Glasgow Math. J. **64** (2022) 526. © The Author(s), 2021. Published by Cambridge University Press on behalf of Glasgow Mathematical Journal Trust. doi:10.1017/S001708952100032X

CORRIGENDUM

CORRIGENDUM TO: A FAST ALGORITHM FOR CALCULATING S-INVARIANTS

DIRK SCHÜTZ

Department of Mathematical Sciences, Durham University e-mail: dirk.schuetz@durham.ac.uk

(Received 28 July 2021; revised 11 August 2021; accepted 26 August 2021; first published online 20 September 2021)

Table 1 in [Sch21] claims to list all knots K with up to 15 crossings for which one entry of $s^{\text{Sq}^1}(K)$ differs from $s^{\mathbb{F}_2}(K)$. However, the table is incomplete. We list the missing knots in Table 1' below.

from Table 1.			
Knot	s^{Sq^1}	$s^{\mathbb{F}_2}$	$s^{\mathbb{F}_3}$
15n154386	(2,2,0,0)	0	2
15n165952	(2,2,0,0)	0	2
15n165966	(2,2,0,0)	0	2
15n166064	(2,2,0,0)	0	2
15n166244	(0, 0, -2, -2)	0	-2

 Table 1'. Prime knots with non-standard s^{Sq¹} missing from Table 1.

The original computation was done in batches of 10,000 knots. It appears that only the first 150,000 non-alternating 15-crossing knots were checked. A subsequent computation confirmed the results in Table 1, but also found the knots in Table 1' among the remaining 18,030 non-alternating 15-crossing knots.

REFERENCE

[Sch21] Dirk Schütz, A fast algorithm for calculating S-invariants, Glasg. Math. J. 63 (2021), no. 2, 378–399. MR 4244204