2.
The effect of the handle attachment, Z := U1 ∪ B1 ∪ U2, is diffeomorphic to a genus two handle-
body and admits h1

0 ∪ h0
2 ∪ h1

1 ∪ h1
2 ∪ h1

3 as a handle decomposition. By performing isotopies of
handle decompositions of U1 and U2, we can assume that h1

3 cancels geometrically with either
0-handle. Thus, there is a handle decomposition of Z of the form

Z = h0
1 ∪ h0

2 ∪ h1
1 ∪ h1

2 ∪ h1
3
∼= h0

1 ∪ h1
1 ∪ h2

1,

where the right-hand side diffeomorphism results from cancelling h0
2 and h1

3 = B1.
• When V1 is glued to U1 � U2, the 2-handle h2

r = B2 is attached to Z as illustrated in the bottom
frame of Figure 4. In more detail, the 2-handle B2 is attached to Z along the curve J ⊂ ∂Z given
by the connected sum of K ′

1 and K ′
2 that is also illustrated in the bottom frame of Figure 4.

As a result, we have obtained a handle decomposition of XT2,2k+1 of the form

XT2,2k+1 = h0
1 ∪ h0

2 ∪ h1
1 ∪ h1

2 ∪ h1
3 ∪ h2

r .

When we cancel h0
2 with h1

3, we obtain a handle decomposition

XT2,2k+1 = h0 ∪ h1
1 ∪ h1

2 ∪ h2
r . (7.3)

Thus, XT2,2k+1 can be obtained from the genus two handlebody Z by attaching a 2-handle h2
r along a simple

closed curve representing the element α= a2k+1c2b2d2k+1 where a, c, b, d is a standard basis of π1(∂Z),
with c and d representing meridians of Z. In particular, π1(Z) is a rank-two free group generated by a
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Figure 4. The space Z obtained from U1 � U2 by attaching B1 is diffeomorphic to a genus two handle-
body. This top figure shows the torus knots K ′

1 ⊂ U1 and K ′
2 ⊂ U2, expressed using a symplectic basis

for ∂U1 and ∂U2. Taking the connected sum of these knots (as depicted in the bottom figure) leads to the
knot J, which serves as the attaching circle for the attachment of the 2-handle B2.

and b, and J, viewed as a curve in Z, represents the element a2k+1b2, as desired. Observe that there is no
framing ambiguity in this case, see [18, Example 4.1.4.(c)].

Construction 7.4. Now that we have the handle decomposition (7.3) for XT2,2k+1 , we can obtain a handle
decomposition of the zero-surgery MT2,2k+1 . Indeed, to the handle decomposition (7.3) we attach a 2-
handle h2

λ
, which annihilates the zero-framed longitude of T2,2k+1 and a 3-handle h3. Consequently, we

obtain a handle decomposition of the zero-surgery of the following form

MT2,2k+1 = h0 ∪ h1
1 ∪ h1

2 ∪ h2
r ∪ h2

λ
∪ h3. (7.4)

By construction, this handle decomposition leads to the presentation G0 of π1(MT2,2k+1 ).

Now let us study identities of the presentation G0 from (7.1). Following the notation in Section 5.2,
let x = {a, b} be the set of generators of G0 and let r = {R = a2k+1b2, λ= (akb)2k+1a2k+1(akb)2k+1} be the
set of relations of G0. Denote by F the free group on the set x and by P the free group generated by
symbols ρr, for r ∈ r. By N(G0) we denote the normal subgroup of F ∗ P generated by P. Consider the
map ψ : F ∗ P → F given by the formula

ψ(x) = x, ψ(ρr) = r,

where x ∈ x and r ∈ r. We will denote by the same symbol the restriction of ψ to N(G0). Recall that
I(G0) := ker(ψ) ∩ N(G0) and [[N(G0), N(G0)]]ψ denote the normal subgroup of N(G0) generated by
Peiffer commutators, see Definition 5.2.
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Lemma 7.5. Set R = a2k+1b2, λ= (akb)2k+1a2k+1(akb)2k+1 and μ= (akb)−1. The following equality is
satisfied in the free group F generated by a and b:

μλμ−1λ−1 = [
μ−2kak

]
R
[
μ−2kak

]−1
μ−2k−1R−1μ2k+1.

Consequently, the presentation (7.1) of π1(MT2,2k+1 ) admits the following identity:

s =μρ2μ
−1ρ−1

2 μ
−2k−1ρ1μ

2k+1
(
μ−2kak

)
ρ−1

1

(
μ−2kak

)−1
. (7.5)

Furthermore, s is a generator of the group of identities I(G0)/[[N(G0), N(G0))]]ψ .

Proof. The proof of the first assertion is a direct computation:

μλμ−1λ−1 = (akb)2ka3k+1ba−2k−1(akb)−2k−1

= [
(akb)2k+1ak

]
(a2k+1b2)b(b−2a−2k−1)(akb)−2k−1

= [
μ−2k−1ak

]
R
[
μ−2k−1ak

]−1 [
μ−2k−1ak

]
bμ2k+1μ−2k−1R−1μ2k+1

= [
μ−2kak

]
R
[
μ−2kak

]−1
μ−2k−1R−1μ2k+1.

Consequently, s is indeed an identity of the presentation G0.
To prove the last assertion, observe that the handle decomposition from Construction 7.4 admits a

single 3-handle. Therefore, by Proposition 6.4, G0 admits a single identity, let us denote it by s1, which is
unique up to conjugation by elements of F and up to Peiffer commutators. Furthermore, every element
of I(G0)/[[N(G0), N(G0))]]ψ can be written, modulo Peiffer commutators, as a product of conjugates of
s1 by elements of F.

Remark 7.6. We came up with the identity s in (7.5) as follows. Since μ and λ commute in π1(XT2,2k+1 ),
the commutator μλμ−1λ−1 is expressible as a product of conjugates of the relation r and its inverse
(cf. the first equation in Lemma 7.5). Identities are typically obtained by combining two relations in π1,
so we then combined the aforementioned relation (specifically, using r) with the relation λ= 1.

Having fixed the handle decomposition of MT2,2k+1 , we can describe the handle chain complex
Chnd

∗ (M̃T2,2k+1 ) as well as the component of the chain homotopy equivalence � : C2
hnd(M̃T2,2k+1 ) →

Chnd
1 (M̃T2,2k+1 ). For a quick review of the handle chain complex, refer to Section 6.1.

Proposition 7.7. The handle chain complex for the universal cover of the zero-surgery MT2,2k+1 is given
by the Z[G0]-module chain complex Z[G0]

∂3−→Z[G0]2 ∂2−→Z[G0]2 ∂1−→Z[G0], where the differentials are
described by the following formulas:

∂3 =
(
μ−2k−1 −μ−2k · ak μ− 1

)
,

∂2 =

⎛⎜⎜⎝
∂(a2k+1b2)

∂a

∂(a2k+1b2)

∂b

∂λ0

∂a

∂λ0

∂b

⎞⎟⎟⎠ ,

∂1 = (
a − 1 b − 1

)T
.
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Moreover, if � : C2
hnd(M̃T2,2k+1 ) → Chnd

1 (M̃T2,2k+1 ) denotes the chain map mentioned in (3.2), then

�=

⎛⎜⎜⎝μ
2k+1 · ∂(μ−2k−1)

∂a
− a−k ·μ2k · ∂(μ−2k · ak)

∂a
μ2k+1 · ∂(μ−2k−1)

∂b
− a−k ·μ2k · ∂(μ−2k · ak)

∂b

μ−1 · ∂μ
∂a

μ−1 · ∂μ
∂b

⎞⎟⎟⎠ . (7.6)

Proof. Endow MT2,2k+1 with the handle decomposition from (7.4). This handle decomposition admits
a single 3-handle. By construction, this handle decomposition induces the presentation

π1(MT2,2k+1 ) ∼= 〈a, b | a2k+1b2, (akb)2k+1a2k+1(akb)2k+1〉
and the identity

R =μρ2μ
−1ρ−1

2 μ
−2k−1ρ1μ

2k+1
(
μ−2kak

)
ρ−1

1

(
μ−2kak

)−1
.

Since MT2,2k+1 is aspherical [17, Corollary 5], the result now follows from Proposition 6.6.
In later computations, we will need the explicit formulas for the ∂i and, for this reason, we record the

following computations which only require Fox calculus:
∂(a2k+1b2)

∂a
= 1 + a + a2 + · · · + a2k,

∂(a2k+1b2)

∂b
= a2k+1(1 + b),

∂λ0

∂a
= (1 + (akb)2k+1a2k+1)

∂(akb)2k+1

∂a
+ (akb)2k+1(1 + a + a2 + · · · + a2k),

∂λ0

∂b
= (1 + (akb)2k+1a2k+1)

∂(akb)2k+1

∂b
,

∂(akb)2k+1

∂a
= (1 + akb + (akb)2 + · · · + (akb)2k)(1 + a + a2 + · · · + ak−1),

∂(akb)2k+1

∂b
= (1 + akb + (akb)2 + · · · + (akb)2k)ak.

7.2. Blanchfield forms twisted by dihedral representations

In this subsection, we use Powell’s algorithm reviewed in Subsection 3.2 to compute metabelian
Blanchfield pairings of T2,2k+1.

Use 
2(T2,2k+1) to denote the double cover of S3 branched along T2,2k+1 and let ξ = ξ2k+1 be
a primitive root of unity of order 2k + 1. Recall from Subsection 3.1 that for every character
χ : H1(
2(T2,2k+1); Z) →Z2k+1, there is a metabelian representation

α(2, χ ) : π1(MT2,2k+1 ) → GL2(C[t±1]).

The representation α(2, χ ) can be described quite explicitly. We start by producing generators of the
Alexander module of T2,2k+1. Since the abelianisation map

Ab: G0
∼= π1(MT2,2k+1 ) →Z

sends x2k and x2k+1 to 1, the commutator subgroup G(1)
0 = [G0, G0] consists of words in x2k, x2k+1 such that

the sum of the exponents is zero. In particular, x2kx
−1
2k+1 ∈ G(1)

0 and it is easy to check that G(1)
0 is normally

generated by x2kx
−1
2k+1. Therefore, the image of x2kx

−1
2k+1 generates the Alexander module H1(MK; Z[t±1]) =

G(1)
0 /G

(2)
0 as a Z[t±1]-module. Consider the projection

q : G(1)
0 → H1(MK; Z[t±1]) → H1(
2(T2,2k+1); Z).
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Since the image of x2kx
−1
2k+1 generates the Alexander module, it follows that q(x2kx

−1
2k+1) generates

H1(
2(T2,2k+1); Z). This, in particular, recovers the well-known fact that H1(
2(T2,2k+1); Z) is cyclic, and –
in fact – H1(
2(T2,2k+1); Z) ∼=Z2k+1. As a consequence, the 2k + 1 characters H1(
2(T2,2k+1); Z) →Z2k+1

can be described by imposing that

χθ : H1(
2(T2,2k+1); Z) →Z2k+1

satisfies χθ (q(x2kx
−1
2k+1)) = θ for θ = 0, . . . , 2k. We shall now use these observations to compute the value

of the metabelian representation ρθ := α(2, χθ ) on the generators a and b of G0. Using (4.1), we have

ρθ (x2kx
−1
2k+1) =

(
ξθ 0

0 ξ−θ

)
and ρθ (x2k+1) =

(
0 1

t 0

)
, and we therefore obtain

ρθ (x2k) =
⎛⎝ξ θ 0

0 ξ−θ

⎞⎠⎛⎝0 1

t 0

⎞⎠=
⎛⎝ 0 ξ θ

tξ−θ 0

⎞⎠ .

Next, recall from Lemma 7.1 that the generators a and b of G0 are related to the generators x2k and x2k+1 by
the formulas a = φ(x2kx2k+1) and b = φ(x−1

2k+1x−1
2k )kx−1

2k+1. As a consequence, the metabelian representation
ρθ is entirely described by

ρθ (a) =
⎛⎝tξ−θ 0

0 tξ θ

⎞⎠ ,

ρθ (b) =
⎛⎝ 0 t−k−1ξ k·θ

t−kξ−k·θ 0

⎞⎠ .

We can now work towards the description of the module H2(MT2,2k+1 ; C[t±1]2
ρθ

) which supports the
cohomological Blanchfield pairing. Consider the polynomials Pk(t) = 1 + t + t2 + · · · + tk and Rη(t) =
t + t−1 − 2 Re (η), for η ∈ S1. The latter polynomial is the basic polynomial from Subsection 3.1.
Furthermore, we shall also need the following symmetric polynomial:

�θ (t) = t−k P2k(t)

Rξθ (t)
=

k∏
i=1
i �=θ

Rξ i (t).

The next lemma describes the cohomology C[t±1]-module H2(MT2,2k+1 ; C[t±1]2
ρθ

).

Proposition 7.8. The module H2(MT2,2k+1 ; C[t±1]2
ρθ

) is isomorphic to C[t±1]/(�θ (t)) and admits a
generator [v2] ∈ H2(MT2,2k+1 ; C[t±1]2

ρθ
) such that

Blρθ (T2,2k+1)([v2], [v2]) =
1
2
(t2k+1ξ kθ − tk+1 − tk + ξ (k+1)θ )(t−2k−1 + 1)

t−kP2k(t)
.

Proof. Since H2(MT2,2k+1 ; C[t±1]2
ρθ

) is equal to the quotient ker(∂3
#T)/im(∂2

#T), we first compute
ker(∂3

#T), before studying im(∂2
#T). First of all, note that ρθ (μ) = ρθ (x2k+1) =

(
0 1

t 0

)
. Using this com-

putation and looking back to the definition of ∂3 (Proposition 7.7), we deduce that

ρθ (∂3) =
⎛⎝−ξ−kθ t−k−1 −1 1

t−k −ξ kθ t −1

⎞⎠ .

The differential ρθ (∂3)#T has rank two; hence, ker(ρθ (∂3)#T) is 2-dimensional. In fact, we claim that the
kernel of ρθ (∂3)#T is freely generated by
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v1 = (
t−kξ−kθ , t−2k−1, ξ−kθP2k(t

−1), ξ−kθP2k(t
−1)

)
,

v2 = (
0, t−1 − 1, ξ (k+1)θ − tk+1, ξ−kθ − tk

)
.

Indeed, it is easy to check that v1 · ρθ (∂3)#T = v2 · ρθ (∂3)#T = 0 and that v1 and v2 are linearly independent.
We now turn to im(ρθ (∂2)#T). We first compute ρθ (∂2)#T , then find a basis for C1(MT2,2k+1 ; C[t±1]2

ρθ
) and

finally compute the image. To obtain the first line of ρθ (∂2), we compute the Fox derivatives of r =
a2k+1b2:

ρθ

(
∂r

∂a

)
=

(
P2k(tξ−θ ) 0

0 P2k(tξ θ )

)
,

ρθ

(
∂r

∂b

)
=

(
t2k+1 tkξ kθ

tk+1ξ−kθ t2k+1

)
.

In order to obtain the second line of ρθ (∂2), we first compute

ρθ

(
∂(akb)

∂a

)
=

⎛⎝Pk−1(tξ−θ ) 0

0 Pk−1(tξ θ )

⎞⎠ ,

ρθ

(
∂(akb)

∂b

)
=

⎛⎝tkξ−kθ 0

0 tkξ kθ

⎞⎠ ,

ρθ

(
∂(akb)2k+1

∂a

)
=

(
Pk(t−1) t−1Pk−1(t−1)

Pk−1(t−1) Pk(t−1)

)
·
⎛⎝Pk−1(tξ−θ ) 0

0 Pk−1(tξ θ )

⎞⎠

=
⎛⎝ Pk(t−1)Pk−1(tξ−θ ) t−1Pk−1(t−1)Pk−1(tξ θ )

Pk−1(t−1)Pk−1(tξ−θ ) Pk(t−1)Pk−1(tξ θ )

⎞⎠ ,

ρ

(
∂(akb)2k+1

∂b

)
=

(
Pk(t−1) t−1Pk−1(t−1)

Pk−1(t−1) Pk(t−1)

)
·
⎛⎝tkξ−kθ 0

0 tkξ kθ

⎞⎠

=
⎛⎝ Pk(t)ξ−kθ Pk−1(t)ξ kθ

tPk−1(t)ξ−kθ Pk(t)ξ kθ

⎞⎠ .

As a consequence, the second line of ∂2 is given by

ρθ

(
∂λ0

∂a

)
=

⎛⎝ t−kPk−1(tξ−θ )P2k(t) t−kPk−1(tξ θ )P2k(t) + t−k−1P2k(tξ θ )

t−k+1Pk−1(tξ−θ )P2k(t) + t−kP2k(tξ−θ ) t−kPk−1(tξ θ )P2k(t)

⎞⎠

=
⎛⎝t−kPk−1(tξ−θ )P2k(t)

P2k(t)
tξθ−1

(ξ kθ − t−k−1)
P2k(t)

tξ−θ−1
(tξ−kθ − t−k) t−kPk−1(tξ θ )P2k(t)

⎞⎠ ,

ρθ

(
∂λ0

∂b

)
=

⎛⎝ ξ−kθP2k(t) ξ kθP2k(t)

tξ−kθP2k(t) ξ kθP2k(t)

⎞⎠ .
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This completes the first step of our computation of im(ρθ (∂2)#T). To carry out the second step, consider
the following set of vectors of C1(MT2,2k+1 ; C[t±1]2

ρθ
):

Z1 =
(
ξ−(k−1)θ tk+1

ξ θ − ξ−θ ,
ξ−θ

ξ θ − ξ−θ , 0, − t2k+1ξ θP2k(t−1ξ θ )

ξ θ − ξ−θ

)
, (7.7)

Z2 = (
(t−1ξ θ − 1)ξ−kθ tk+1, t−1ξ−θ − 1, 0, t2k+1 − 1

)
,

Z3 = (
0, t−k−2ξ (k−1)θ − ξ kθ t−k−1, 1, −ξ kθ t−k−1

)
,

Z4 = (0, 0, 0, 1) .

We claim that this collection of vectors yields a basis of C1(MT2,2k+1 ; C[t±1]2
ρθ

). Indeed, if Z denotes
the matrix whose rows are Z1, Z2, Z3 and Z4, then det(Z) = −tk+1ξ−kθ : this determinant can be com-
puted by first expanding along the fourth row and then expanding along the third column. Finally,
we carry out the third and last step: using this basis of vectors, we compute the image of ρθ (∂2)#T by
observing that

Z1 · ρθ (∂2)
#T = t−k+1 ·�θ (t

−1) · v2, (7.8)

Z2 · ρθ (∂2)
#T = 0,

Z3 · ρθ (∂2)
#T = 0,

Z4 · ρθ (∂2)
#T = v1.

We therefore deduce that the twisted homology C[t±1]-module H2(MT2,2k+1 ; C[t±1]2
ρθ

) is cyclic with order
�θ (t). This concludes the proof of the first assertion of the proposition.

In order to compute the twisted Blanchfield pairing, we first compute ρθ (�) using (7.6) and then
compute the Blanchfield pairing. We start with the calculation of the coefficients of the first line of ρθ (�).
Looking back to (7.6), we see that each of the two blocks consists of a difference of two expressions.
We compute each of these terms separately. First, note that we have

ρθ

(
μ2k+1 · ∂μ

−2k−1

∂a

)
=

⎛⎝ 0 tk

tk+1 0

⎞⎠⎛⎝ Pk(t−1)Pk−1(tξ−θ ) t−1Pk−1(t−1)Pk−1(tξ θ )

Pk−1(t−1)Pk−1(tξ−θ ) Pk(t−1)Pk−1(tξ θ )

⎞⎠

=
⎛⎝tkPk−1(t−1)Pk−1(tξ−θ ) tkPk(t−1)Pk−1(tξ θ )

tk+1Pk(t−1)Pk−1(tξ−θ ) tkPk−1(t−1)Pk−1(tξ θ )

⎞⎠ ,

ρθ

(
μ2k+1 · ∂μ

−2k−1

∂b

)
=

⎛⎝ 0 tk

tk+1 0

⎞⎠⎛⎝ Pk(t)ξ−kθ Pk−1(t)ξ kθ

tPk−1(t)ξ−kθ Pk(t)ξ kθ

⎞⎠

=
⎛⎝tk+1ξ−kθPk−1(t) tkξ kθPk(t)

tk+1ξ−kθPk(t) tk+1ξ kθPk−1(t)

⎞⎠ .

The computation of the upper left block of ρθ (�) also requires us to compute
∂(μ−2k · ak)

∂a
= ∂μ−2k

∂a
+μ−2k · ∂ak

∂a

= (1 +μ−1 +μ−2 + · · · +μ−2k+1) · ∂(akb)

∂a
+μ−2k · (1 + a + a2 + · · · + ak−1)

= (1 +μ−1) · (1 +μ−2 + · · · (μ−2)k−1) · ∂akb

∂a
+μ−2k · (1 + a + a2 + · · · + ak−1)
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ρθ

(
∂(μ−2k · ak)

∂a

)
=

⎛⎝1 t−1

1 1

⎞⎠ ·
⎛⎝Pk−1(t−1) 0

0 Pk−1(t−1)

⎞⎠ ·
⎛⎝Pk−1(tξ−θ ) 0

0 Pk−1(tξ θ )

⎞⎠

+
⎛⎝t−k 0

0 t−k

⎞⎠ ·
⎛⎝Pk−1(tξ−θ ) 0

0 pk−1(tξ θ )

⎞⎠

=
⎛⎝ Pk(t−1)Pk−1(tξ−θ ) t−1Pk−1(t−1)Pk−1(tξ θ )

Pk−1(t−1)Pk−1(tξ−θ ) Pk(t−1)Pk−1(tξ θ )

⎞⎠ ,

and, similarly, the upper right block of ρθ (�) requires that we compute
∂(μ−2k · ak)

∂b
= ∂μ−2k

∂b
= (1 +μ−1) · (1 +μ−2 + · · · + (μ−2)k−1) · ∂akb

∂b
,

ρθ

(
∂(μ−2k · ak)

∂b

)
=

⎛⎝1 t−1

1 1

⎞⎠ ·
⎛⎝Pk−1(t−1) 0

0 Pk−1(t−1)

⎞⎠ ·
⎛⎝tkξ−kθ 0

0 tkξ kθ

⎞⎠
=

(
tkξ−kθPk−1(t−1) tk−1ξ kθPk−1(t−1)

tkξ−kθPk−1(t−1) tkξ kθPk−1(t−1)

)
,

Consequently, using the two above sequences of computations, we have

ρθ

(
a−k ·μ2k · ∂(μ−2k · ak)

∂a

)
=

⎛⎝ξ kθ 0

0 ξ−kθ

⎞⎠⎛⎝ Pk(t−1)Pk−1(tξ−θ ) t−1Pk−1(t−1)Pk−1(tξ θ )

Pk−1(t−1)Pk−1(tξ−θ ) Pk(t−1)Pk−1(tξ θ )

⎞⎠

=
⎛⎝ ξ kθPk(t−1)Pk−1(tξ−θ ) ξ kθ t−1Pk−1(t−1)Pk−1(tξ θ )

ξ−kθPk−1(t−1)Pk−1(tξ−θ ) ξ−kθPk(t−1)Pk−1(tξ θ )

⎞⎠ ,

ρθ

(
a−k ·μ2k · ∂(μ−2k · ak)

∂b

)
=

⎛⎝ξ kθ 0

0 ξ−kθ

⎞⎠⎛⎝tkξ−kθPk−1(t−1) tk−1ξ kθPk−1(t−1)

tkξ−kθPk−1(t−1) tkξ kθPk−1(t−1)

⎞⎠

=
⎛⎝ tkPk−1(t−1) tk−1ξ 2kθPk−1(t−1)

tkξ−2kθPk−1(t−1) tkPk−1(t−1)

⎞⎠ .

Looking at (7.6), assembling these computations and taking the appropriate differences provides an
explicit understanding of the first row of ρθ (�). Next, we compute entries in the second row of
ρθ (�):

ρθ

(
−μ−1 ∂μ

∂a

)
=

⎛⎝−Pk−1(tξ−θ ) 0

0 −Pk−1(tξ θ )

⎞⎠ ,

ρθ

(
−μ−1 ∂μ

∂b

)
=

(−tkξ−kθ 0

0 −tkξ kθ

)
.

Finally, using ρθ (�) and (3.3), we can compute the cohomological twisted Blanchfield pairing of MT2,2k+1 .
In more detail, we know from (3.3) that if v ∈ Z2(N; F[t±1]d

ρθ
), then

Blρθ (T2,2k+1)([v], [v]) = 1

s

(
v · ρθ (�) · Z#T

)#T
,
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where Z ∈ C1(N; F[t±1]d
ρθ

) satisfies Zρθ (∂2) = sv for some s ∈ C[t±1] \ {0}. In our case, we take v = v2

and observe that Z = Z1 is described in (7.7) and s = t−k+1�θ (t−1) = t−k+1�θ (t) (recall (7.8)). Therefore,
we start by computing

Z1·ρθ (�)#T · v#T
2 =

= 1

ξ θ − ξ−θ · [ξ−(k−1)θ tk+1Pk−1(t−1ξ θ )(1 − ξ kθ tk) + ξ−θPk−1(t−1ξ−θ )(1 − ξ kθ tk+1)
]−

− 1

ξ θ − ξ−θ tk+1ξ−(k−1)θ (1 − ξ kθ tk)P2k(t
−1ξ θ ) =

= 1

ξ θ − ξ−θ · [ξ−(k−1)θ tk+1Pk−1(t−1ξ θ )(1 − ξ kθ tk) + ξ−θPk−1(t−1ξ−θ )(1 − ξ kθ tk+1)
]−

− 1

ξ θ − ξ−θ · tk+1ξ−(k−1)θ (1 − ξ kθ tk)
[
Pk−1(t−1ξ θ ) + t−kξ kθPk(t

−1ξ θ )
]=

= 1

ξ θ − ξ−θ
[
ξ−θPk−1(t−1ξ−θ )(1 − ξ−(k+1)θ tk+1) − t · ξ θ (1 − tξ θ )Pk−1(tξ

θ )Pk(t
−1ξ θ )

]=

= Pk−1(tξ θ )Pk(tξ−θ )

ξ θ − ξ−θ
[
t−k+1ξ−kθ (1 − tξ−θ ) − t−k+1ξ (k+1)θ (1 − tξ θ )

]=

= ξ (k+1)θ t−k+2Pk−1(tξ θ )Pk(tξ
−θ ).

To facilitate computations, we will now arrange that both the numerator and denominator of Blρθ (T2,2k+1)
are symmetric. To that effect, we observe that if b is a symmetric polynomial and (a/b)# = a/b in
F(t)/F[t±1], then a

b
= 1

2 (a+a#)

b
inF(t)/F[t±1]. Applying this remark to the symmetric polynomial b =�θ (t),

using Blρθ as a shorthand for Blρθ (T2,2k+1) and recalling from above that Blρθ ([v2], [v2]) = 1
s
Z1 · ρθ (�)#T ·

v#T
2 with s = t−k+1�θ (t), we obtain

Blρθ ([v2], [v2]) =
1
2
ξ (k+1)θ tPk−1(tξ θ )Pk(tξ−θ )

�θ (t)
+

1
2
ξ−(k+1)θ t−1Pk−1(t−1ξ−θ )Pk(t−1ξ θ )

�θ (t)

=
1
2
ξ (k+1)θ tPk−1(tξ θ )Pk(tξ−θ )(t−2k−1 + 1)

�θ (t)

=
1
2
(t2k+1ξ kθ − tk+1 − tk + ξ (k+1)θ )(t−2k−1 + 1)

t−kP2k(t)
.

This concludes the computation of the twisted Blanchfield pairing on the generator of the twisted
cohomology C[t±1]-module H2(MT2,2k+1 ; C[t±1]2

ρθ
) and thus the proof of the proposition.

7.3. The isometry type of Blρθ (T2,2k+1)

The aim of this subsection is to determine the isometry type of the twisted Blanchfield forms Blρθ (T2,2k+1),
where ρθ = α(2, χθ ). The following proposition (which is Theorem 1.3 from the introduction) implicitly
contains the values of the twisted signature jumps δσT2,2k+1,ρθ : S1 →Z.

Theorem 7.9. Set ξ = exp
(

2π i
2k+1

)
. For any k> 0 and 1 ≤ θ ≤ k, there exists an isometry

Blρθ (T2,2k+1) ∼= λeven
θ

⊕ λodd
θ

,
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where the linking forms λeven
θ

and λodd
θ

are as follows:

λodd
θ

=
⊕
1≤e≤k
2�θ+e

(
e(1, 1, ξ e, C) ⊕ e(1, −1, ξ−e, C)

)
,

and

λeven
θ

=
⊕
1≤e<θ
2|θ+e

(
e(1, 1, ξ e, C) ⊕ e(1, −1, ξ−e, C)

)⊕

⊕
θ<e≤k
2|θ+e

(
e(1, −1, ξ e, C) ⊕ e(1, 1, ξ−e, C)

)
.

Proof. Using Proposition 7.8, we can choose a generator x of the cyclic module H2(MT2,2k+1 ; C[t±1]2
ρθ

)
so that Blρθ (T2,2k+1)(x, x) = F(t), where

F(t) =
1
2
(t2k+1ξ kθ − tk+1 − tk + ξ (k+1)θ )(t−2k−1 + 1)

t−kP2k(t)
.

Since �θ (t) =∏k
e=1
e �=θ

Rξe (t), we know that the isometry type of Blρθ (T2,2k+1) will involve a direct sum of
the basic pairings e(1, 0, ±1, ξ e, C). In order to determine the correct signs, and prove the theorem, we
will apply the procedure described in Subsection 2.2. The aforementioned signs depend on whether
F(t)(t − ξ e) is ξ e-positive or ξ e-negative, for 1 ≤ e ≤ 2k and e �= θ , 2k + 1 − θ . Notice that F(t) = G(t)

He(t)
·

1
Rξe (t)

, where, for 1 ≤ e ≤ 2k, we set

G(t) = 1

2
(t2k+1ξ kθ − tk+1 − tk + ξ (k+1)θ )(t−2k−1 + 1),

He(t) = t−kP2k(t)

Rξe (t)
=

k∏
i=1
i �=e

Rξ i (t).

Reformulating, the theorem will immediately follow once we determine the e for which the following
function is ξ e-positive or ξ e-negative:

F(t) · (t − ξ e) = ( − 1)θ+e
[
( − 1)θ+1G(t)

] ·
[

( − 1)e−1

He(t)(1 − t−1ξ−e)

]
. (7.9)

In Lemma 7.10 below, we show that (−1)e−1

He(t)(1−t−1ξ−e)
is ξ e-positive, while in Lemma 7.11, we study the sign

of ( − 1)θ+1G(ξ e).

Lemma 7.10. For any 1 ≤ e ≤ 2k, the following function is ξ e-positive:

( − 1)e−1

He(t)(1 − t−1ξ−e)
.

Proof. Notice that 1
1−t−1ξ−e is ξ e-positive if 1 ≤ e ≤ k and ξ e-negative if k + 1 ≤ e ≤ 2k. As a con-

sequence, the lemma boils down to determining the sign of ( − 1)e−1He(ξ e). We first check this when
1 ≤ e ≤ k. For any 1 ≤ i ≤ k such that e �= i, we have

Rξ i (ξ e) = 2Re(ξ e) − 2Re(ξ i)

⎧⎨⎩> 0 if e< i,

< 0 if e> i.
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Combining these inequalities with the definition of He(t), we obtain

( − 1)e−1He(ξ
e) = ( − 1)e−1

e−1∏
i=1

Rξ i (ξ e)︸ ︷︷ ︸
>0

·
k∏

i=e+1

Rξ i (ξ e)︸ ︷︷ ︸
>0

> 0.

The case k + 1 ≤ e ≤ 2k can be reduced to the previous one. Indeed, notice that He(t) = H2k+1−e(t) and
Rξ i (ξ e) = Rξ i (ξ 2k+1−e), because Rξ i (t) is a real polynomial. This implies that

( − 1)e−1He(ξ
e) = ( − 1)2k+1−eH2k+1−e(ξ

2k+1−e)< 0.

This concludes the proof of the lemma.

Let us now study the sign of the numerator of (7.9). Notice first that for 1 ≤ e ≤ k, we have

G(ξ e) = G(ξ−e) = G(ξ 2k+1−e),

and it is therefore sufficient to determine the sign of G(ξ e) for 1 ≤ e ≤ k.

Lemma 7.11. For 1 ≤ e ≤ k such that e �= θ , we have

( − 1)θ+1G(ξ e)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
> 0, if 1 ≤ e< θ ≤ k and 2 | θ + e,

< 0, if 1 ≤ θ < e ≤ k and 2 | θ + e,

< 0, if 2 � θ + e.

Proof. Using successively the definition of G(t), the fact that ξ = exp( 2π i
2k+1

) and the identities

cos(x) − cos(y) = −2 sin

(
x + y

2

)
sin

(
x − y

2

)
,

we obtain the following equality:

G(ξ e) = 2(Re(ξ kθ ) − Re(ξ ke))

= 2

(
cos

(
2πkθ

2k + 1

)
− cos

(
2πke

2k + 1

))

= −4 sin

(
πk(θ + e)

2k + 1

)
sin

(
πk(θ − e)

2k + 1

)

= −4 sin

(
(θ + e)π

2
− (θ + e)π

4k + 2

)
sin

(
(θ − e)π

2
− (θ − e)π

4k + 2

)
= (∗).

As a consequence, we consider two cases depending on the parity of θ + e. First, suppose that θ + e is
even. Using the identity sin(y + nπ ) = ( − 1)n sin(y), we deduce that previous expression becomes

(∗) = 4( − 1)θ+1 sin

(
(θ + e)π

4k + 2

)
sin

(
(θ − e)π

4k + 2

)
.

Since sin
(

(θ+e)π
4k+2

)
> 0 and sin

(
(θ−e)π
4k+2

)
> 0 if θ > e, we deduce that for θ + e even

( − 1)θ+1(∗)

⎧⎨⎩> 0, 1 ≤ e< θ ≤ k,

< 0, 1 ≤ θ < e ≤ k.
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Next, we suppose that θ + e is odd. Using the identities sin(y + πn) = ( − 1)n sin(y) and sin(y +
π/2) = cos(y), we obtain

(∗) = 4( − 1)θ cos

(
(θ + e)π

4k + 2

)
cos

(
(θ − e)π

4k + 2

)
.

Since 1 ≤ e ≤ k, we have cos
(

(θ+e)π
4k+2

)
> 0 and cos

(
(θ−e)π
4k+2

)
> 0. Consequently, if θ + e is odd, ( − 1)θ+1

(∗)< 0. This concludes the proof of the lemma.

The proof of Theorem 7.9 is now concluded by using Lemmas 7.10 and 7.11 as well as (7.9) and the
remarks which were made at the beginning of the proof.

8. Obstructing the sliceness of algebraic knots

The goal of this section is to illustrate how the combination of Theorem 7.9 and the satellite formula
from Theorem 4.3 can be used to obstruct certain algebraic knots from being slice. For concreteness, we
focus on the knot T2,3;2,13#T2,15# − T2,3;2,15# − T2,13, an example that was previously considered by Hedden,
Kirk and Livingston [20].

Throughout this section, for an integer � > 0 we set ξ� = exp (2π i/�).

8.1. Characters on covers of cable knots

Given a knot K and an odd integer d, use K2,d to denote its (2, d)-cable. In other words, K2,d is the satellite
knot with pattern the (2, d) torus knot T2,d, companion K and infection curve η= a (using the notation
from Section 7.1) depicted in Figure 1.

The preimage of η in the 2-fold branched cover 
2(T2,d) consists of two curves η̃1, η̃2. Denote by
μη and λη the meridian and longitude of η and write μ̃i and λ̃i for some meridian-longitude pair of
the boundary of the tubular neighbourhood of Ũi ⊂
2(T2,d) for i = 1, 2. Note that μ̃1 and μ̃2 vanish in
H1(
2(T2,d); Z) =Zd, while the lift λ̃1 generates H1(
2(T2,d); Z) and λ̃2 = −̃λ1 in H1(
2(T2,d); Z). The
following topological result is proved in [20, Section 2].

Proposition 8.1. Let � be an odd prime. To any character χ : H1(
2(K2,d); Z) →Z�, one can associate
an integer θ modulo � by the condition χ (̃λ1) = ξ θ

�
. This character is denoted χθ . In particular, this sets

up a bijective correspondence between Z�-valued characters on H1(
2(K2,d); Z) and on H1(
2(T2,d); Z).

Given an oriented knot K, as is customary in knot concordance, we use −K to denote the mirror image
of K with the reversed orientation, that is, −K = K

r. The next remark, which follows [20, Lemma 3.2],
describes the characters on H1(
2( − K); Z).

Remark 8.2. By definition of the reverse mirror image, there is an orientation reversing homeomor-
phism h : 
2(K) →
2( − K), and, from now on, it will be understood that we identify the characters
on H1(
2(K); Z) and with those on H1(
2( − K); Z) via this homeomorphism. With this convention,
the same proof as in [1, Proposition 3.4] shows that Blα(2,χ )( − K) = −Blα(2,χ )(K). Note however that
the character we fixed on −K is not the one obtained by combining the second and third items of [1,
Proposition 3.4].

8.2. A concrete example

Denote by T�,d;r,s the (r, s)-cable of the (�, d)-torus knot. From now on, we consider the following
algebraic knot which was thoroughly studied by Hedden, Kirk and Livingston [20]:

K = T2,3;2,13#T2,15# − T2,3;2,15# − T2,13 (8.1)
= K1#K2#K3#K4.
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Our goal is to study metabelian Blanchfield pairings of the form Blα(2,χ )(K). We start by dis-
cussing characters on H1(
2(K); Z). Using the decomposition of K as K1#K2#K3#K4, we obtain
the direct sum decomposition H1(
2(K); Z) = H1(
2(K1); Z) ⊕ · · · ⊕ H1(
2(K4); Z). Furthermore,
by Proposition 8.1, we have the isomorphisms H1(
2(Ki); Z) ∼= H1(
2(T2,13); Z) for i = 1, 4 and
H1(
2(Ki); Z) ∼= H1(
2(T2,15); Z) for i = 2, 3. Since these isomorphisms identify the corresponding
characters, we have obtained the following lemma.

Lemma 8.3. Let � be an odd prime. For the knot K described in (8.1), every character
χ : H1(
2(K); Z) →Z� can be written as χ = χ1 + χ2 + χ3 + χ4 with χi := χθi : H1(
2(Ki); Z) → Z�,
where 0 ≤ θ1, θ4 ≤ 12 and 0 ≤ θ2, θ3 ≤ 14.

Remark 8.4. To study the metabelian signatures, it is enough to consider the cases 0 ≤ θ1, θ4 ≤ 6 and
0 ≤ θ2, θ3 ≤ 7, indeed this follows from the fact that the representations α(2, χα) and α(2, χ−α) are
equivalent. To be more precise, if we set A =

(
0 1

t 0

)
, then we get Aα(2, χα)A−1 = α(2, χ−α).

The next proposition describes the Witt class of the metabelian Blanchfield pairing Blα(2,χ )(K) .

Proposition 8.5. Let K be the knot described in (8.1) and let χ : H1(
2(K); Z) →Z� be a character.
Write χ = χ1 + χ2 + χ3 + χ4 as in Lemma 8.3, where χi = χθi with 0 ≤ θ1, θ4 ≤ 6 and 0 ≤ θ2, θ3 ≤ 7.
Then, the metabelian Blanchfield form Blα(2,χ )(K) is Witt equivalent to

Blα(2,χ1)(T2,13) ⊕ −Blα(2,χ4)(T2,13) (8.2)

⊕ Blα(2,χ2)(T2,15) ⊕ −Blα(2,χ3)(T2,15)

⊕ Bl(T2,3)(ξ θ1
13 t) ⊕ Bl(T2,3)(ξ

−θ1
13 t) ⊕ −Bl(T2,3)(ξ θ3

15 t) ⊕ −Bl(T2,3)(ξ−θ3
15 t).

Proof. Since we know from Corollary 4.4 that metabelian Blanchfield pairings are additive, up to
Witt equivalence, we need only study the metabelian Blanchfield pairing of (2, d)-cables of (2, 2k + 1)-
torus knots (here, we also used Remark 8.2). The proposition will follow from the claim that given a
(2, 2k + 1)-torus knot K ′ and a character χ = χθ on H1(
2(K ′

2,d); Z), there is an isometry

Blα(2,χθ )(K ′
2,d) ∼= Blα(2,χθ )(T2,d) ⊕ Bl(K ′)(ξ−θ

�
t) ⊕ Bl(K ′)(ξ θ

�
t).

Using the notation from Section 4.2, K ′
2,d is a satellite knot with pattern P = T2,d, companion K ′,

and the infection curve η is in fact the curve which was denoted by a in Subsection 7.2. Since the
winding number is w = 2, the first assertion of Theorem 4.3 implies that α(2, χ ) is η-regular and
therefore restricts to a representation α(2, χ )K

′ on π1(MK
′ ). Since n = 2 divides w = 2, the repre-

sentation α(2, χ )K
′ is abelian. As the curve a is a generator of H1(MK

′ ; Z), we see that α(2, χ )K
′ is

determined by α(2, χθ )(a) =
(

tξ−θ
�

0

0 tξθ
�

)
. The claim (and thus the proposition) now follows by applying

Theorem 4.3.

Next, we determine the conditions under which Blα(2,χ )(K) is metabolic.

Proposition 8.6. Let K be the knot described in (8.1) and let χ : H1(
2(K); Z) →Z� be a character.
Writeχ = χ1 + χ2 + χ3 + χ4 as in Lemma 8.3 whereχi = χθi with 0 ≤ θ1, θ4 ≤ 6 and 0 ≤ θ2, θ3 ≤ 7. Then,
the metabelian Blanchfield pairing Blα(2,χ )(K) is metabolic if and only if θ1 = θ2 = θ3 = θ4 = 0.

Proof. First, recall from Theorem 2.5 that if a linking form is metabolic, then its signature jumps
vanish. Substituting θ1 = θ2 = θ3 = θ4 = 0 into (8.2) shows that Blα(2,χ )(K) is metabolic.
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We now prove the converse in two steps. Firstly, we show that if θ1 �= θ4 (or θ2 �= θ3), then Blα(2,χ )(K)
is not metabolic. Secondly, we show that when θ1 = θ4 and θ3 = θ2, the metabelian Blanchfield form
Blα(2,χ )(K) is metabolic if and only if θ1 = θ3 = 0.

Assume that θ1 �= θ4. We assert that the signature jump of Blα(2,χ )(K) at ξ θ1
13 is ±1. To see this,

first note that Theorem 7.9 (or a glance at the twisted Alexander polynomial) implies that in (8.2),
only the summand Blα(2,χ1)(T2,13) ⊕ −Blα(2,χ4)(T2,13) can contribute a non-trivial signature jump at ξ θ1

13 :
indeed Theorem 7.9 shows that Blα(2,χ2)(T2,15) ⊕ −Blα(2,χ3)(T2,15) can only jump at powers of ξ15. Since
the untwisted terms in (8.2) do not contribute to the signature jump either, we focus on Blα(2,χ1)(T2,13) ⊕
−Blα(2,χ4)(T2,13). Theorem 7.9 implies that the signature function of Blα(2,χ1)(T2,13) jumps at ξ e

13 when
e �= θ1. Therefore, the signature jump of Blα(2,χ1)(T2,13) at ξ θ1

13 is trivial and, since θ4 �= θ1, the signature
jump of −Blα(2,χ4)(T2,13) at ξ θ1

13 is ±1. This concludes the proof of the assertion. Using this assertion and
Theorem 2.5, we deduce that Blα(2,χ )(K) is not metabolic. The case where θ2 �= θ3 is treated analogously.

Next, we assume that θ1 = θ4 and θ2 = θ3. Using (8.2), this assumption implies that the metabelian
Blanchfield form Blα(2,χ )(K) is Witt equivalent to

Bl(T2,3)(ξ θ1
13 t) ⊕ Bl(T2,3)(ξ

−θ1
13 t) ⊕ −Bl(T2,3)(ξ θ3

15 t) ⊕ −Bl(T2,3)(ξ−θ3
15 t). (8.3)

To determine whether Blα(2,χ )(K) is metabolic, Theorem 2.5 implies that we must study the jumps of
the signature function of the linking form in (8.3). Since we are dealing with untwisted Blanchfield
forms, these jumps are the signature jumps of the corresponding Levine-Tristram signature function; see
Remark 3.5. The proof of [20, Theorem 7.1] shows that for distinct ai, the jumps (asω varies along S1) of
the Levine-Tristram signatures σTm,n (ξ ai

� ω) occur at distinct points (here m, n are prime). Consequently,
we deduce that Blα(2,χ )(K) is metabolic if and only if θ1 = θ3 = 0. This concludes proof of the
theorem.

We recover a result of Hedden, Kirk and Livingston [20].

Theorem 8.7. The knot K from (8.1) is algebraically slice but not slice.

Proof. Hedden, Kirk and Livingston show that K is algebraically slice [20, Lemma 2.1]. By means
of contradiction, assume that K is slice. Theorem 4.2 implies that for any prime power �, there exists a
metaboliser P of λ� such that for any prime power qa, and any non-trivial character χ : H1(L�(K); Z) →
Zqa vanishing on P, we have some b ≥ a such that the metabelian Blanchfield pairing Blα(n,χb)(K)
is metabolic. As Proposition 8.6 shows that the Blanchfield pairing Blα(n,χb)(K) is metabolic if and
only if the character is trivial, we obtain the desired contradiction. This concludes the proof of the
theorem.
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