AN ABSTRACT VERSION OF A RESULT OF FONG AND SUCHESTON

ву Р. Е. КОРР

Nagel [3] has given a purely functional-analytic proof of Akcoglu and Sucheston's operator version [1] of the Blum-Hanson theorem. The purpose of this note is to show that the same techniques may be applied to obtain a proof, in the context of (AL)-spaces, of a more general result due to Fong and Sucheston [2]. By Kakutani's representation theorem, any (AL)-space can of course be represented as an L^1 -space. Thus the present result is simply a reformulation of that of Fong and Sucheston.

A matrix (a_{ni}) is uniformly regular (UR) if the following conditions hold:

- (i) $M = \sup_{n} \sum_{i} |a_{ni}| < \infty$
- (ii) $\lim_{n} \sup_{i} |a_{ni}| = 0$
- (iii) $\lim_{n} \sum_{i} a_{ni} = 1$.
- Let T be a contraction on a Banach space E, and consider the statements
- (A) (T^n) converges in the weak operator topology on E
- (B) For each (UR)-matrix, $A_n = \sum_{i=1}^n a_{ni}T^i$ converges in the strong operator topology on E.

It was proved in [2] that (B) \Rightarrow (A) for any Banach space E. The converse implication was proved in [2] when E is $L^{1}(\mu)$ or $L^{2}(\mu)$. We now show how this implication may be obtained directly when E is an (AL)-space. (For terminology see [4]).

Let S be an order contraction ("strong contraction" in [3]) on a Banach lattice F with order-continuous norm, and quasi-interior point u in F_+ . Then the principal ideal $F_u = \bigcup_{n \in N} n[-u, u]$ is dense in F and the norms p_u, p_μ defined in [3, ex. 7] give rise to the diagram

$$L^{\infty}(X,\mu) \cong C(X) \cong F_{\mu} L^{2}(X,\mu) \downarrow^{-1}(X,\mu)$$

where the strong and weak topologies induced by F and $L^2(X, \mu)$ coincide on $\overline{co}(S)$. Since $1/M \sum_{i=1}^{n} a_{ni}S^i$ lies in the closed convex circled hull of (S^n) , we can conclude from the L^2 -result ([2; Th. 1.1]) that (A) \Rightarrow (B) for T = S, E = F.

Now let E be an (AL)-space and let T be any contraction on E. The following lemma is taken from [4; p. 347].

Received by the editors Nov. 6, 1976.

LEMMA. If (T^n) is order-bounded in L(E) and the modulus $\tau = |T|$ has no fixed vectors other than O, then $||T^nx|| \rightarrow 0$ for all $x \in E$.

THEOREM (Fong and Sucheston). If E is an (AL)-space and T is any contraction on E then (A) and (B) are equivalent.

Proof. (A) \Rightarrow (B): As in [4; Th. V 8.7] we assume that E has quasi-interior elements and construct the largest ideal J on which T induces an order contraction. Then J is a band and $E = J \oplus J^{\perp}$. Let $Q: E \to J^{\perp}$ be the band projection. By the Nagel construction above, for any $x \in J$ and (UR)-matrix (a_{ni}) , we know that $A_n x = \sum_{i=1}^n a_{ni} T^i x$ converges strongly.

On the (AL)-space J^{\perp} consider the contraction $T_0 = QTQ$. Then $z = |T_0|z$ implies $z \in J$ and z = |T|z, since $|T_0| = Q|T|Q$, hence z = 0 by construction of J. By the lemma $||T_0^n x|| \to 0$ for all $x \in J$.

Now let $\varepsilon > 0$ and $x \in E$ be given. Find $m_0 \in N$ such that $||QT^{m_0}x|| < \varepsilon/M$. Let $Y = (I-Q)T^{m_0}x \in J$ and $b_{ni} = a_{n,i+m_0}$. The (UR)-matrix (b_{ni}) and y are now used to deduce that $g_n = \sum_i b_{ni}T^iy$ norm converges in J, as T is an order contraction on J. On the other hand, as in [2],

$$g_n = \sum_i b_{ni} T^{i+m_0} x - \sum_i b_{ni} T^i (QT^{m_0} x) = \sum_i a_{n,i+m_0} T^{i+m_0} x - h_n,$$

where $||h_n|| = ||\sum b_{ni} T^i Q T^{m_0} x|| \le (\sum_i |b_{ni}| \varepsilon / M \le \varepsilon$. Hence

$$\|g_n - A_n x\| \leq \left\|\sum_i a_{n,i+m_0} T^{i+m_0} x - \sum_i a_{ni} T^i x\right\| + \varepsilon \leq \left(\sum_i^{m_0} |a_{ni}|\right) \|x\| + \varepsilon.$$

But $\lim_{n \to \infty} (\sum_{i=1}^{m_0} |a_{ni}| = 0)$. So, finally, $\lim_{n \to \infty} \sup ||g_n - A_n x|| < \varepsilon$ and hence $(A_n x)$ converges strongly in E.

REFERENCES

1. M. A. Akcoglu and L. Sucheston: On operator convergence in Hilbert space and in Lebesgue space. Per. Math. Hung. 2 (1972), 235-244.

2. H. Fong and L. Sucheston. On a mixing property of operators in L^p spaces. Z. Wahrscheinlichkeitstheorie u. verw. Gebiete 28 (1974), 165–171.

3. R. J. Nagel. Ergodic and mixing properties of linear operators. Proc. R.I.A., Vol. 74, Sect. A, (1974), 245-261.

4. H. H. Schaefer: Banach lattices and positive operators. Springer, 1975.

DEPARTMENT OF PURE MATHEMATICS, UNIVERSITY OF HULL, ENGLAND.

and

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TORONTO, TORONTO, ONTARIO, CANADA.

248