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Global Holomorphic Functions in Several
Noncommuting Variables

Jim Agler and John E. McCarthy

Abstract. We define a free holomorphic function to be a function that is locally, with respect to the
free topology, a bounded nc-function. We prove that free holomorphic functions are the functions
that are locally uniformly approximable by free polynomials. We prove a realization formula and an
Oka–Weil theorem for free analytic functions.

1 Introduction

1.1 nc-functions and Free Holomorphic Functions

A non-commutative polynomial, also called a free polynomial, in d variables
x1, . . . , xd is a finite linear combination of words in the variables, letting the empty
word denote the constant 1. For example,

p(x1, x2) = 2 + x1 − x1x2x1 + 3x1x1x2

is a free polynomial of degree 3 in 2 variables. A free polynomial is a natural example
of a graded function, which means if one evaluates it on a d-tuple of n-by-n matrices,
one gets an n-by-n matrix.

Let Mn denote the n-by-n matrices over C, and let M[d] denote
⋃∞

n=1 Md
n. A graded

function is then a map from M[d] to M := M[1] that maps each element in Md
n to an

element in Mn.
Free polynomials have two further important properties, in addition to being

graded: p(x ⊕ y) = p(x) ⊕ p(y) and p(s−1xs) = s−1 p(x)s. The basic idea of non-
commutative function theory is to define a class of graded functions that should bear
the same relationship to free polynomials as holomorphic functions of d variables do
to commutative polynomials.

This has been done in a variety of ways: by Taylor [24], in the context of the
functional calculus for non-commuting operators; Voiculescu [25,26], in the context
of free probability; Popescu [19–22], in the context of extending classical function
theory to d-tuples of bounded operators; Ball, Groenewald and Malakorn [11], in the
context of extending realization formulas from functions of commuting operators to
functions of non-commuting operators; Alpay and Kalyuzhnyi-Verbovetzkii [7] in
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the context of realization formulas for rational functions that are J-unitary on the
boundary of the domain; and Helton, Klep and McCullough [14,15] and Helton and
McCullough [17] in the context of developing a descriptive theory of the domains on
which LMI and semi-definite programming apply.

Very recently, Kaliuzhnyi-Verbovetskyi and Vinnikov have written a monograph
[18] that gives a panoramic view of the developments in the field to date. In their
work, functions are defined on nc-domains. Before we say what these are, let us
establish some notation. We let

In := {M ∈Mn | M is invertible}(1.1)

Un := {M ∈Mn | M is unitary}.(1.2)

For M1 = (M1
1 , . . . ,M

d
1 ) ∈ Md

n1
and M2 = (M1

2 , . . . ,M
d
2 ) ∈ Md

n2
, we define M1 ⊕

M2 ∈ Md
n1+n2

by identifying Cn1 ⊕ Cn2 with Cn1+n2 and direct summing M1 and M2

componentwise, i.e.,

M1 ⊕M2 = (M1
1 ⊕M1

2 , . . . ,M
d
1 ⊕Md

2 ).

Likewise, if M = (M1, . . . ,Md) ∈Md
n and S ∈ In, we define S−1MS ∈Md

n by

S−1MS = (S−1M1S, . . . , S−1MdS).

Definition 1.1 If D ⊆ Md we say that D is an nc-set if D is closed with respect to
the formation of direct sums and unitary conjugations, i.e.,

∀n1,n2 ∀M1∈D∩Md
n1
∀M2∈D∩Md

n2
M1 ⊕M2 ∈ D ∩Md

n1+n2

and

∀n ∀M∈D∩Md
n
∀U∈Un U ∗MU ∈ D ∩Md

n.

The disjoint union topology (hereinafter abbreviated as du) is the topology on
M[d] given by the sets D such that D ∩ Md

n is open for every n ≥ 1. We say that
a set D ⊆ Md is du-open (resp. du-closed, du-bounded) if D ∩ Md

n is open (resp.
closed, bounded) for all n ≥ 1. An nc-domain is an nc-set that is du-open. (We differ
from the usage of nc-domain in [16] by not requiring that D∩Md

n be connected and
non-empty for every n).

Definition 1.2 An nc-function is a graded function φ defined on an nc-domain D

such that the following hold:

(i) If x, y ∈ D, then φ(x ⊕ y) = φ(x)⊕ φ(y).
(ii) If s ∈ In and x, s−1xs ∈ D ∩Md

n then φ(s−1xs) = s−1φ(x)s.

We let nc(D) denote the set of all nc-functions on D.

In this paper, we shall develop a global theory of holomorphic functions in non-
commuting variables by piecing together functions on a nice class of nc-domains, the
basic free open sets.

https://doi.org/10.4153/CJM-2014-024-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2014-024-1


Global Holomorphic Functions in Several Noncommuting Variables 243

Definition 1.3 If δ is a matrix of free polynomials in d variables, we define

(1.3) Gδ = {M ∈M[d] : ‖δ(M)‖ < 1}.
A set of the form (1.3) is called a basic free open set. The free topology on M[d] is the
topology that has as a basis the basic free open sets. A free domain is a subset of M[d]

that is open in the free topology.

Notice that the intersection of two basic free open sets is another basic free open
set, because Gδ1 ∩ Gδ2 = Gδ1⊕δ2 . Notice also that if α ∈ Cd, and we define

δ(x) =


1
ε (x1 − α1 id)

...
1
ε (xd − αd id)

 ,

then Gδ ∩ Md
1 is the Euclidean ball centered at α of radius ε, so the free topology

agrees with the usual topology on the scalars.

Definition 1.4 A free holomorphic function on a free domain D is a function φ such
that every point M in D is contained in a basic free open set Gδ ⊆ D on which φ is a
bounded nc-function.

Whereas a basic free open set is an nc-domain, a general free open set may not
be, since it need not be closed under direct sums. The locally bounded condition,
which one gets automatically in the scalar case, seems to play an essential rôle in
developing an analytic, rather than an algebraic, theory. For example, it allows us
to give a characterization of free holomorphic functions as functions that are locally
limits of free polynomials.

Theorem 9.7 Let D be a free domain and let φ be a graded function defined on D.
Then φ is a free holomorphic function if and only if φ is locally approximable by poly-
nomials.

A non-commutative power series with scalar coefficients makes sense, but only
when the center is a point in Md

1. Given a point M, let us say in Md
4 for definiteness,

a series ∑
w

aw(x −M)w,

where one is summing over non-commutative words w in d variables, cannot be eval-
uated for x ∈ Md

3 unless there is some way of interpreting M as corresponding to an
element of Md

3. Being locally approximable by polynomials seems therefore a natural
substitute for analyticity. Rational functions (or, more generally, meromorphic func-
tions built up from free holomorphic functions) are also free holomorphic, provided
one stays away from the poles (Theorem 10.1).

The classical Oka–Weil theorem states that a holomorphic function on a neigh-
borhood of a compact, polynomially convex set can be uniformly approximated by
polynomials. See, e.g., [6, Chap. 7]. We derive Theorem 9.7 as a special case of a free
Oka–Weil theorem.
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Theorem 9.6 Let E ⊆ M[d] be a compact set (in the free topology) that is polyno-
mially convex. Assume that φ is a free holomorphic function defined on a neighborhood
of E. Then φ can be uniformly approximated by free polynomials on E.

The corona theorem of Carleson [13] says that an N-tuple of bounded holomor-
phic functions on the unit disk is not contained in a proper ideal if and only if the
functions are jointly bounded below by a positive constant. We obtain a free version.

Theorem 8.4 Let {ψi}N
i=1 be bounded free holomorphic functions on Gδ . Assume for

some ε > 0, we have
N∑

i=1

ψi(x)∗ψi(x) ≥ ε2 id .

Then there are bounded free holomorphic functions φi on Gδ such that

N∑
i=1

ψi(x)φi(x) = id .

Moreover, one can choose the functions so that

‖(φ1, . . . , φN )‖ ≤ 1

ε
.

Our realization formula, Theorem 8.1, can be used to show that every scalar-
valued function on Gδ that is bounded on commuting matrices (using the Taylor
functional calculus) can be extended to a free analytic function with the same norm.

Definition 1.5 Let ‖ f ‖δ,Comm = sup{‖ f (T)‖}, where T ranges over commuting
elements T in Md

n that satisfy ‖δ(T)‖ ≤ 1 and σ(T) ⊂ Gδ . Let H∞δ,Comm be the Banach
algebra of holomorphic functions on Gδ with this norm.

Theorem 8.5 Let

I = {φ ∈ H∞(Gδ) | φ|Md
1

= 0}.
Then H∞(Gδ)/I is isometrically isomorphic to H∞δ,Comm.

1.2 The Structure of Free Holomorphic Functions

The engine that drives our results is a model and realization formula for free holo-
morphic functions on basic free open sets. To describe these, we must expand the
notion of nc-function to consider ‘K-valued’ nc-functions on D, where K is a sepa-
rable Hilbert space. One way to model such objects would be to view them as con-
crete column vectors with entries in nc(D). However, we shall adopt an approach
that uses tensor products. If H and K are Hilbert spaces, we let L(H,K) denote the
bounded linear transformations from H to K. We identify (Cn1⊗K)⊕(Cn2⊗K) and
Cn1+n2 ⊗K in the obvious way. If T1 ∈ L(Cn1 ,Cn1 ⊗K) and T2 ∈ L(Cn2 ,Cn2 ⊗K),
we define T1 ⊕ T2 ∈ L(Cn1+n2 ,Cn1+n2 ⊗K) by requiring that

(T1 ⊕ T2)(v1 ⊕ v2) = T1(v1)⊕ T2(v2)

https://doi.org/10.4153/CJM-2014-024-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2014-024-1


Global Holomorphic Functions in Several Noncommuting Variables 245

for all v1 ∈ Cn1 , v2 ∈ Cn2 , and k ∈ K.

Definition 1.6 We say that a function f is a K-valued nc-function if the domain of
f is some nc-domain, D,

∀n ∀x∈D∩Md
n

f (x) ∈ L(Cn,Cn ⊗K),(1.4)

∀x,y∈D f (x ⊕ y) = f (x)⊕ f (y), and(1.5)

∀n ∀x∈D∩Md
n
∀s∈In s−1xs ∈ D =⇒ f (s−1xs) = (s−1 ⊗ idK) f (x)s.(1.6)

If D is an nc-domain, we let ncK(D) denote the collection of K-valued nc-functions
on D.

Let p be a free polynomial, and f be in ncK(D). Then we define p f ∈ ncK(D) by

p f (x) = [p(x)⊗ idK] f (x).

Now let δ be an I-by- J matrix of free polynomials, and let u be in nc`2( J) (D). We
define δu ∈ nc`2(I) (D) by matrix multiplication. Let u = (u1, . . . , u J)t ; then define δu
by the formula

(δu)(x) =


∑ J

j=1[δ1 j(x)⊗ id`2 ]u j(x)
...∑ J

j=1[δI j(x)⊗ id`2 ]u j(x)

 , x ∈ D.

Definition 1.7 Let φ be a graded function on Gδ . A δ nc-model for φ is a formula
of the form

1− φ(y)∗φ(x) = u(y)∗[1− δ(y)∗δ(x)]u(x), x, y ∈ Gδ,

where u is in nc`2( J) Gδ .

Definition 1.8 Let φ be a graded function on Gδ . A free δ-realization for φ is an
isometry

J =

[
A B
C D

]
such that for each n ∈ N and each x ∈ Gδ ∩Md

n

(1.7) φ(x) = (idCn ⊗A) + (idCn ⊗B)δ(x)
[

id−(idCn ⊗D)δ(x)
]−1

(idCn ⊗C).

We prove in Theorem 8.1 that every free holomorphic function that is bounded
in norm by 1 on Gδ has a δ-model and a free δ-realization.

In the commutative case, and when D is the polydisk, the result was first proved
in [1]. The extension to Gδ for scalar valued functions was first done by Ambrozie
and Timotin [8]; Ball and Bolotnikov extended this result to functions of commut-
ing operators in [10]. In the non-commutative case, the first version of this result
was proved by Ball, Groenewald and Malakorn [11]. They proved a realization for-
mula for non-commutative power series on domains that could be described in terms
of certain bipartite graphs; these include the most important examples, the non-
commutative polydisk and the non-commutative ball.
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The statement of the theorem is as follows (we omit Statement (2) for now). We
extend the notion of an nc function to an L(H,K)- valued function in the natural
way (see Definition 3.5).

Theorem 8.1 Let H,K1,K2 be finite-dimensional Hilbert spaces. Let δ be an I × J
matrix whose entries are free polynomials. Let Ψ be a graded L(H,K1)-valued function
on Gδ , and let Φ be a graded L(H,K2)-valued function on Gδ . The following are
equivalent.

(1) Ψ(x)∗Ψ(x)− Φ(x)∗Φ(x) ≥ 0 on Gδ .
(3) There exists an nc L(K1,K2)-valued function Ω satsifying ΩΨ = Φ and such that

Ω has a free δ-realization.

In the special case that Ψ is the identity, this says that every bounded free analytic
function has a free δ-realization as in (1.7). One consequence is that every bounded
function defined on commuting tuples in any Gδ extends to non-commuting tuples
with the same norm. Another consequence, which the authors shall explore in a sub-
sequent paper [3], is a Nevanlinna–Pick theorem for bounded nc-functions on Gδ .

2 Structure of the Paper

In Section 3 we discuss basic notions of nc domains and nc functions. We prove that
every nc function on a domain D extends to an nc function on its envelope D∼, the
similarity closed set generated by D (Proposition 3.6).

In Section 4, we prove that locally bounded nc functions are holomorphic (Theo-
rem 4.6). We define a free holomorphic function to be a locally bounded nc function,
and prove that Montel’s theorem holds for these functions (Proposition 4.7).

To prove that bounded free holomorphic functions have realizations, we use a
Hahn–Banach argument. To make this work, we need to know that the set of all
functions of the form

u(y)∗[1− δ(y)∗δ(x)]u(x), u ∈ nc`2( J) Gδ,

is a closed cone. Proving it is closed is delicate, so we rely on finite-dimensional
approximations. In Section 5 we develop the theory of partial nc-sets and partial nc-
functions, which are restrictions to finite sets of nc-functions. To allow us to piece
these together into an nc-function, we introduce the notion of a well-organized pair
(E, S) (Definition 5.1), which is a finite set E and a finite number of similarities with
certain nice properties.

In Section 6, we show how to get δ-models and δ-realizations on well-organized
pairs. In Section 7, we piece these together to get a δ nc-model on the whole set Gδ .
The main theorem here is Theorem 7.4. We improve this theorem in Section 8 to get
Theorem 8.1, which says one can find a free δ-realization for the multiplier Ω.

In Section 9 we use this structure theorem to derive our major consequences: the
free Oka–Weil Theorem 9.6, which in particular gives a proof that a function is free
holomorphic if and only if it is locally approximable by free polynomials (Theo-
rem 9.7).
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In Section 10, we prove that free meromorphic functions are free holomorphic off
their singular sets. We give an index to notation and definitions in Section 11.

3 Basic Notions

3.1 du-bounded

We define the nc-norm ‖ · ‖ on each set Md
n by the formula

‖M‖ = max
1≤r≤d

‖Mr‖

and when metric calculations are required, we shall use the metric d, defined on each
set Md

n by the formula

d(M,N) = max
1≤r≤d

‖Mr − Nr‖ .

If M ∈ D ∩Md
n and r > 0, we let

B (M, r) = {N ∈Md
n | d(M,N) < r}.

Evidently, a set D ⊆M[d] is du-bounded when

sup
M∈D∩Md

n

‖M‖ <∞

for each n ≥ 1. We say that a set D ⊆M[d] is bounded if

sup
M∈D

‖M‖ <∞.

Clearly, boundedness implies du-boundedness but not conversely.

3.2 Envelopes of nc-Domains

If A ⊆ M[d], let us agree to say that A is similarity invariant if for each n ≥ 1 and
each S ∈ In,

S−1(A ∩Md
n)S ⊆ A ∩Md

n.

As the intersection of similarity invariant nc-sets is a similarity invariant nc-set, it is
clear that if A ⊆M[d], then there exists a smallest similarity invariant nc-set contain-
ing A. We formalize this fact in the following definition.

Definition 3.1 If A ⊆ M[d], then A∼, the envelope of A, is the unique similarity
invariant nc-set satisfying A ⊆ A∼ and A∼ ⊆ B whenever B is a similarity invariant
nc-set containing A.

Proposition 3.2 Let A ⊆ M[d] and let M ∈ Md
n. Then M ∈ A∼ if and only if there

exist an integer m ≥ 1, integers n1, n2, . . . , nm ≥ 1 satisfying n = n1 + n2 + · · · + nm,
matrix tuples M1 ∈ A ∩Md

n1
,M2 ∈ A ∩Md

n2
, . . . ,Mm ∈ A ∩Md

nm
, and S ∈ In such

that

(3.1) M = S−1
( m⊕

k=1
Mk

)
S.
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Proof Let B denote the collection of matrix tuples M that have the form as presented
in (3.1). Then B is a similarity invariant nc-set. Also, B ⊆ C if C is a similarity
invariant nc-set that contains A. Therefore, B = A∼.

As corollaries to Proposition 3.2 we obtain the following two facts, which will
prove useful in the sequel. They are not new; see, e.g., [18].

Proposition 3.3 If A is an nc-set and N ∈ Md
n, then N ∈ A∼ if and only if there

exists M ∈ A ∩Md
n and S ∈ In such that N = S−1MS.

Proposition 3.4 If D is an nc-domain, then D∼ is an nc-domain.

Proof Let D ⊆ M[d] be an nc domain. Fix n ≥ 1 and N ∈ D∼ ∩Md
n. By Proposi-

tion 3.3 there exist M ∈ D ∩Md
n and S ∈ In such that N = S−1MS. As D ∩Md

n is
open, there exists δ > 0 such that

M + S∆S−1 ∈ D ∩Md
n

whenever ∆ ∈Md
n and ‖∆‖ < δ. Consequently, if ∆ ∈Md

n and ‖∆‖ < δ, then

N + ∆ = S−1MS + ∆ = S−1(M + S∆S−1)S ∈ D∼.

3.3 nc-functions

We defined nc-functions and K-valued nc-functions in Definitions 1.2 and 1.6. We
extend this to ‘L(H,K)-valued’ nc-functions on D, where H and K are Hilbert
spaces. If T1 ∈ L(Cn1 ⊗ H,Cn1 ⊗ K) and T2 ∈ L(Cn2 ⊗ H,Cn2 ⊗ K) we define
T1 ⊕ T2 ∈ L(Cn1+n2 ⊗H,Cn1+n2 ⊗K) by requiring that

(T1 ⊕ T2)
(

(v1 ⊕ v2)⊗ h
)

= T1(v1 ⊗ h)⊕ T2(v2 ⊗ h)

for all v1 ∈ Cn1 , v2 ∈ Cn2 , and h ∈ H.

Definition 3.5 We say a function f is an L(H,K)-valued nc-function (and write
f ∈ ncL(H,K)) if the domain of f is some nc-domain, D,

∀n ∀x∈D∩Md
n

f (x) ∈ L(Cn ⊗H,Cn ⊗K),(3.2)

∀x,y∈D f (x ⊕ y) = f (x)⊕ f (y), and(3.3)

∀n ∀x∈D∩Md
n
∀s∈In s−1xs ∈ D =⇒ f (s−1xs) = (s−1 ⊗ idK) f (x)(s⊗ idH).(3.4)

A simple yet important point is that if dim(H) = dim(K) = 1, then we can
identifyL(Cn⊗H,Cn⊗K) with Mn and with this identification it is easy to verify that
(3.2), (3.3), and (3.4) imply that Definition 1.2 is satisfied. Thus, theorems proved
for L(H,K)-valued nc-functions hold for nc-functions. Likewise, theorems proved
for L(H,K)-valued nc-functions hold for K-valued nc-functions.

The following proposition is also proved in [12].

Proposition 3.6 Let H and K be Hilbert spaces. If D is an nc-domain and f is an
L(H,K)-valued nc-function on D, then there exists a unique nc-function f∼ on D∼

such that f∼|D = f .
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Proof Fix N ∈ D∼∩Md
n. By Proposition 3.3 there exists M ∈ D∩Md

n and invertible
s ∈Mn such that N = s−1Ms. We define

(3.5) f∼(N) = (s−1 ⊗ idK) f (M)(s⊗ idH).

We need to prove two things: that f∼ is well defined, and that f∼ is an L(H,K)-
valued nc-function.

To see that f∼ is well defined, fix N ∈ D∼∩Md
n and then choose M1,M2 ∈ D∩Md

n

and invertible s1, s2 ∈ Mn with s−1
1 M1s1 = N and s−1

2 M2s2 = N. If we set s = s1s−1
2 ,

then as s−1M1s = M2 ∈ D, it follows from (3.4) that

f (s−1M1s) = (s−1 ⊗ idK) f (M1)(s⊗ idH).

Hence,

(s−1
1 ⊗ idK) f (M1)(s1 ⊗ idH) = (s−1

2 ⊗ idK)(s−1 ⊗ idK) f (M1)(s⊗ idH)(s2 ⊗ idH)

= (s−1
2 ⊗ idK) f (M2)(s2 ⊗ idH).

This proves that f∼ is well defined.
To see that f∼ is an L(H,K)-valued nc-function on D∼, note first that (3.2)

follows immediately from (3.5). To prove (3.3) fix N1 ∈ D∼ ∩Md
n1

and N2 ∈ D∼ ∩
Md

n2
. Choose M1 ∈ D ∩ Md

n1
, N2 ∈ D∼ ∩ Md

n2
, s1 ∈ In1 , and s2 ∈ In2 such that

N1 = s−1
1 M1s1 and N2 = s−1

2 M2s2. Then, as

N1 ⊕ N2 = (s1 ⊕ s2)−1(M1 ⊕M2)(s1 ⊕ s2),

and M1 ⊕M2 ∈ D, we have using (3.5) that

f∼(N1 ⊕ N2)

=
(

(s1 ⊕ s2)−1 ⊗ idK

)
f (M1 ⊕M2)

(
(s1 ⊕ s2)⊗ idH

)
=
(

(s−1
1 ⊗ idK)⊕ (s−1

2 ⊗ idK)
)(

f (M1)⊕ f (M2)
)(

(s1 ⊗ idH)⊕ (s2 ⊗ idH)
)

=
(

(s−1
1 ⊗ idK) f (M1)(s1 ⊗ idH)

)
⊕
(

(s−1
2 ⊗ idK) f (M2)(s2 ⊗ idH)

)
= f∼(N1)⊕ f∼(N2).

This proves (3.3).
Finally, to prove (3.4), fix N ∈ D∼ ∩Md

n and s ∈ In. Choose M ∈ D ∩Md
n and

t ∈ In such that N = t−1Mt . Then, as s−1Ns = (ts)−1M(ts),

f∼(s−1Ns) =
(

(ts)−1 ⊗ idK

)
f (M)

(
(ts)⊗ idH

)
= (s−1 ⊗ idK)

(
(t−1 ⊗ idK) f (M)(t ⊗ idH)

)
(s⊗ idH)

= (s−1 ⊗ idK) f∼(N)(s⊗ idH).

This proves (3.4).

More generally, when D ⊆ M[d] is an nc-domain and f ∈ ncL(H,K)(D), it is
possible to extend f in the following way. If V is an n-dimensional vector space, T is
a d-tuple of linear transformations on V and there exists an invertible linear map
S : V→ Cn such that

STS−1 = (ST1S−1, . . . , STdS−1) ∈ D ∩Md
n,
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then define f≈ : V⊗H→ V⊗K by the formula

(3.6) f≈(T) = (S−1 ⊗ idK) f (STS−1)(S⊗ idH).

It is straightforward to check that, with this definition, f≈ is well defined on D≈, the
set of all linear transformations on finite-dimensional vector spaces that are similar
to an element of D, and that the appropriate analogs of (3.2), (3.3), and (3.4) hold.

Note to the reader: if f ∈ ncL(H,K)(D), then we can apply f to d-tuples of ma-
trices on Cn; we can apply f≈ to d-tuples of linear transformations on any finite-
dimensional vector space.

We close this section with the following useful lemmas. Both are simple modifi-
cations of results from [15].

Lemma 3.7 (cf. Lemma 2.6 in [15]) Let D be an nc-domain in M[d], let H and K

be Hilbert spaces, and let f be an L(H,K)-valued nc-function on D. Fix n ≥ 1 and
C ∈Mn. If M,N ∈ D ∩Md

n and[
N NC −CM
0 M

]
∈ D ∩Md

2n,

then

f

([
N NC −CM
0 M

])
=

[
f (N) f (N)C −C f (M)

0 f (M)

]
.

Proof Let

s =

[
idCn C

0 idCn

]
such that [

N NC −CM
0 M

]
= s−1

[
N 0
0 M

]
s.

Using (3.3) and (3.4),

f

([
N NC −CM
0 M

])
= f

(
s−1(N ⊕M)s

)
= (s−1 ⊗ idK)

(
f (N)⊕ f (M)

)
(s⊗ idH)

=

[
idCn ⊗ idK −C ⊗ idK

0 idCn ⊗ idK

] [
f (N) 0

0 f (M)

] [
idCn ⊗ idH C ⊗ idH

0 idCn ⊗ idH

]
=

[
f (N) f (N)C −C f (M)

0 f (M)

]
.

Lemma 3.8 (cf. [15, Proposition 2.2]) Let D be an nc-domain, let H and K be
Hilbert spaces, and let f be an L(H,K)-valued nc-function on D. Let V and W be vec-
tor spaces, and let R : V→ V, T : W→W, and L : V→W be linear transformations.
If R,T ∈ D≈ and

TL = LR,
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then

f≈(T)(L⊗ idH) = (L⊗ idK) f≈(R).

Proof Let s =
[

idW L
0 idV

]
and use

f≈
(

s−1

[
T 0
0 R

]
s

)
= s−1 f≈

([
T 0
0 R

])
s.

4 Local Boundedness and Holomorphicity

In this section we shall prove that locally bounded nc-functions are automatically
holomorphic. In addition we shall lay out various tools involving locally bounded
and holomorphic graded functions (not necessarily assumed to be nc-functions) that
will be heavily used in the sequel. Most of the content of this section also appears in
[18, Chapter 7].

If D is an nc-domain in M[d] and H and K are Hilbert spaces, then we say a
function f defined on D is a graded L(H,K)-valued function on D if

∀n ∀x∈D∩Md
n

f (x) ∈ L(Cn ⊗H,Cn ⊗K).

Definition 4.1 Let D be an nc-domain in M[d] and let H and K be Hilbert spaces.
We say that a graded L(H,K)-valued function on D is locally bounded if for each
n ≥ 1 and each x ∈ D ∩Md

n, there exists r > 0 such that B (x, r) ⊆ D and

sup
y∈B(x,r)

‖ f (x)‖ <∞.

If F is a collection of graded L(H,K)-valued functions on D, we say that F is locally
uniformly bounded if for each n ≥ 1 and each x ∈ D ∩Md

n, there exists r > 0 such
that B (x, r) ⊆ D and

sup
y∈B(x,r)

sup
f∈F
‖ f (x)‖ <∞.

Proposition 4.2 Let D be an nc-domain in M[d], let H and K be Hilbert spaces,
and let f be an L(H,K)-valued nc-function on D. If f is locally bounded on D, then
f∼ is locally bounded on D∼. If F is a locally uniformly bounded collection of graded
L(H,K)-valued functions on D, then F∼ is a locally uniformly bounded collection of
graded L(H,K)-valued functions on D∼.

We view M[d] =
⋃

n Md
n as being endowed with the disjoint union topology, i.e.,

G ⊆ M[d] is open if and only if G ∩Md
n is open for each n ≥ 1. If K ⊆ M[d] is a

compact set in this topology, then as Md
n is open for each n ≥ 1 and K ⊆

⋃
n Md

n, it
follows that there exists n ≥ 1 such that

K ⊆
n⋃

m=1
Md

m.

Fix an nc-domain D ⊆ M[d]. By a compact-open exhaustion of D we mean a
sequence of compact subsets of D, 〈Km〉, satisfying Km ⊆ K◦m+1 for all m ≥ 1 and
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such that

D =
∞⋃

m=1
Km.

A particularly simple way to construct a compact-open exhaustion of D is to note
that as D ∩ Md

n is an open subset of Md
n for each n ≥ 1, for each n there exists a

compact-open exhaustion, 〈Knm〉, of D ∩Md
n. It follows that if Km is defined by

Km =
m⋃

n=1
Knm,

then 〈Km〉 is a compact-open exhaustion of D. In the sequel, notions introduced
using a compact-open exhaustion of D can in each case shown to be independent
of the particular choice of exhaustion. Also, for convenience we assume that the
exhaustion has been chosen to satisfy the property that

∀m Km ⊆
m⋃

n=1
D ∩Md

n.

Now let D ⊆ M[d] be an nc-domain and let 〈Km〉 be a compact-open exhaustion
of D. If lbL(H,K)(D) denotes the space of locally bounded graded L(H,K)-valued
functions on D, then for f ∈ lbL(H,K)(D),

ρm( f )
def
= sup

x∈Km

‖ f (x)‖ <∞

for each m ≥ 1. It follows that d : lbL(H,K)(D)× lbL(H,K)(D)→ R defined by

(4.1) d( f , g) =

∞∑
m=1

2−m ρm( f − g)

1 + ρm( f − g)

is a translation invariant metric on lbL(H,K)(D). Clearly, d depends on the choice of
exhaustion, but it is straightforward to show that the topology it generates does not.
If f ∈ lbL(H,K)(D) and 〈 f (k)〉 is a sequence in lbL(H,K)(D) we shall write f (k) → f
if d( f , f (k))→ 0.

Definition 4.3 Let D be an nc-domain in M[d] and let H and K be Hilbert spaces.
Let f be a graded L(H,K)-valued function on D. We say that f is holomorphic
on D if for each n ≥ 1, the map defined on D ∩Md

n by x → f (x) is a holomorphic
L(H,K)-valued function in the entries of x.

An important tool that we shall use frequently in the sequel (Proposition 4.4 be-
low) is based on the application of Montel’s Theorem to uniformly locally bounded
sequences of graded holomorphic L(H,K)-valued nc-functions. Unfortunately, in
the cases when either H or K is infinite dimensional, the topology induced by the
metric defined in (4.1) is too strong for this purpose. Accordingly, we define the
following notion of weak convergence.

Let 〈Km〉 be a compact-open exhaustion of an nc-domain D as above. If 〈 f (k)〉 is a
sequence of graded L(H,K)-valued functions on D and f is a graded L(H,K)-
valued function on D, we say that f (k) wk−→ f if for each m, n ≥ 1 such that
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Km ∩Md
n 6= ∅, for each c, d ∈ Cn, and for each h ∈ H and k ∈ K we have that

lim
k→∞

sup
x∈Km∩Md

n

〈(
f (k)(x)− f (x)

)
c ⊗ h, d⊗ k

〉
= 0.

Proposition 4.4 Let D be an nc-domain and let 〈 f (k)〉 be a locally uniformly bounded
sequence of graded holomorphic L(H,K)-valued functions on D. Then there exists a
subsequence 〈 f (k j )〉 and a graded holomorphic L(H,K)-valued function f on D such
that f (k j ) wk−→ f .

Proof The proof will proceed by invoking a diagonal subsequence argument twice.
First fix m and n such that Km ∩Md

n 6= ∅. Let {ei} denote the standard orthonormal
basis for Cn and fix orthonormal bases {ξl} and {ηl} for H and K. For each i1, i2 ≤ n
and each l1 and l2,

〈 f (k)(x) ci1 ⊗ ξl1 , ci2 ⊗ ηl2〉
is uniformly bounded on a neighborhood of Km∩Md

n. Therefore using Montel’s The-
orem and mathematical induction, for each N ≥ 1, there exist an increasing sequence
of integers 〈kN, j〉 and holomorphic functions gN

i1,l1,i2,l2
defined on a neighborhood of

Km ∩Md
n such that

〈 f (kN, j )(x)ci1 ⊗ ξl1 , ci2 ⊗ ηl2〉 → gN
i1,l1,i2,l2 (x)

uniformly on a neighborhood of Km ∩Md
n for all i1, i2 ≤ n and l1, l2 ≤ N and with

the additional property that 〈kN+1, j〉 is a subsequence of 〈kN, j〉 for each N. Hence,
there exist holomorphic functions gi1,l1,i2,l2 defined on a neighborhood of Km ∩Md

n

such that
〈 f (kN,N )(x)ci1 ⊗ ξl1 , ci2 ⊗ ηl2〉 → gi1,l1,i2,l2 (x)

uniformly on a neighborhood of Km ∩Md
n for all i1, i2 ≤ n and l1, l2.

Summarizing, we have proved the following fact.

Fact 4.5 If 〈 f (k)〉 is a uniformly bounded sequence of graded holomorphic
L(H,K)-valued functions on D, then for each m and n such that Km ∩Md

n 6= ∅,
there exist a strictly increasing sequence 〈kN〉 and holomorphic functions gi1,l1,i2,l2

defined on a neighborhood of Km ∩Md
n such that

〈 f (kN )(x)ci1 ⊗ ξl1 , ci2 ⊗ ηl2〉 → gi1,l1,i2,l2 (x)

uniformly on a neighborhood of Km ∩Md
n for all i1, i2 ≤ n and l1, l2.

Now fix n. For m ≥ n we use Fact 4.5 to inductively construct an increasing
sequence 〈km,N〉 and holomorphic functions gm

i1,l1,i2,l2
defined on a neighborhood of

Km ∩Md
n satisfying

(4.2) 〈 f (km,N )(x)ci1 ⊗ ξl1 , ci2 ⊗ ηl2〉 → gm
i1,l1,i2,l2 (x)

uniformly on a neighborhood of Km ∩Md
n for all i1, i2 ≤ n and l1, l2 and with 〈km,N〉

a subsequence of 〈km+1,N〉 for each m. As Km ⊆ Km+1, it follows from (4.2) that if
m1 ≤ m2, then

gm1
i1,l1,i2,l2

(x) = gm2
i1,l1,i2,l2

(x)
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on a neighborhood of Km1 ∩Md
n. Therefore, as {Km} is an exhaustion of D, we can

define a holomorphic function gn
i1,l1,i2,l2

: D ∩Md
n →Mn by the formula

(4.3) gn
i1,l1,i2,l2 (x) = gm

i1,l1,i2,l2 (x) if m ≥ n and x ∈ D ∩Md
n.

Now define a graded holomorphic L(H,K)-valued function f on D by requiring
that

〈 f (x)ci1 ⊗ ξl1 , ci2 ⊗ ηl2〉 = gn
i1,l1,i2,l2 (x)

whenever n ≥ 1, x ∈ D ∩Md
n, i1, i2 ≤ n, l1, l2 ≥ 1. By (4.2) and (4.3) it follows that

〈 f (km,m)(x)ci1 ⊗ ξl1 , ci2 ⊗ ηl2〉 → 〈 f (x)ci1 ⊗ ξl1 , ci2 ⊗ ηl2〉

whenever n ≥ 1, x ∈ D ∩Md
n, i1, i2 ≤ n, l1, l2 ≥ 1. Hence, since 〈 f (k)〉 is assumed

locally bounded it follows that f (x) ∈ L(Cn ⊗H,Cn ⊗K) for all x ∈ D ∩Md
n and

f km,m wk−→ f .

Theorem 4.6 Let D be an nc-domain in M[d], let H and K be Hilbert spaces, and
let f be an L(H,K)-valued nc-function on D. If f is locally bounded on D, then f is
holomorphic on D.

Proof The proof will proceed in two steps. We first show that if f is locally bounded,
then f is continuous. That f is holomorphic will then follow by a straightforward
modification of Proposition 2.5 in [15].

Fix M ∈ D ∩Md
n and let ε > 0. Choose r > 0 so that

B

([
M 0
0 M

]
, r

)
⊆ D ∩Md

2n.

If s is chosen with 0 < s < r then as B (M ⊕M, s)− is a compact subset of D ∩Md
2n

and f is assumed locally bounded, there exists a constant B such that

(4.4) x ∈ B

([
M 0
0 M

]
, s

)
=⇒ ‖ f (x)‖ < B.

Choose δ sufficiently small so that δ < min{sε/2B, s/2} and B (M, δ) ⊆ D. That f
is continuous at M follows from the following claim.

(4.5) N ∈ B (M, δ) =⇒ f (N) ∈ B
(

f (M), ε
)
.

To prove the claim, fix N ∈ Md
n with ‖N −M‖ < δ. Then ‖N −M‖ < s/2 and

‖(B/ε)(N −M)‖ < s/2. Hence, by the triangle inequality,∥∥∥∥[N c(N −M)
0 M

]
−
[

M 0
0 M

]∥∥∥∥ < s.

Hence, by (4.4), ∥∥∥∥ f

([
N (B/ε)(N −M)
0 M

])∥∥∥∥ < B.

But M, N, and
[

N c(N−M)
0 M

]
are in D, so by Lemma 3.7,

f

([
N (B/ε)(N −M)
0 M

])
=

[
f (N) (B/ε)

(
f (N)− f (M)

)
0 f (M)

]
.
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In particular, we see that
∥∥(B/ε)

(
f (N)− f (M)

)∥∥ < B, or equivalently, f (N) ∈
B
(

f (M), ε
)
. This proves (4.5).

To see that f is holomorphic, fix M ∈ D ∩Md
n. If E ∈ Md

n is selected sufficiently
small, then [

M + λE E
0 M

]
∈ D ∩Md

2n

for all sufficiently small λ ∈ C. But[
M + λE E

0 M

]
=

[
M + λE (1/λ)

(
(M + λE)−M

)
0 M

]
.

Hence, Lemma 1.1 implies that

(4.6) f

([
M + λE E

0 M

])
=

[
f (M + λE) (1/λ)

(
f (M + λE)− f (M)

)
0 f (M)

]
.

As the left-hand side of (4.6) is continuous at λ = 0, it follows that the 1, 2 entry of
the right-hand side of (4.6) must converge. As E is arbitrary, this implies that f is
holomorphic.

If D is an nc-domain, we let H(D) denote the collection of locally bounded nc-
functions on D. In light of Theorem 4.6 we refer to the elements of H(D) as free
holomorphic functions. Likewise, if H and K are Hilbert space, we let HK(D) (resp.
HL(H,K)(D)) denote the collection of locally bounded K-valued (resp. L(H,K)-
valued) nc-functions on D.

Proposition 4.7 Let D be an nc-domain. H(D) equipped with the metric defined
in (4.1) is complete. Furthermore, Montel’s Theorem is true, i.e., if F ⊆ H(D), then F

has compact closure if and only if F is locally uniformly bounded.

As mentioned above, Montel’s Theorem is not true for HL(H,K)(D) when ei-
ther H or K is infinite dimensional. However, the following useful fact in many
applications can take its place.

Proposition 4.8 Let D be an nc-domain and let H and K be Hilbert spaces.
HL(H,K)(D), equipped with the metric defined in (4.1), is complete. Furthermore, if
〈 f (k)〉 is a locally bounded sequence in HL(H,K)(D), then there exist an increasing se-
quence 〈k j〉 and f ∈ HL(H,K)(D) such that f (k j ) wk−→ f .

5 Partial nc-Sets and Functions

Let N denote the set of positive integers. We say that E is a partial nc-set of size n if

E ⊆
n⋃

m=1
Md

m,

E ∩Md
n 6= ∅, and M1 ⊕ M2 ∈ E whenever M1 ∈ E ∩Md

m1
, M2 ∈ E ∩Md

m2
, and

m1 + m2 ≤ n. We do not require that partial nc-sets be closed with respect to unitary
conjugations.
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If E is a partial nc-set, then we say that a function u : E → M1 is a partial nc-
function if

∀m∈N M ∈ E ∩Md
m =⇒ u(M) ∈Mm, and(5.1)

∀M1,M2∈E M1 ⊕M2 ∈ E =⇒ u(M1 ⊕M2) = u(M1)⊕ u(M2).(5.2)

In a similar fashion we can define K-valued and L(H,K)-valued partial nc-func-
tions.

If E is a partial nc-set and S ⊆
⋃

n In, then we say that a function u : E → M1 is
S-invariant if

∀M∈E ∀S∈S S−1MS ∈ E =⇒ u(S−1MS) = S−1u(M)S.

In a similar fashion we can define K-valued and L(H,K)-valued S-invariant func-
tions. Note that the definitions of partial nc-function and S-invariant function are
rigged in such a way that φ|E is an S-invariant partial nc-function whenever D is an
nc-domain, φ is an nc-function on D, S ⊆

⋃
n In, and E ⊆ D is a partial nc-set.

We say that M ∈ Md
n is generic if there do not exist M1,M2 ∈ M[d] and S ∈ In

such that M = S−1(M1 ⊕ M2)S. If E is a partial nc-set, we say that E is complete if
M1 ⊕ M2 ∈ E implies that M1,M2 ∈ E. If M ∈ E, we say that M is E-reducible if
there exist M1,M2 ∈ E such that M = M1 ⊕M2. Finally, we shall let Σd

n denote the
d-tuples of scalar matrices:

Σd
n = {(α1 idCn , . . . , αd idCn ) : αr ∈ C, 1 ≤ r ≤ d}.

Definition 5.1 Let E be a partial nc-set of size n and S ⊆
⋃

n In. For each m ≤ n let
Gm denote the generic elements of E∩Md

m and letRm denote the E-reducible elements
of E ∩Md

m. We say the pair (E, S) is well organized if E is finite and complete,

(5.3) ∀m≤n E ∩Md
m = Rm ∪ Gm,

and for each m ≤ n there exists a set Bm ⊆ Gm such that

{Bm} ∪ {S−1BmS ∩ E | S ∈ S ∩ Im} is a partition of Gm and(5.4)

∀M∈E∩Md
m
∀S∈S∩Im S−1MS ∈ E =⇒ M ∈ Bm ∪ Σd

m.(5.5)

We note in this definition that necessarily, as the elements of Rm are E-reducible
and the elements of Gm are generic, Rm ∩ Gm = ∅. When m = 1, Rm = ∅; also,
(5.4) implies that Bm = Gm and S ∩ Im = ∅. Note that for each m ≤ n and for each
S ∈ S ∩ Im, (5.4) and (5.5) imply that

Bm =
⋃

S∈S∩Im

(SGmS−1 ∩ Gm) ∪ {M ∈ Gm : @S ∈ S ∩ Im such that S−1MS ∈ E}

(so that Bm is uniquely determined by (E, S)). When (E, S) is a well-organized pair
of size n we set B =

⋃
m≤n Bm and refer to B as the base of (E, S). Similarly, we set

G =
⋃

m≤n Gm and R =
⋃

m≤n Rm.
If n ∈ N, we say that π is an ordered partition of n if there exists a σ ∈ N such that

(5.6) π : {1, . . . , σ} → N and
σ∑

i=1

π(i) = n.
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Rm

S−1
1 RmS1 \ Σd

m

S−1
2 RmS2 \ Σd

m

#
"
 
!Bm

#
"
 
!S−1

1 BmS1 ∩ E

#
"
 
!S−1

2 BmS2 ∩ E

Figure 1: A cartoon picture: the solid sets constitute Em. The ovals are Gm.

We let Πn denote the set of ordered partitions of n. If π ∈ Πn and is as in (5.6), we
set |π| = σ. Finally, we let [n] denote the trivial partition, defined by

[n] : {1} → N and [n](1) = n.

If π ∈ Πn, we let Md
n,π denote the set of M ∈Md

n that have the form

M =
|π|⊕
i=1

Mi

where Mi ∈Md
π(i) for each i = 1, . . . , |π|.

Lemma 5.2 If E is a partial nc-set, S ⊆
⋃

m Im, and (E, S) is well organized of size n,
then for each m ≤ n, M ∈ E ∩Md

m if and only if there exists a partition π ∈ Πm and
matrices M1, . . . ,M|π| such that

(5.7) M =
|π|⊕
i=1

Mi and Mi ∈ Gπ(i) for i = 1, . . . , |π|.

Furthermore, π and M1, . . . ,M|π| satisfying (5.7) are uniquely determined by M.

Proof Let m ≤ n and fix M ∈ E∩Md
m. As E is assumed to be complete, an inductive

argument implies that there exist π ∈ Πm and M1, . . . ,M|π| ∈ E such that

M =
|π|⊕
i=1

Mi , ∀i Mi ∈ E ∩Mπ(i),

where Mi is not E-reducible for each i = 1, . . . , |π|. In particular, (5.3) implies that
Mi ∈ Gπ(i) for each i. That the decomposition is unique follows from the fact that
each of the summands Mi is generic, and hence irreducible.

If (E, S) is a well-organized pair of size n, we define V(E, S) to be the vector space
consisting of the S-invariant partial nc-functions on E, and we define Grade(B) to
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be the vector space of graded matrix valued functions on B, i.e., the collection of
functions ω : B→M1 such that

∀m≤n ∀M∈B∩Md
m

ω(M) ∈Mm.

Proposition 5.3 The map ρ : V(E, S) → Grade(B) defined by ρ(φ) = φ|B is a
vector space isomorphism.

Proof (5.1) guarantees that ρ maps into Grade(B) and clearly, ρ is linear. To see
that ρ is onto, fix ω ∈ Grade(B). Define u on B by setting

(5.8) u(x) = ω(x), x ∈ B.

Then use (5.4) to extend u to
⋃

m≤n Gm by the formulas

(5.9) u(x) = S−1u(SxS−1)S, m ≤ n, x, SxS−1 ∈ Gm,

where S is the unique element in S ∩ Im such that x ∈ S−1BmS. Finally, we extend u
to
⋃

m≤n Rm by setting

(5.10) u(x) =
|π|⊕
i=1

u(Mi), m ≤ n, x ∈ Rm,

where x =
⊕|π|

i=1 Mi is the unique representation of x given by Lemma 5.2.
To see that u as just defined is a partial nc-function, first fix M1 ∈ E ∩Md

m1
and

M2 ∈ E ∩Md
m2

where m1 + m2 ≤ n. By Lemma 5.1, there exist partitions π1 ∈ Πm1

and π2 ∈ Πm2 such that

M1 =
|π1|⊕
i=1

Mi , Mi ∈ Gπ1(i) for i = 1, . . . , |π1|,

and

M2 =
|π2|⊕
i=1

Ni , Ni ∈ Gπ2(i) for i = 1, . . . , |π2|.

If we define π ∈ Πm1+m2 by

π(l) =

{
π1(l) if 1 ≤ l ≤ |π1|,
π2(l− |π1|) if |π1| + 1 ≤ l ≤ |π1| + |π2|

and let

xl =

{
Ml if 1 ≤ l ≤ |π1|,
Nl−|π1| if |π1| + 1 ≤ l ≤ |π1| + |π2|,

then M1⊕M2 =
⊕

l xl is the unique decomposition of M1⊕M2 given in Lemma 5.2.
Hence, using (5.10),

u(M1 ⊕M2) = u
(⊕

l
xl

)
=
⊕

l
u(xl)

=
|π1|⊕
l=1

xl ⊕
|π1|+|π2|⊕
l=|π2|+1

xl

= u(M1)⊕ u(M2).
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To see that u is S-invariant, fix M ∈ E∩Md
m and S ∈ S∩Im satisfying S−1MS ∈ E.

Then (5.5) guarantees that M ∈ Bm ∪ Σd
m. If M ∈ Σd

m, then so is u(M) by (5.10),
and both M and u(M) are left invariant by conjugation with S. If M ∈ Bm, then
using (5.9),

u(S−1MS) = S−1u
(

S(S−1MS)S−1
)

S

= S−1u(M)S.

Summarizing, we have shown that u, as defined above, is a partial nc-function
that is S-invariant. Hence, u ∈ V(E, S). That ρ(u) = ω follows from (5.8). This
completes the proof that ρ is onto.

To see that ρ is 1–1, notice that if v ∈ V(E, S) and ρ(v) = ω, then as ρ(v) = ω,
necessarily (5.8) holds with u replaced with v. As v is S-invariant, (5.9) also holds
with u replaced with v. Finally, as v is a partial nc-function, (5.10) as well holds
with u replaced with v. These facts imply that v = u.

For the remainder of this section, (E, S) is a well-organized pair of size n and we
set V = V(E, S). We define a d-tuple of linear transformations,

(5.11) XV = (X1
V, . . . ,X

d
V),

on V(E, S) by setting

(5.12) (Xr
Vu)(x) = xru(x), x ∈ E.

Likewise, we define a d-tuple of linear transformations XB = (X1
B, . . . ,X

d
B) on

Grade(B) by setting
(Xr

Bω)(x) = xrω(x), x ∈ B.

When V1 and V2 are vector spaces and L : V1 → V2 is a vector space isomorphism,

we shall write V1
L∼ V2. If in addition, T1 is a d-tuple of linear transformations of V1,

T2 is a d-tuple of linear transformations of V2, and T1 = L−1T2L we write T1
L∼ T2.

Observe that with these notations, if ρ is the isomorphism of Proposition 5.3, then

(5.13) XV
ρ∼ XB.

For a vector space V we let V (m) =
⊕m

i=1 V and if T is a linear transformation

of V we set T(m) =
⊕m

i=1 T. We define γ : Mm → (Cm)(m) by γ(M) =
⊕m

j=1 M j ,
where M j is the j-th column of M. If we let Mx denote the operator on Mn defined

by Mx(M) = xM, then Mx
γ∼ x(m). It follows that if we define

β : Grade(B)→
n⊕

m=1

⊕
B∈Bm

(Cm)(m)

by the formula

β(ω) =
n⊕

m=1

⊕
B∈Bm

γ
(

u(B)
)
,

then β is an isomorphism and

XB
β∼

n⊕
m=1

⊕
B∈Bm

B(m).
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Now assume that D is an nc-domain, E ⊆ D, and φ is an nc-function defined
on D. We can define a linear transformation Mφ on V by the formula

(5.14) (Mφu)(x) = φ(x)u(x), x ∈ E.

Noting that

V
β◦ρ∼

n⊕
m=1

⊕
B∈Bm

(Cm)(m),

Mφ
β◦ρ∼

n⊕
m=1

⊕
B∈Bm

M(m)
φ(B),

and
n⊕

m=1

⊕
B∈Bm

M(m)
φ(B) = φ

( n⊕
m=1

⊕
B∈Bm

M(m)
B

)
,

we have that

Mφ
β◦ρ∼= φ

( n⊕
m=1

⊕
B∈Bm

M(m)
B

)
.

But

XV
β◦ρ∼

n⊕
m=1

⊕
B∈Bm

B(m) ∈ D.

Hence, XV ∈ D≈ and Mφ = φ≈(XV).
We summarize what has just been proved in the following proposition.

Proposition 5.4 Let D be an nc domain and assume that E ⊆ D and φ is an nc-
function on D. Also assume that S ⊂

⋃n
m=1 Im, that (E, S) is a well-organized pair, and

let V denote the vector space of S-invariant nc-functions on E. If the d-tuple of linear
transformations on V, XV, is defined by (5.11) and (5.12) and the linear transformation
on V, Mφ, is defined by (5.14), then

Mφ = φ≈(XV).

6 Well-organized Models and Realizations

For D an nc-domain, we let H∞(D) denote the bounded nc-functions on D. As the
elements of H∞(D) are locally bounded, it follows from Theorem 4.6 that H∞(D) ⊆
H(D).

Similarly, H∞L(H,K) denotes the bounded L(H,K)-valued nc-functions on D, so
functions Ψ for which there is a constant C such that

Ψ(x)∗Ψ(x) ≤ C id ∀x ∈ D.

For the remainder of this section we fix a matrix δ of free polynomials. By adding
rows or columns of zeroes, if necessary, we can assume that δ is actually a square
J-by- J matrix. Define

Gδ = {M ∈M[d] | ‖δ(M)‖ < 1},

and assume that Gδ is non-empty.
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Let us note that it is possible for Gδ to be empty at lower levels and non-empty at
higher ones. For example, if δ is the single polynomial

δ(x1, x2) = 1− (x1x2 − x2x1)(x1x2 − x2x1),

then Gδ ∩M2
1 is empty, but Gδ ∩M2

2 is not. If this occurs, we just start our construc-
tions at the first m for which Gδ ∩Md

m is non-empty.

6.1 H(V), R(V), P(V), and C(V)

For the remainder of this sub-section we fix a well-organized pair (E, S) of size n,
with E ⊂ Gδ . We fix Hilbert spaces H, K1 and K2, with H finite dimensional; we
shall let M denote an arbitrary auxiliary Hilbert space. We also fix a pair of functions
Ψ in H∞L(H,K1)(Gδ) and Φ in H∞L(H,K2)(Gδ) satisfying

(6.1) Ψ(x)∗Ψ(x)− Φ(x)∗Φ(x) ≥ 0 ∀ x ∈ Gδ.

We define Θ(y, x) by

(6.2) Θ(y, x) = Ψ(y)∗Ψ(x)− Φ(y)∗Φ(x).

We adopt the following notations of the previous section: B, R, and G for the
basic, reducible, and generic elements of (E, S), and V for the vector space of S-
invariant partial nc-functions on E. We let VL(H) (resp. VL(H,M)) denote the vector
space of L(H)-valued (resp. L(H,M)-valued) partial nc-functions on E. When ψ ∈
VL(M), Mψ denotes the operator defined on VL(H,M) by

(6.3) (Mψu)(x) = ψ(x)u(x), x ∈ E.

We let HL(H)(V) denote the set of L(H)-valued graded functions h on

(6.4) E[2] =
n⋃

m=1
Em × Em

that have the form

h(y, x) =

σ∑
i=1

gi(y)∗ fi(x), 1 ≤ m ≤ n, x, y ∈ E ∩Md
m,

where σ ∈ N and fi , gi ∈ VL(H,C) for i = 1, . . . , σ. Then HL(H)(V) is a finite-
dimensional vector space and is a Banach space as well, when equipped with the
norm

‖h‖ = sup
(y,x)∈E[2]

‖h(y, x)‖ .

We set

(6.5) RL(H)(V) = {h ∈ HL(H)(V) | h(x, y) = h(y, x)∗}

and define PL(H)(V) to consist of the elements h ∈ RL(H)(V) that have the special
form

(6.6) h(y, x) =

σ∑
i=1

fi(y)∗ fi(x), 1 ≤ m ≤ n, x, y ∈ E ∩Md
m,

https://doi.org/10.4153/CJM-2014-024-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2014-024-1


262 J. Agler and J. E. McCarthy

where σ ∈ N and fi ∈ VL(H,C) for i = 1, . . . , σ. Evidently, RL(H)(V) is a real
subspace of HL(H)(V) and PL(H)(V) is a cone1 in R(V).

Lemma 6.1 Let M be a finite-dimensional Hilbert space, and let F(y, x) be an ar-
bitrary graded L(M)-valued function on E[2]. Let N = dim(VL(H,M)). If G can be
represented in the form

G(y, x) =

σ∑
i=1

gi(y)∗F(y, x)gi(x), 1 ≤ m ≤ n, x, y ∈ E ∩Md
m,

where σ ∈ N and gi ∈ VL(H,M) for i = 1, . . . , σ, then G can be represented in the form

(6.7) G(y, x) =

N∑
i=1

fi(y)∗F(y, x) fi(x), 1 ≤ m ≤ n, x, y ∈ E ∩Md
m,

where fi ∈ VL(H,M) for i = 1, . . . ,N.

Proof Let 〈el(x)〉Nl=1 be a basis of VL(H,M). For each i = 1, . . . , σ, let

gi(x) =

N∑
l=1

cilel(x).

Form the σ × N matrix C = [cil]. As C∗C is an N × N positive semidefinite matrix,
there exists an N × N matrix A = [akl] such that C∗C = A∗A. This leads to the
formula,

σ∑
i=1

cil1 cil2 =

N∑
k=1

akl1 akl2 ,

valid for all l1, l2 = 1, . . . ,N. If 1 ≤ m ≤ n and x, y ∈ E ∩Md
m, then

G(y, x) =

σ∑
i=1

gi(y)∗F(y, x)gi(x)

=

σ∑
i=1

( N∑
l=1

cilel(y)
)∗

F(y, x)
( N∑

l=1

cilel(x)
)

=

N∑
l1,l2=1

( σ∑
i=1

cil1 cil2

)
el1 (y)∗F(y, x)el2 (x)

=

N∑
l1,l2=1

( N∑
k=1

akl1 akl2

)
el1 (y)∗F(y, x)el2 (x)

=

N∑
k=1

( N∑
l=1

aklel(y)
)∗

F(y, x)
( N∑

l=1

aklel(x)
)
.

This proves that (6.7) holds with fi =
∑N

l=1 ailel.

1By a cone, we mean a convex set closed under multiplication by non-negative real numbers. This is
sometimes called a wedge.
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Lemma 6.2 If h ∈ PL(H)(V), x, y ∈ E ∩Md
m, and c, d ∈ Cm ⊗H, then

|〈h(y, x)c, d〉|2 ≤ 〈h(x, x)c, c〉〈h(y, y)d, d〉.

Proof Assume that (6.6) holds.

|〈h(y, x)c, d〉|2 =
∣∣∣〈 σ∑

i=1

fi(y)∗ fi(x)c, d
〉∣∣∣ 2

=
∣∣∣ σ∑

i=1

〈 fi(x)c, fi(y)d〉
∣∣∣ 2

≤
( σ∑

i=1

‖ fi(x)c‖ ‖ fi(y)d‖
) 2

≤
( σ∑

i=1

‖ fi(x)c‖2
)( σ∑

i=1

‖ fi(y)d‖2
)

=
(〈 σ∑

i=1

fi(x)∗ fi(x)c, c
〉)(〈 σ∑

i=1

fi(y)∗ fi(y)d, d
〉)

= 〈h(x, x)c, c〉〈h(y, y)d, d〉.

If u ∈ ncL(H,M⊗C J)(Gδ), then we can define δu ∈ ncL(H,M⊗C J)(Gδ) by the for-
mula

(6.8) (δu)(x) =
(
δ(x)⊗ idM

)
u(x) x ∈ Gδ.

Definition 6.3 We let CL(H)(V) and Cτ
L(H)(V) be the cones generated in RL(H)(V)

by the elements in RL(H)(V) of the form

u(y)∗[id−δ(y)∗δ(x)]u(x), and u(y)∗[τ 2 id−δ(y)∗δ(x)]u(x),

respectively, where u ∈ VL(H,C J), and τ is such that

ρ := max{‖δ(x)‖ : x ∈ E} < τ < 1.

Proposition 6.4 CL(H)(V) and Cτ
L(H)(V) are closed cones.

Proof By Lemma 6.1, any element of Cτ
L(H)(V) can be represented as a sum

(6.9)
N∑

i=1

ui(y)∗[τ 2 id−δ(y)∗δ(x)]ui(x).

Suppose a sequence of sums of the form (6.9) converges to some element h(y, x)
in RL(H)(V). Since ρ < τ , we know that each of the individual functions ui must
eventually satisfy

‖ui(x)‖2 ≤ 2
1

τ 2 − ρ2
h(x, x).

So by compactness, a subsequence of the sequence will converge to another sum of
the form (6.9). Letting τ = 1 gives the proof for CL(H)(V).
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Proposition 6.5 PL(H)(V) ⊆ CL(H)(V) ⊆ Cτ
L(H)(V).

Proof To prove PL(H)(V) ⊆ Cτ
L(H)(V), we must show that for any f ∈ VL(H,C),

the function f (y)∗ f (x) is in Cτ
L(H)(V). Let g(x) be 1

τ f (x). Let hσ ∈ Cτ
L(H)(V) be

hσ(y, x) =

σ∑
j=0

g(y)∗
(
δ(y)∗/τ

) j
[τ 2 idC J −δ(y)∗δ(x)]

(
δ(x)/τ

) j
g(x)

= f (y)∗ f (x)− g(y)∗
(
δ(y)∗/τ

) σ+1(
δ(x)/τ

)σ+1
g(x).

As δ/τ is a strict contraction on E, hσ(y, x) converges to f (y)∗ f (x). By Proposi-
tion 6.4, we are done. Letting τ = 1, we get PL(H)(V) ⊆ CL(H)(V).

To show CL(H)(V) ⊆ Cτ
L(H)(V), observe that

u(y)∗[id−δ(y)∗δ(x)]u(x) =

u(y)∗
(
τ 2 id−δ(y)∗δ(x)

)
u(x) + (1− τ 2)u(y)∗u(x).

(6.10)

The first term on the right in (6.10) is in Cτ
L(H)(V) by definition, and the second

since PL(H)(V) is.

Lemma 6.6 For each τ in (ρ, 1), the function Θ(y, x) is in Cτ
L(H)(V).

Proof By Proposition 6.4, Cτ
L(H)(V) is a closed cone in RL(H)(V). Therefore, by

the Hahn–Banach Theorem the lemma will follow if we can show that

L
(

Θ(y, x)
)
≥ 0

whenever

(6.11) L ∈ RL(H)(V)∗ and L(h) ≥ 0 for all h ∈ Cτ
L(H)(V).

Accordingly, assume that (6.11) holds. Define L] ∈ HL(H)(V)∗ by the formula

L]
(

h(y, x)
)

= L
( h(y, x) + h(x, y)∗

2

)
+ iL

( h(y, x)− h(x, y)∗

2i

)
,

and then define a sesquilinear form on VL(H,C) by the formula

(6.12) 〈 f , g〉L = L]
(

g(y)∗ f (x)
)
, f , g ∈ VL(H,C).

Observe that Proposition 6.5 implies that f (y)∗ f (x) ∈ Cτ
L(H)(V) whenever f ∈

VL(H,C). Hence, (6.11) implies that

〈 f , f 〉L ≥ 0

for all f ∈ VL(H,C), i.e., 〈 · , · 〉L is a pre-inner product on VL(H,C). It follows that
〈 · , · 〉L induces an inner product on the quotient, VL(H,C)/NL, where

(6.13) NL = { f ∈ VL(H,C) | 〈 f , f 〉L = 0}.
We let H2

L denote the Hilbert space VL(H,C)/NL equipped with this induced inner
product.

Now observe that xr ∈ V for each r = 1, . . . , d, so Xr
V is a well-defined operator

on VL(H,C), where XV is the linear transformation defined in (5.11) and (5.12). (6.8)
implies that δ is a well-defined operator from VL(H,C) ⊗ C J to VL(H,C) ⊗ C J .
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If f ∈ VL(H,C J), it follows, using (6.12) and f (y)∗
(
τ 2 id−δ(y)∗δ(x)

)
f (x) ∈

Cτ
L(H)(V), that

‖τ f + NL‖2
H2( J)

L
− ‖δ f + NL‖2

H2( J)
L

= 〈τ f , τ f 〉H2( J)
L
− 〈δ f , δ f 〉H2( J)

L

= τ 2L]
(

f (y)∗ f (x)
)
− L]

((
δ(y) f (y)

)∗
δ(x) f (x)

)
= L]

(
f (y)∗

(
τ 2 id−δ(y)∗δ(x)

)
f (x)

)
≥ 0.

Hence, the formula Mδ( f +NL) = δ f +NL, f ∈ VL(H,C J), defines a strict contrac-

tion from H2( J)
L to H2( J)

L . Let Mx = (Mx1 , . . . ,Mxd ) act on H2
L, and let π : VL(H,C) →

H2
L denote the canonical quotient map, π( f ) = f + NL. Then Mxπ = πXV. Hence

by Lemma 3.8, for every φ that is nc on an nc-domain containing E, φ≈(Mx)π =
πφ≈(XV). Since H2

L is finite dimensional, we have that Mx is unitarily equivalent to
some point N in M[d]. Since δ is nc, we have that δ≈(Mx) = Mδ is unitarily equiva-
lent to δ(N). As Mδ is a strict contraction, it follows that N ∈ Gδ .

It follows that Ψ≈(Mx) is unitarily equivalent to Ψ(N), and Φ≈(Mx) is unitarily
equivalent to Φ(N), so by (6.1), multiplication by Φ≈(Mx) applied to any vector
yields something of smaller norm than multiplication by Ψ≈(Mx). Both of these
matrices are in L(H2

L ⊗H,H2
L ⊗K).

Let µ = dim(H), and let f = ( f1, . . . , fµ)t ∈ H2
L ⊗H be the vector where f j is

the representative in VL(H,C)/NL of the row with the constant function 1 in the j-th
slot and zero elsewhere. We get

〈Φ≈(Mx) f ,Φ≈(Mx) f 〉H2
L⊗K2

=

〈
(

Φ11(x) · · · Φ1µ(x)
)(

Φ21(x) · · · Φ2µ(x)
)

...


 f1

...
fµ

 ,


(

Φ11(x) · · · Φ1µ(x)
)(

Φ21(x) · · · Φ2µ(x)
)

...


 f1

...
fµ

〉
H2

L⊗K2

=

〈
(

Φ11(x), . . . , Φ1µ(x)
)(

Φ21(x), . . . , Φ2µ(x)
)

...

 ,


(

Φ11(x), . . . , Φ1µ(x)
)(

Φ21(x), . . . , Φ2µ(x)
)

...

〉
H2

L⊗K2

=
∑

k

〈(
Φk1(x), . . . ,Φkµ(x)

)
,
(

Φk1(x), . . . ,Φkµ(x)
)〉

H2
L

=
∑

k

L]
( µ∑

j=1

Φk j(y)∗Φk j(x)
)

= L]
(

Φ(y)∗Φ(x)
)

is smaller than the same expression with Ψ in lieu of Φ. Therefore

L
(

Θ(y, x)
)
≥ 0,

as desired.
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Proposition 6.7

Θ(y, x) = Ψ(y)∗Ψ(x)− Φ(y)∗Φ(x) ∈ CL(H)(V).

Proof By Lemma 6.6, we have Θ ∈ Cτ
L(H)(V) for all τ between ρ and 1. By

Lemma 6.1, for each τ we have

(6.14) Θ(y, x) =

N∑
i=1

u(τ )
i (y)∗[τ 2 id−δ(y)∗δ(x)]u(τ )

i (x).

As in the proof of Proposition 6.4, we can use compactness to extract a sequence τi

so that the right-hand side of (6.14) converges to an element in CL(H)(V).

6.2 Partial nc-Models

Definition 6.8 Let (E, S) be a well-organized pair and let

h(y, x) =

σ∑
i=1

fi(y)∗gi(x),

where each fi and gi are graded L(H,Ki)-valued functions on E. Assume E ⊂ Gδ . A
δ-model for h is a graded L(H,M⊗ C J)-valued function u on E such that

(6.15) h(y, x) = u(y)∗[1− δ(y)∗δ(x)]u(x), x, y ∈ E ∩ Gδ

for all x, y ∈ E. If in addition u is a partial nc-function, we say the model is partial
nc and if the model is S-invariant, we say the model is S-invariant. If M is finite
dimensional, we say the model is finite dimensional.

If v is a graded L(H,K)-valued function on E, we say v has a δ-model if
[id−v(y)∗v(x)] does.

Before continuing we make a few clarifying remarks about the meaning of the
formula in (6.15). To say that u is an S-invariant partial L(H,M ⊗ C J)-valued nc-
function means that

∀m≤n∀x∈E∩Md
m

u(x) ∈ L(Cm ⊗H,Cm ⊗M⊗ C J),

∀x,y∈Ex ⊕ y ∈ E =⇒ u(x ⊕ y) = u(x)⊕ u(y), and

∀m≤n∀x∈E∩Md
m
∀S∈S∩Im S−1xS ∈ E =⇒ u(S−1xS) = (S−1 ⊗ idM⊗C J )u(x)(S⊗ idH).

We denote the collection of functions u satisfying these axioms by VL(H,M⊗C J). In
the special case when M = `2 or `2

N , we say the model is special. Clearly, as E is finite,
if a graded function v has a partial nc-model, then v has a special partial nc-model.

Proposition 6.9 Let (E, S) be a well-organized pair with E ⊆ Gδ . If Θ(y, x) is as
in (6.2) and is non-negative on Gδ (i.e., it satisfies (6.1)), then Θ|E[2] has an S-invariant
finite-dimensional partial nc-model.

Proof Let (E, S) be a well-organized pair with E ⊆ Gδ . By Proposition 6.7,
Θ(y, x) ∈ CL(H)(V). Hence, by the definition of CL(H)(V) and Lemma 6.1,

Θ(y, x) = u(y)∗[id−δ(y)∗δ(x)]u(x),
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where u ∈ V
L(H,`2( J)

N ).

6.3 Partial nc-realizations

Definition 6.10 Let (E, S) be a well-organized pair of size n and let Ω be a graded
L(K1,K2)-valued function defined on E. A δ-realization for Ω is a pair (δ, J), where J
is a finite sequence of operators

J = 〈 Jm〉nm=1 =

〈[
Am Bm

Cm Dm

]〉 n

m=1

with Jm acting isometrically from Cm⊗K1⊕ (Cm⊗ `2( J)
) to Cm⊗K2⊕ (Cm⊗ `2(I)

)
for each m ≤ n, and such that

(6.16) Ω(x) = Am + Bmδ(x)
(

id−Dmδ(x)
)−1

Cm

for each m ≤ n and x ∈ E ∩Md
m. If in addition,

(6.17) v(x) :=
(

id−Dmδ(x)
)−1

Cm

is an `2(I)
-valued partial nc-function on E (resp. (S ∩ Im)-invariant for each m ≤ n),

we say that (δ, J) is partial nc (resp. S-invariant).

Theorem 6.11 Let (E, S) be a well-organized pair, and let Ψ ∈ VL(H,K1) and Φ be
in VL(H,K2). If there exists a function Ω in the closed unit ball of VL(K1,K2) that has an
S-invariant partial nc δ-realization and satisfies ΩΨ = Φ, then

[Ψ∗(y)Ψ(x)− Φ(y)∗Φ(x)]

has an S-invariant partial nc-model. The converse holds if Ψ is bounded below on E.
If Ψ is not bounded below on E, then there exists a function Ω in the closed unit ball of
VL(K1,K2) that has a δ-realization and satisfies ΩΨ = Φ,

Proof Suppose [Ψ∗(y)Ψ(x)− Φ(y)∗Φ(x)] has an S-invariant partial nc-model, so
there exists u ∈ V

L(H,`2( J)
N ) satisfying

(6.18) Ψ∗(y)Ψ(x)− Φ(y)∗Φ(x) = u(y)∗[id−δ(y)∗δ(x)]u(x).

We can rewrite (6.18) to say that for each 1 ≤ m ≤ n, the map

(6.19) Jm =

[
Am Bm

Cm Dm

]
:

(
Ψ(x)

δ(x)u(x)

)
7→
(

Φ(x)
u(x)

)
is an isometry from the span in (K1 ⊕ `2( J)

N )⊗ Cm of{
ran

(
Ψ(x)

δ(x)u(x)

)
: x ∈ E ∩Md

m

}
to the span in (K2 ⊕ `2( J)

N )⊗ Cm of{
ran

(
Φ(x)
u(x)

)
: x ∈ E ∩Md

m

}
.
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Replacing `2
N by `2 if necessary, we can extend Jm to an isometry from all of

(K1 ⊕ `2( J)
)⊗ Cm to (K2 ⊕ `2( J)

)⊗ Cm.
Define Ω and v on E ∩Md

m by (6.16) and (6.17) respectively. Then (6.19) and the
fact that Jm is an isometry yield

Ω(x)Ψ(x) = Φ(x) ∀x ∈ E,(6.20)

u(x) = v(x)Ψ(x) ∀x ∈ E,(6.21)

id−Ω(y)∗Ω(x) = v(y)∗[id−δ(y)∗δ(x)]v(x) ∀(x, y) ∈ E[2].(6.22)

Since u is partial nc on E and Ψ is nc, it would follow from (6.21) that v is also partial
nc on E if Ψ(x) were bounded below.

Conversely, suppose Ω existed as in the statement of the theorem. Then (6.20)
and (6.22) would hold, and defining u(x) := v(x)Ψ(x) gives (6.18).

Remark 6.12 If Ψ is not bounded below, but each Cm and Dm in (6.19) satisfy
Cm = idCm ⊗C1 and Dm = idCm ⊗D1, then the converse still holds. Indeed, follow
the above proof through (6.22). Then define a new v by leaving v(x) unchanged
on Bm, and extending it by Proposition 5.3 to be S-invariant partial nc on E. Define
Ω(x) := Am + Bmδ(x)v(x). Since Ψ is nc, (6.21) will still hold, and so will (6.20)
and (6.22). To check (6.17), we wish to know whether

idCm ⊗C1 =
(

id− idCm ⊗D1δ(x)
)−1

v(x).

Both sides are equal on Bm, and both sides are S-invariant partial nc on E, therefore
they agree on all of E. In Theorem 8.1, we show that Cm and Dm can be chosen with
this special form.

7 Full Models and Realizations

Fix again a matrix δ of nc-polynomials, and assume that δ is J-by- J and that Gδ

is non-empty. Let H,K1,K2, and M be Hilbert spaces, with H,K1 and K2 finite
dimensional. For the rest of this section, define

(7.1) Θ(y, x) = Ψ(y)∗Ψ(x)− Φ(y)∗Φ(x),

where

Ψ ∈ H∞L(H,K1)(Gδ), Φ ∈ H∞L(H,K2)(Gδ),

and

(7.2) Θ(x, x) ≥ 0, ∀x ∈ Gδ.

We want to conclude that there exists a function Ω in the ball of H∞L(K1,K2) such that

(7.3) Ω(x)Ψ(x) = Φ(x), ∀x ∈ Gδ.

Definition 7.1 Let h(y, x) be an L(H)-valued graded function on G[2]
δ . A δ-model

for h is a graded L(H,M⊗ C J)-valued function u on Gδ , such that

h(y, x) = u(y)∗[id−δ(y)∗δ(x)]u(x)
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for all x, y ∈ Gδ . We say the model is nc (resp. locally bounded, holomorphic) if u is nc
(resp. locally bounded, holomorphic).

Definition 7.2 Let Ω be a gradedL(K1,K2) valued function on Gδ . A δ-realization
for Ω is a pair (δ, J), where J is a sequence of operators

J = 〈 Jm〉∞m=1 =

〈[
Am Bm

Cm Dm

]〉∞
m=1

such that Jm acts isometrically from Cm⊗K1⊕(Cm⊗`2( J)
) to Cm⊗K2⊕(Cm⊗`2( J)

)
for each m, and such that

Ωm(x) := Am + Bmδ(x)
(

id−Dmδ(x)
)−1

Cm.

If, in addition,

v(x) =
(

id−Dmδ(x)
)−1

Cm

is an nc-function on Gδ , we say that (δ, J) is an nc-realization.
If, for each m, we have[

Am Bm

Cm Dm

]
=

[
idCm ⊗A1 idCm ⊗B1

idCm ⊗C1 idCm ⊗D1

]
,

we say that (δ, J) is a free realization.

Note that a free realization is automatically an nc-realization. The next proposi-
tion follows by the same lurking isometry argument that proved Theorem 6.11.

Proposition 7.3 Let Ω be a graded L(K1,K2) valued function on Gδ . Then Ω has a
δ-realization if and only if [id−Ω(y)∗Ω(x)] has a δ-model and Ω has a δ nc-realization
if and only if [id−Ω(y)∗Ω(x)] has a δ nc-model. If Ω has a δ-realization, then auto-
matically the model is both locally bounded and holomorphic.

Theorem 7.4 Let Θ be as in (7.1) and satisfy (7.2). Then Θ has a δ nc-model.

The remainder of this section will be devoted to the proof of Theorem 7.4. This
theorem is strengthened in Theorem 8.1, where it is shown that one can choose Ω
satisfying (7.3) so that it has a free realization.

When d = 1, Theorem 7.4 is well-known; see, e.g., [4] for a treatment in the case
of the unit disk. In one variable, generalizing to Gδ presents few difficulties.

When d > 1, in the commutative case, the theorem was first proved in the scalar
case by Ambrozie and Timotin [8]; it was extended to the operator valued case by
Ball and Bolotnikov in [10]. See also [5] for an alternative treatment. In the non-
commutative case, Ball, Groenewald and Malakorn [11] proved this theorem for Gδs
that come from certain bipartite graphs; this includes the most important examples:
the non-commutative ball and the non-commutative polydisk.

We shall assume for the rest of this section that d ≥ 2, as the d = 1 case can be
immediately deduced from the d = 2 case.
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Step 1. In this step, for each fixed n ≥ 2, we shall construct a sequence (Eτ , Sτ ) of
well-organized partial nc-sets of size n. In the next step, after taking a cluster point
of the sequence, this will give rise to a holomorphic realization of Ω on Gδ that is “nc
up to order n”.

Fix n. Many of the objects in this step of the proof (and steps 2 and 3 as well) will
depend on n, though our notation will not reflect this fact. For M ∈Md

m we define

Comm(M) = {A ∈Mm | AMr = MrA, for r = 1, . . . , d}.

Lemma 7.5 For each m = 1, . . . , n, there exists a sequence, 〈Bm,t〉∞t=1 in Gδ ∩Md
m

such that

∀t1,t2 t1 6= t2 =⇒ Bm,t1 6= Bm,t2 ,(7.4)

∀t Bm,t is generic,(7.5)

∀t Comm(Bm,t ) = C idCm , and(7.6)

{Bm,t | t ∈ N} is dense in Gδ ∩Md
m.(7.7)

Proof This is easy to verify, because (7.5) and (7.6) only fail on sets of lower dimen-
sion than Md

m.

Fix sequences 〈Bm,t〉∞t=1 satisfying the properties of Lemma 7.5. For each m =
1, . . . , n and τ ∈ N, we define

Bm,τ = {Bm,t | 1 ≤ t ≤ τ}.
We are going to inductively choose elements 〈Sk,m〉∞k=1 in Im, for 1 ≤ m ≤ n. Once
they are chosen, we define

Sτ = {Sk,m : 1 ≤ k ≤ τ , 2 ≤ m ≤ n},

and we define Rm,τ to consist of all R ∈Md
m that have the form,

R =
|π|⊕
i=1

Mi

where π is a nontrivial partition of m and

Mi ∈ Bπ(i),τ ∪
⋃

1≤k≤τ

(
S−1

k,π(i)Bπ(i),τSk,π(i) ∩ Gδ

)
, i = 1, . . . , |π|.

Note that with this definition R1,τ = ∅, as π is required to be nontrivial. We define
Em,τ ⊆ Gδ ∩Md

m by

(7.8) Em,τ =
τ⋃

k=1

(
Gδ ∩ S−1

k,mBm,τSk,m

)
∪Bm,τ ∪ Rm,τ , 2 ≤ m ≤ n.

We let E1,τ = B1,τ . Finally, define Eτ by

Eτ =
τ⋃

m=1
Em,τ .

Lemma 7.6 The set Sτ can be chosen so that for each m with 2 ≤ m ≤ n, the set
{Sk,m : k ∈ N} is dense in Im and the following hold:
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(i) S−1Bm,τS ⊂ Gm∀S ∈ Sτ ∩ Im.
(ii) ∀Sk1,m, Sk2,m ∈ Sτ ∩ Im, the set S−1

k1,m
S−1

k2,m
Bm,τSk2,mSk1,m is disjoint from Em,τ .

(iii) ∀k1 6= k2 in {1, 2, . . . , τ}, the set S−1
k1,m

Bm,τSk1,m is disjoint from S−1
k2,m

Bm,τSk2,m

and from Bm,τ .
(iv) If R ∈ Rm,τ and for some 1 ≤ k ≤ τ we have S−1

k,mRSk,m ∈ Eτ , then R ∈ Σd
m.

Proof This can be done inductively, because each of the conditions holds except on
a set in Im of lower dimension than the whole space.

Lemma 7.7 For each τ ∈ N, (Eτ , Sτ ) is a well-organized pair of size n.

Proof The necessary conditions follow from Lemma 7.6.

Step 2. In this step we shall construct an Sτ -invariant partial nc-model for Θ|E[2]
τ

(where (Eτ , Sτ ) is the sequence of well-organized pairs constructed in step one) that
is suitable for forming a cluster point. For each τ ∈ N, let Vτ denote the vector space
of Sτ -invariant partial nc-functions on Eτ .

First, observe by Proposition 6.9 that for each τ ∈ N, Θ|E[2]
τ has a special finite-

dimensional model, so there exist uτ ∈ Vτ
L(H,`2( J))

such that

(7.9) Θ(y, x) = uτ (y)∗
((

id−δ(y)∗δ(x)
)
⊗ id`2( J)

)
uτ (x)

for all x, y ∈ Eτ .

If τ ∈ N, u ∈ Vτ
L(H,`2( J))

, and V is a unitary operator acting on `2( J)
, we define

V ∗ u ∈ Vτ
L(H,`2( J))

by the formula

V ∗ u(x) = (idCm ⊗V )u(x), 1 ≤ m ≤ n, x ∈ Eτ ∩Md
m.

Observe that with this definition, if V is a unitary acting on `2( J)
, then (7.9) holds

with uτ replaced with Vτ ∗ uτ .
Let {ξ1, . . . , ξµ} be a basis for H.

Lemma 7.8 Let 〈Ms〉σs=1 be a finite sequence in M[d] with Ms ∈Mns for each s. Let u

be a graded L(H, `2( J)
) valued function on {Ms | 1 ≤ s ≤ σ}. There exists a unitary

operator V acting on `2( J)
such that for each s ≤ σ,

(7.10) ran
(

(V ∗ u)(Ms)
)
⊆ Cns ⊗ `2( J)

µ(n2
1+···+n2

s ).

Proof For each 1 ≤ r ≤ J, let ur be the r-th component of u. For each s, each
i, j ≤ ns, and each 1 ≤ α ≤ µ, define µn2

s elements wr
s,i, j,α ∈ `2 by

(7.11) wr
s,i, j,α =

∞∑
l=1

〈ur(Ms)e j ⊗ ξα, ei ⊗~el〉~el.

In (7.11), {ei} is the standard basis for Cn and {~el} denotes the standard basis for `2.
For each s ≤ σ define a subspace Ws of `2 by

Wr
s = span{wr

s,i, j,α | 1 ≤ i, j ≤ ns}, Ws =
⊕

Wr
s ,
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and set

Xr
s = Wr

1 + · · · + Wr
s .

If we set νs = maxr dimXr
s , then there exists a unitary operator acting on `2 satisfying

V (Xr
1) = `2

ν1 , V (Xr
s 	 Xr

s−1) = `2
νs 	 `2

νs−1 for s = 2, . . . , σ, and V (Xr⊥
σ ) = `2 ⊥

νσ .
For such a V we have that

(7.12) V (Xr
s) = `2

νs ⊆ `2
µ(n2

1+···+n2
s )

for each s ≤ σ.
Now fix s ≤ σ and j ≤ ns. Using (7.11) and (7.12), we see that

(V ∗ u)(Ms)(e j ⊗ ξα) = (idCns ⊗V )u(Ms)e j ⊗ ξα

= (idCns ⊗V )
⊕

r

∑
i,l

〈ur(Ms)e j ⊗ ξα, ei ⊗~el〉ei ⊗~el

=
⊕

r

∑
i

(
ei ⊗V

(∑
l

〈ur(Ms)e j ⊗ ξα, ei ⊗~el〉~el

))
=
⊕

r

∑
i

(
ei ⊗V (wr

s,i, j,α)
)
∈ Cns ⊗V (Ws)

⊆ Cns ⊗V
( J⊕

r=1
Xr

s

)
⊆ Cns ⊗ `2( J)

µ(n2
1+···+n2

s ).

As e1, . . . ens span Cns , this proves that (7.10) holds for each s ≤ σ.

Fix τ and let uτ be as in (7.9). We successively enumerate the elements of
E1, E2 \ E1, E3 \ E2, . . . , Eτ \ Eτ−1 and apply Lemma 7.8 to obtain a unitary Vτ and
integers Nt (that do not depend on τ ) such that for each t ≤ τ ,

ran
(

(Vτ ∗ u)(x)
)
⊆ Cm ⊗ `2( J)

Nt
1 ≤ m ≤ Nt , x ∈ Et ∩Md

m.

Replacing uτ in (7.9) with Vτ ∗ uτ we thereby obtain the following improvement
on (7.9).

Lemma 7.9 There exists a sequence 〈Nt〉∞t=1 such that for each τ ∈ N, there exist

(7.13) uτ ∈ Vτ
L(H,`2( J))

such that

Θ(y, x) = uτ (y)∗
(

[id−δ(y)∗δ(x)]⊗ id`2

)
uτ (x)

for all x, y ∈ Eτ and such that for each t ≤ τ ,

(7.14) ran
(

uτ (x)
)
⊆ Cm ⊗ `2( J)

Nt
1 ≤ m ≤ n, x ∈ Et ∩Md

m.
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Step 3. In this step we shall form a cluster point of the model described in Lemma
7.9. This will result in a model for Θ on Gδ that is “nc to order n” as described in
Lemma 7.11 below.

Fix τ and let uτ be as in Lemma 7.9. Note that (7.13) implies that

(7.15) uτ (M1 ⊕M2) = uτ (M1)⊕ uτ (M2)

whenever M1 ∈ Bm1,τ , M2 ∈ Bm2,τ and m1 + m2 ≤ n. Also, (7.13) implies that

(7.16) uτ (S−1MS) = (S−1 ⊗ id`2( J) )uτ (M)(S⊗ idH)

whenever M ∈ Bn,τ , S ∈ Sτ , and S−1MS ∈ Gδ . By Lemma 7.9 and Theorem 6.11,
there exist for m = 1, . . . , n isometries (which depend on τ , though we suppress this
in the notation)[

Am Bm

Cm Dm

]
: Cm ⊗K1 ⊕ (Cm ⊗ `2( J)

)→ Cm ⊗K2 ⊕ (Cm ⊗ `2( J)
)

such that for each m = 1, . . . , n,

(7.17) Ωτ (x) := Am + Bmδ(x)
(

id−Dmδ(x)
)−1

Cm, x ∈ Eτ ∩Md
m,

satisfies

(7.18) Ωτ (x)Ψ(x) = Φ(x),

and

(7.19) vτ (x) :=
(

id−Dmδ(x)
)−1

Cm,

satisfies

(7.20) vτ (x)Ψ(x) = uτ (x), x ∈ Eτ ∩Md
m.

For m > n, choose[
Am Bm

Cm Dm

]
: Cm ⊗K1 ⊕ (Cm ⊗ `2( J)

)→ Cm ⊗K2 ⊕ (Cm ⊗ `2( J)
)

to be an arbitrary isometry.

Define an L(K1,K2)-valued graded function Ωτ , an L(K1, `
2( J)

)-valued graded

function Vτ , and an L(H, `2( J)
)-valued graded function Uτ , on Gδ by the formulas

Ωτ (x) = Am + Bmδ(x)
(

id−Dmδ(x)
)−1

Cm, m ∈ N, x ∈ Gδ ∩Md
m,(7.21)

Vτ (x) =
(

id−Dmδ(x)
)−1

Cm, m ∈ N, x ∈ Gδ ∩Md
m,(7.22)

Uτ (x) = Vτ (x)Ψ(x), m ∈ N, x ∈ Gδ ∩Md
m.(7.23)

Note that with these definitions that

(7.24) id−Ωτ (y)∗Ωτ (x) = Vτ (y)∗
(

id−δ(y)∗δ(x)
)

Vτ (x)

whenever m ∈ N and x ∈ Gδ ∩Md
m.

It follows easily from (7.21) and (7.22) that 〈Ωτ 〉∞τ=1 and 〈Vτ 〉∞τ=1 are uniformly lo-
cally bounded sequences of holomorphic functions on Gδ . Hence, by Proposition 4.4
there exist a subsequence τ j and holomorphic functions Ω and U such that

(7.25) Ωτ j → Ω

https://doi.org/10.4153/CJM-2014-024-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2014-024-1


274 J. Agler and J. E. McCarthy

and

(7.26) Vτ j

wk−→ V.

Let U = V Ψ. Now notice that (7.17) and (7.21) imply that

Ωτ |Eτ = Ω|Eτ

for each τ . Hence, as both ΩΨ and Φ are holomorphic, (7.7) and (7.25) imply that

(7.27) Ω(x)Ψ(x) = Φ(x)

for each m ≤ n and x ∈ Gδ ∩Md
m. Also notice that (7.19), (7.20) and (7.22) imply

that

(7.28) Uτ |Eτ = uτ |Eτ = U |Eτ

for each τ . Hence, it follows from (7.14) that if m ≤ n, t ≤ τ j , and x ∈ Et ∩Md
m,

then

ran
(

Uτ j (x)
)
⊆ Cm ⊗ `2( J)

Nt
.

Therefore, by (7.23) and (7.26),

(7.29) Uτ j (x)→ U (x)

whenever t ∈ N, m ≤ n and x ∈ Et ∩Md
m. Combining (7.24), (7.27), and (7.29) gives

that

(7.30) Ψ(y)∗Ψ(x)− Φ(y)∗Φ(x) = U (y)∗[id−δ(y)∗δ(x)]U (x)

whenever x, y ∈
⋃∞
τ=1 Eτ . As both the right- and left-hand sides of (7.30) are holo-

morphic in x and coholomorphic in y, it follows that

∀m≤n∀x∈Gδ∩Md
m
Ψ(y)∗Ψ(x)− Φ(y)∗Φ(x) = U (y)∗[id−δ(y)∗δ(x)]U (x).

Two additional properties of U , as constructed above, are described in the following
definition.

Definition 7.10 Let D be an nc-domain. We say that U is an L(H, `2( J)
)-valued

nc-function to order n on D if U is a graded L(H, `2( J)
)-valued function defined on

D ∩
⋃

m≤n Md
m, U is holomorphic,

(7.31)
x1 ∈ D ∩Md

m1
, x2 ∈ D ∩Md

m2
, m1 + m2 ≤ n =⇒ U (x1 ⊕ x2) = U (x1)⊕U (x2),

and

m ≤ n, x ∈ D ∩Md
m, S ∈ Im, S−1xS ∈ D ∩Md

m

=⇒ U (S−1xS) = (S−1 ⊗ id`2( J) ) U (x)(S⊗ idH).

(7.32)

The definition is made for a general nc-domain D. We wish to show that (7.31)
and (7.32) hold when D = Gδ and U is as constructed above.
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To prove (7.31), assume that M1 ∈ Bm1,t and M2 ∈ Bm2,t where m1 + m2 ≤ n.
Then

U (M1 ⊕M2) = lim
j→∞

Uτ j (M1 ⊕M2) by (7.29),

= lim
j→∞

uτ j (M1 ⊕M2) by (7.28),

= lim
j→∞

uτ j (M1)⊕ uτ j (M2) by (7.15),

= lim
j→∞

Uτ j (M1)⊕Uτ j (M2) by (7.28),

= U (M1)⊕U (M2) by (7.29).

Hence, as U is holomorphic, (7.7) implies that (7.31) holds.
To prove (7.32) assume that M ∈ Bm,t , S ∈ St , and S−1MS ∈ Gδ (so that by (7.8),

S−1MS ∈ Em,t ). Then

U (S−1MS) = lim
j→∞

Uτ j (S−1MS) by (7.29),

= lim
j→∞

uτ j (S−1MS) by (7.28),

= lim
j→∞

(S−1 ⊗ id`2( J) )uτ j (M)(S⊗ idH) by (7.16),

= lim
j→∞

(S−1 ⊗ id`2( J) )Uτ j (M)(S⊗ idH) by (7.28),

= S−1 ⊗ id`2( J)U (M)S⊗ idH by (7.29).

The following lemma summarizes what has been proved. The lemma is expressed
in a notation that reflects the dependence of U on n.

Lemma 7.11 Suppose that Ψ is an L(H,K1) valued nc-function on Gδ , Φ is an
L(H,K2)-valued nc-function on Gδ , and Θ(x, x) = Ψ(x)∗Ψ(x) − Φ(x)∗Φ(x) ≥ 0

on Gδ . For each n ∈ N, there exists Un such that Un is an `2( J)
-valued nc-function to

order n on Gδ and such that

(7.33) Ψ(y)∗Ψ(x)− Φ(y)∗Φ(x) = Un(y)∗[id−δ(y)∗δ(x)]Un(x).

Step 4. In this step we complete the proof that Θ has a δ-model by taking a cluster
point of the “order n” models described in Lemma 7.11.

Let 〈Un〉∞n=1 be a sequence with Un as in Lemma 7.11 for each n ∈ N. For each
n ∈ N, choose a dense sequence 〈Mn,τ 〉∞τ=1 in Gδ ∩Md

n and a dense sequence 〈Sn,τ 〉
in In. As in the proof of Lemma 7.9, we can employ Lemma 7.8 to obtain a sequence

of unitaries 〈Vn〉∞n=1 acting on `2( J)
such that if we define Wn = Vn ∗ Un, then Wn

satisfies the conditions of Lemma 7.11 and in addition satisfies

∀n∈N ∃N ∀m≤n ∀s,t≤m ran Wm(Ms,t ) ⊆ Cs ⊗ `2( J)
N .

Hence, if we use Proposition 4.4 to obtain anL(H, `2( J)
)-valued holomorphic graded

function W on Gδ and a subsequence 〈n j〉 such that Wn j

wk−→W , then

(7.34) ∀n,τ∈N Wn j (Mn,τ )→W (Mn,τ ).
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(Note that (7.34) is in finite dimensions, so weak convergence gives norm conver-
gence). To see that W gives rise to an nc-model for Θ, we need to prove the following
three assertions:

(7.35) Ψ(y)∗Ψ(x)− Φ(y)∗Φ(x) = W (y)∗[id−δ(y)∗δ(x)]W (x)

whenever n ∈ N and x, y ∈ Gδ ∩Md
n,

(7.36) W (x1 ⊕ x2) = W (x1)⊕W (x2)

whenever n1, n2 ∈ N, x1 ∈ Gδ ∩Md
n1

, and x2 ∈ Gδ ∩Md
n2

, and

(7.37) W (S−1xS) = (S−1 ⊗ id`2( J) ) W (x)S

whenever n ∈ N, x ∈ Gδ ∩Md
n, S ∈ In, and S−1xS ∈ Gδ .

To see that (7.35) holds, observe that (7.33) and (7.34) imply that (7.35) holds for
each n whenever x, y ∈ {Mn,τ | τ ∈ N}. Hence, as x, y ∈ {Mn,τ | τ ∈ N} is dense
in Gδ and both sides of (7.35) are holomorphic in x and coholomorphic in y, in fact,
(7.35) holds for all x, y ∈ Gδ ∩Md

n.
(7.36) follows by noting that (7.31) and (7.34) imply that (7.36) holds whenever

x1 ∈ {Mn1,τ | τ ∈ N} and x2 ∈ {Mn2,τ | τ ∈ N}. Hence, by density and continuity,
(7.36) holds for all x1 ∈ Gδ ∩ Md

n1
and x2 ∈ Gδ ∩ Md

n2
. Likewise, (7.37) follows

from (7.32) and (7.34).
This proves Theorem 7.4.

8 δ nc-models and nc-realizations

Theorem 8.1 Let H,K1,K2 be finite-dimensional Hilbert spaces. Let δ be an I × J
matrix with entries in Pd, and let Φ be a graded L(H,K2)-valued function on Gδ . Let
Θ(y, x) = Ψ(y)∗Ψ(x)− Φ(y)∗Φ(x). The following are equivalent.

(i) Θ(x, x) ≥ 0 on Gδ .
(ii) Θ has a δ nc-model.
(iii) There exists an nc L(K1,K2)-valued function Ω satisfying ΩΨ = Φ and such

that Ω has a free δ-realization.

Proof (i) implies (ii) by Theorem 7.4. (iii) implies (i) because by Proposition 7.3,
we have

id−Ω(y)∗Ω(x) = v(y)∗[1− δ(y)∗δ(x)]v(x).

Multiply by Ψ(y)∗ on the left and Ψ(x) on the right, then restrict to the diagonal, to
get Θ(x, x) ≥ 0.

Assume that (2) holds, i.e.,

(8.1) Ψ(y)∗Ψ(x)− Φ(y)∗Φ(x) = u(y)∗[1− δ(y)∗δ(x)]u(x)

holds, where u is an L(H, `2( J)
)-valued nc-function on Gδ . Observe that if n ∈ N,

S ∈ In, and we replace x with S−1xS in (8.1), then

Ψ(y)∗(S−1 ⊗ idK1 )Ψ(x)− Φ(y)∗(S−1 ⊗ idK2 )Φ(x)

= u(y)∗
(

S−1 ⊗ id`2( J) −δ(y)∗(S−1 ⊗ id`2(I) )δ(x)
)

u(x).
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Hence, as In is dense in Mn, we obtain that in fact,

Ψ(y)∗(C ⊗ idK1 )Ψ(x)− Φ(y)∗(C ⊗ idK2 )Φ(x)

= u(y)∗
(

C ⊗ id`2( J) −δ(y)∗(C ⊗ id`2(I) )δ(x)
)

u(x),

(8.2)

for all C ∈Mn. For k = 1, . . . , n, define πk : Cn → C by the formula

πk(v) = vk, v = (v1, . . . , vn) ∈ Cn.

Letting C = π∗l πk in (8.2) and applying to v ⊗ η and w ⊗ ξ, with v,w in Cn and η, ξ
in H, leads to

〈πk ⊗ idK1 Ψ(x)v ⊗ η, πl ⊗ idK1 Ψ(y)w ⊗ ξ〉
− 〈πk ⊗ idK2 Φ(x)v ⊗ η, πl ⊗ idK2 Φ(y)w ⊗ ξ〉

= 〈(πk ⊗ id`2( J) )u(x)v ⊗ η, (πl ⊗ id`2( J) )u(y)w ⊗ ξ〉(8.3)

− 〈(πk ⊗ id`2(I) )δ(x)u(x)v ⊗ η, (πl ⊗ id`2(I) )δ(y)u(y)w ⊗ ξ〉 .

For each k = 1, . . . , n, each v ∈ Cn, each η ∈ H, and each x ∈ Gδ ∩Md
n define a

vector pk,v,η,x ∈ K1 ⊕ `2(I)
by

pk,v,η,x = (πk ⊗ idK1 )Ψ(x)(v ⊗ η)⊕ (πk ⊗ id`2(I) )δ(x)u(x)(v ⊗ η).

Also, define qk,v,η,x ∈ K2 ⊕ `2( J)

qk,v,η,x = (πk ⊗ idK2 )Φ(x)(v ⊗ η)⊕ (πk ⊗ id`2( J) )u(x)(v ⊗ η).

In terms of the vectors, pk,v,η,x and qk,v,η,x, (8.3) can be rewritten in the form,〈
pk,v,η,x, pl,w,ξ,y

〉
=
〈

qk,v,η,x, ql,w,ξ,y

〉
.

Hence, if we let

Pn = span{pk,v,η,x | k ≤ n, v ∈ Cn, η ∈ H, x ∈ Gδ ∩Md
n}

and
Qn = span{qk,v,η,x | k ≤ n, v ∈ Cn, η ∈ H, x ∈ Gδ ∩Md

n},
then there exists an isometry Ln : Pn → Qn satisfying

Ln pk,v,η,x = qk,v,η,x

for all k, v, and x.
Now let n ≤ m. Fix k ≤ n, v ∈ Cn, η ∈ H, and x ∈ Gδ ∩Md

n. Choose v0 ∈ Cm−n

and x0 ∈ Gδ ∩Md
m−n and then define v1 = v ⊕ v0 and x1 = x ⊕ x0. We have that

pk,v1,η,x1 = (πk ⊗ idK1 )Ψ(x)(v1 ⊗ η)⊕ (πk ⊗ id`2(I) )δ(x1)u(x1)(v1 ⊗ η)

= (πk ⊗ idK1 )
(

Ψ(x)⊕Ψ(x0)
)

(v ⊗ η ⊕ v0 ⊗ η)

⊕ (πk ⊗ id`2(I) )δ(x ⊕ x0)u(x ⊕ x0)(v ⊗ η ⊕ v0 ⊗ η)

= (πk ⊗ idK1 )
(

Ψ(x)v ⊗ η ⊕Ψ(x0)v0 ⊗ η
)

⊕ (πk ⊗ id`2(I) )
(
δ(x)u(x)v ⊗ η ⊕ δ(x0)u(x0)v0 ⊗ η

)
= (πk ⊗ idK1 )

(
Ψ(x)v ⊗ η

)
⊕ (πk ⊗ id`2(I) )

(
δ(x)u(x)v ⊗ η

)
= pk,v,η,x.
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This shows that if n ≤ m, k ≤ n, v ∈ Cn, η ∈ H and x ∈ Gδ ∩Md
n, then pk,v,η,x =

pk,v1,η,x1 ∈ Pm. Therefore,

(8.4) Pn ⊆ Pm

whenever n ≤ m. In like fashion, if k ≤ n, v ∈ Cn, η ∈ H and x ∈ Gδ ∩Md
n, then

qk,v,η,x = qk,v1,η,x1 , so that

(8.5) Qn ⊆ Qm.

Finally, observe that when k ≤ n, v ∈ Cn and x ∈ Gδ ∩ Md
n and v1 and x1 are as

defined above,

Ln pk,v,η,x = qk,v,η,x = qk,v1,η,x1

= Lm pk,v1,η,x1 = Lm pk,v,η,x.

Therefore, when n ≤ m,

(8.6) Ln = Lm|Pn.

Let P = (
⋃∞

n=1 Pn)− ⊆ K1 ⊕ `2(I)
and Q = (

⋃∞
n=1 Qn)− ⊆ K2 ⊕ `2( J)

. Then (8.4),
(8.5), and (8.6) together imply that there exists an isometry L : P → Q such that
Lpk,v,η,x = qk,v,η,x whenever n ∈ N, k ≤ n, v ∈ Cn, η ∈ H, and x ∈ Gδ ∩Md

n. By
replacing u in (8.1) with (idCn ⊗τ ( J))u, where τ : `2 → `2 is an isometry with ran(τ )
having infinite codimension in `2, we can ensure that P has infinite codimension

in K1 ⊕ `2(I)
and Q has infinite codimension in K2 ⊕ `2( J)

. Hence, there exists an
isometry (or even a Hilbert space isomorphism) J1 : K1 ⊕ `2(I) → K2 ⊕ `2( J)

such
that J1 pk,v,η,x = qk,v,η,x whenever n ∈ N, k ≤ n, v ∈ Cn and x ∈ Gδ ∩Md

n.
There remains to show that Jn = idCn ⊗ J1 defines an nc-realization of Ω. First, let

us show that

(8.7) (idCn ⊗ J1)

(
Ψ(x)

δ(x)u(x)

)
=

(
Φ(x)
u(x)

)
.

Fix n ∈ N, v ∈ Cn, η ∈ H, and x ∈ Gδ ∩Md
n. Then

(idCn ⊗ J1)
(

Ψ(x)v ⊗ η ⊕
(
δ(x)u(x)v ⊗ η

))
= (idCn ⊗ J1)

( n⊕
k=1

πkΨ(x)v ⊗ η ⊕
( n⊕

k=1
(πk ⊗ id`2(I) )δ(x)u(x)v ⊗ η

))
= (idCn ⊗ J1)

( n⊕
k=1

(
πkΨ(x)v ⊗ η ⊕ (πk ⊗ id`2(I) )δ(x)u(x)v ⊗ η

))
=

n⊕
k=1

J1

(
πkΨ(x)v ⊗ η ⊕ (πk ⊗ id`2(I) )δ(x)u(x)v ⊗ η

)
=

n⊕
k=1

J1 pk,v,η,x =
n⊕

k=1
qk,v,η,x

=
n⊕

k=1
πkΦ(x)v ⊗ η ⊕ (πk ⊗ id`2( J) )u(x)v ⊗ η

=
n⊕

k=1

(
πkΦ(x)v ⊗ η ⊕ (πk ⊗ id`2( J) )u(x)v ⊗ η

)
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=
n⊕

k=1
πkΦ(x)v ⊗ η ⊕

( n⊕
k=1

(πk ⊗ id`2( J) )u(x)v ⊗ η
)

= Φ(x)v ⊗ η ⊕ u(x)v ⊗ η.

Now, define

v(x) =
(

id−(idCn ⊗D1)δ(x)
)−1

(idCn ⊗C1),

Ω(x) = (idCn ⊗A1) + (idCn ⊗B1)δ(x)v(x), ∀x ∈ Gδ ∩Md
n.

Then Ω has a free δ-realization, because[
idCn ⊗A1 idCn ⊗B1

idCn ⊗C1 idCn ⊗D1

](
idCn ⊗ idK1

δ(x)v(x)

)
=

(
Ω(x)
v(x)

)
, ∀x ∈ Gδ ∩Md

n.

It follows from (8.7) that ΩΨ = Φ on Gδ .

Corollary 8.2 Suppose H and K1 are finite-dimensional Hilbert spaces and Φ ∈
ball
(

H∞L(H,K1)(Gδ)
)

. Then there exists an isometry

J1 =

[
A B
C D

]
: H ⊕ `2(I) → K1 ⊕ `2( J)

such that for x ∈ Gδ ∩Md
n,

Φ(x) = idCn ⊗A + (idCn ⊗B)δ(x)[idCn ⊗ id`2( J) −(idCn ⊗D)δ(x)]−1 idCn ⊗C.

Consequently, Φ has the power series expansion

Φ(x) = idCn ⊗A +
∞∑

k=0

(idCn ⊗B)δ(x)[(idCn ⊗D)δ(x)]k(idCn ⊗C),

which is absolutely convergent on Gδ .

Remark 8.3 If H and K1 are both C, then each term

(idCn ⊗B)δ(x)[(idCn ⊗D)δ(x)]k(idCn ⊗C)

is a non-commutative polynomial, whose terms are linear combinations of products
of k + 1 terms in the entries δi j(x). If one groups the terms by this homogeneity, then
the sum of these terms has norm at most ‖δ(x)‖k+1.

Corollary 8.2, in the case that δ(x) = (x1, . . . , xd), was proved by Helton, Klep
and McCullough [16, Proposition 7].

A special case of Theorem 8.1 is the non-commutative corona theorem. Take H

and K2 to be C, and choose Φ(x) = ε. Then we conclude with the following.

Theorem 8.4 Let ψ1, . . . , ψk be in H∞(Gδ) and satisfy

k∑
j=1

ψ j(x)∗ψ j(x) ≥ ε2 idCn ∀x ∈ Gδ ∩Md
n.
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Then there exist functions ω1, . . . , ωk in H∞(Gδ) satisfying ‖(ω1, . . . , ωk)‖ ≤ 1
ε in

H∞
L(Ck,C) such that

k∑
j=1

ω j(x)ψ j(x) = idCn ∀x ∈ Gδ ∩Md
n.

In the case d = 1 and Gδ is the unit disk, Theorem 8.4 is called the Toeplitz-corona
theorem. It was first proved by Arveson [9]; Rosenblum showed how to deduce Car-
leson’s corona theorem from the Toeplitz corona theorem in [23].

Another consequence of Theorem 8.1 is the following observation. Let Fδ be the
set of d-tuples T of commuting operators satisfying ‖δ(T)‖ ≤ 1. Recall from Defini-
tion 1.5 that

(8.8) ‖ f ‖δ,Comm = sup
T∈Fδ

σ(T)⊆Gδ

‖ f (T)‖ ,

and H∞δ,Comm is the set of analytic functions f on Gδ for which ‖ f ‖δ,Comm < ∞. (It
follows from [5] and [2] that the supremum in (8.8) is the same whether T runs
over commuting operators with Taylor spectrum in Gδ or commuting matrices with
a spanning set of joint eigenvectors, and joint eigenvalues that lie in Gδ).

Then every free analytic function in H∞(Gδ) has a free δ-realization, and this gives
a δ-realization for a function in H∞δ,Comm. Conversely, every function in H∞δ,Comm has
a δ-realization by [8], and this extends to a free δ-realization for some function φ
in H∞(Gδ). So we have the following.

Theorem 8.5 Let I = {φ ∈ H∞(Gδ) | φ|Md
1

= 0}. Then H∞(Gδ)/I is isometrically
isomorphic to H∞δ,Comm.

9 Oka Representation

Definition 9.1 The free topology on M[d] is the topology that has as a basis the sets
of the form Gδ where δ is a matrix of free polynomials in d variables.

That this definition actually defines a topology follows from the observation that
if δ1 and δ2 are matrices of polynomials, then Gδ1 ∩Gδ2 = Gδ1⊕δ2 . A basic property of
compact polynomially convex sets in Cd is that they can be approximated from above
by p-polyhedra (cf. [6, Lemma 7.4]). The following simple proposition asserts that
compact sets in the free topology can be approximated from above by polyhedra as
well.

Proposition 9.2 Let E ⊆ M[d] be a compact set in the free topology that is closed
under (finite) direct sums. If U is a neighborhood of E, and

E ⊂
⋃
α∈A

Gδα ⊆ U ,
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then there exists δ ∈ {δα : α ∈ A}, a single matrix of free polynomials in d variables,
and a positive number t > 1, such that

E ⊆ Gtδ ⊆ Gδ ⊆ U .

Proof Since E is compact and U is open, there are δ1, . . . , δN so that

E ⊆
N⋃

j=1
Gδ j ⊆ U .

We now claim that min1≤ j≤N maxM∈E ‖δ j(M)‖ < 1. Indeed, otherwise there would

be for each j an M j ∈ E such that ‖δ j(M j)‖ ≥ 1. Then
⊕N

j=1 M j would be in E, but
not in any Gδ j .

Choose j such that maxM∈E ‖δ j(M)‖ = r < 1. Let δ = δ j and choose t between 1
and 1/r.

Definition 9.3 An L(H,K)-valued free holomorphic function is a graded function
φ : D → L(H,K) such that D is a free open set, φ is an L(H,K)-valued graded
function on D, and for every M ∈ D, there exists a basic free neighborhood Gδ of M
in D such that φ is bounded and nc on Gδ .

If δ is a matrix of polynomials, we shall let

(9.1) Kδ := {M ∈M[d] : ‖δ(M)‖ ≤ 1}.

Definition 9.4 Let E ⊂M[d]. The polynomial hull of E is defined to be

Ê :=
⋂
{Kδ : E ⊆ Kδ}.

(If E is not contained in any Kδ , we declare Ê to be M[d].) We say a compact set is
polynomially convex if it equals its polynomial hull. We say an open set D is polyno-
mially convex if for any compact set E ⊂ D, the polynomial hull of E is a compact
subset of D.

Note that Ê is always an nc set, so if Ê is compact and contained in some open
set U , then by Proposition 9.2 it is contained in a single basic free open set in U .

Example 9.5 Consider the free annulus

A :=
⋃

0≤θ≤2π

{
x ∈M :

∥∥∥x − 3

4
eiθ id

∥∥∥ < 1

4

}
.

Suppose D is a polynomially convex free open set containing A. Letting E range over
the compact subsets of {z ∈ C : 1

2 < |z| < 1}, and using that Ê ⊂ D, we conclude
that D ∩M1 ⊇ D, so D contains all normal matrices with spectrum in D.

For each r < 1, we let E = rD. By Proposition 9.2, we conclude that there exists δ
such that Ê ⊂ Gδ ⊂ D. As δ is a contractive matrix-valued function on rD, it has a
realization formula, and so is contractive on all matrices M with ‖M‖ ≤ r. (Note that
in one variable, a polynomial is uniquely defined on M by its action on M1 = C). We
therefore conclude that D must contain the open unit matrix ball:

{M : ‖M‖ < 1} ⊆ D.
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So polynomial convexity has filled in the holes at all levels.

The following theorem is the free analogue of the Oka–Weil theorem.

Theorem 9.6 Let H and K be finite-dimensional Hilbert spaces. Let E ⊆ M[d] be
a compact set in the free topology, and assume that E is polynomially convex. Let U be
a free open set containing E, and let φ be a free holomorphic L(H,K)-valued function
defined on U . Then φ can be uniformly approximated on E by L(H,K)-valued free
polynomials.

Proof For each point M in E, there is a matrix δM of free polynomials such that
M ∈ GδM ⊆ U and φ is bounded on GδM . By Proposition 9.2, we can find a single
matrix δ of free polynomials, and t > 1, such that E ⊆ Gtδ ⊆ Gδ and such that φ
is bounded on Gδ . Hence, by Theorem 8.1, φ has a δ free realization. Using the
resulting Neumann series for φ (which converges uniformly on Gtδ) yields that φ can
be uniformly approximated by polynomials on E.

As an application of Theorem 9.6, the following result gives a purely holomorphic
characterization of free holomorphic functions. If φ is a graded function defined on
a free open set D, let us agree to say that φ is locally approximable by polynomials if
for each M ∈ D and ε > 0, there exists a free neighborhood U of M and a free
polynomial p such that

sup
x∈U∩D

‖φ(x)− p(x)‖ < ε.

Theorem 9.7 Let D be a free open set and let φ be a graded function defined on D.
Then φ is a free holomorphic function if and only if φ is locally approximable by poly-
nomials.

Proof Sufficiency follows because the uniform limit of free polynomials is nc and
bounded. For necessity, let M be in D. Then since D is open, there exists a matrix δ
of free polynomials, and t > 1, such that M ∈ Gtδ ⊆ Gδ . Now apply Theorem 9.6
with E = Ktδ .

10 Free Meromorphic Functions

It is a natural question to ask whether rational functions are free holomorphic away
from their poles. A rational function means any function that can be built up from
free polynomials by finitely many arithmetic operations. We shall say the polar set of
a rational function φ is the set of x ∈Md

n at which, at some stage in the evaluation of
the functionφ(x), one has to divide by a matrix that is not invertible. This depends on
the presentation of the function, so to be careful one should define rational functions
as an equivalence class of such expressions; see, e.g., [18, p. 7] for a discussion. We can
extend this notion to meromorphic functions on a free open set D, defining them to
be functions that can be built up from free holomorphic functions on D by finitely
many arithmetic operations.
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Theorem 10.1 Let φ and ψ be free holomorphic functions on a free open set D. Then
ψ[φ]−1 and [φ]−1ψ are free holomorphic off the zero set of φ.

Proof It is sufficient to prove that if φ is free holomorphic on D and φ(M) is in-
vertible for some point M in D, then there is a free open neighborhood of M in D

on which φ(x)−1 is bounded.
Since D is open, there exists δ such that M ∈ Gδ ⊆ D, and such that φ is bounded

by B on Gδ . Let T = φ(M), and let p be a polynomial in one variable satisfying
p(T) = 0, p(0) = 1. Let δ′ = δ ⊕ (2p ◦ φ). If N ∈ Gδ′ , then ‖p ◦ φ(N)‖ ≤ 1

2 , so

‖[id−p ◦ φ(N)]−1‖ ≤ 2.

Let φ(N) = S, and let c, β j ∈ C satisfy

1− p(z) = cz
∏

(z − β j).

Then

[id−p ◦ φ(N)]−1 =
1

c
S−1∏(S− β j)

−1.

Therefore
‖S−1‖ ≤ 2|c|

∏
(B + |β j |),

so φ(x)−1 is bounded on Gδ′ , as required.

11 Index

11.1 Notation

• Mn: The n-by-n matrices
• M[d] =

⋃∞
n=1 Md

n: second paragraph, Subsection 1.1
• In: Invertible n-by-n matrices (1.1)
• Un: Unitary n-by-n matrices (1.2)
• nc(D): Definition 1.2
• Gδ = {x ∈M[d] : ‖δ(x)‖ < 1}: (1.3)
• ‖ f ‖δ,Comm,H∞δ,Comm: Definition 1.5
• L(H,K) Bounded linear transformations between Hilbert spaces H and K: Sub-

section 1.2
• ncK(D): Line after (1.6)
• A∼: envelope of A, Definition 3.1
• ncL(H,K): the L(H,K)-valued nc functions on D, Definition 3.5
• f∼: (3.5)
• f≈: (3.6)
• d( f , g): (4.1)
• Rm, Bm, Gm: Definition 5.1
• B, G, R: paragraph following Definition 5.1
• V(E, S), Grade(B): paragraph before Proposition 5.3
• XV,Xr

V: (5.11) and (5.12)
• XV

ρ∼ XB: (5.13)
• Mφ: (5.14), (6.3)
• H∞(D), H∞L(H,K): first two paragraphs of Section 6
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• E[2]: (6.4)
• VL(H),VL(H,M): second paragraph, Subsection 6.1
• HL(H)(V): third paragraph, Subsection 6.1
• RL(H)(V): (6.5)
• PL(H)(V): (6.6)
• CL(H)(V), Cτ

L(H)(V): Definition 6.3
• NL: (6.13)
• H2

L : line after (6.13)
• Kδ = {x ∈M[d] : ‖δ(x)‖ ≤ 1}: (9.1)
• Ê: Definition 9.4

11.2 Definitions

• nc-set, du-open, du-closed, du-bounded, nc-domain: Definition 1.1
• nc-function: Definition 1.2
• basic free open set, free domain, free topology: Definition 1.3
• K-valued nc-function: Definition 1.6
• δ nc-model: Definition 1.7
• free δ-realization: Definition 1.8
• envelope of A: Definition 3.1
• L(H,K)-valued nc functions on D, Definition 3.5
• locally bounded, locally uniformly bounded: Definition 4.1
• partial nc-set: first paragraph, Section 5
• partial nc-function: second paragraph, Section 5
• S-invariant function: third paragraph, Section 5
• generic, complete, E-reducible: fourth paragraph, Section 5
• well-organized pair: Definition 5.1
• base B of well-organized pair: paragraph following Definition 5.1
• ordered partition: (5.6)
• δ-model on well-organized pairs: Definition 6.8
• special δ-model: paragraph before Proposition 6.9
• δ-realization, (partial nc, S-invariant) on well-organized pairs: Definition 6.10
• δ-model (nc, locally bounded, holomorphic): Definition 7.1
• δ-realization, nc-realization, free realization: Definition 7.2
• L(H, `2( J)

)-valued nc-function to order n: Definition 7.10
• polynomial hull, polynomially convex: Definition 9.4
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