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§1

The aim of this paper is to prove the following main theorem:

THEOREM. For the discriminant dX) of a real quadratic field Q{i/d ), let

(%,y) = (t,u) be the least positive integral solution of PelΓs equation x2 — dy2 = 4

and put εd = ~2~(t + u-Jd ), and denote by hd the ideal class number. Then, at

least one of the following two assertions is true:

(i) For an arbitrarily given positive number δ > 0 there exist infinitely many

real quadratic fields Q{ Jd ) of which discriminant d satisfies the inequality hd< δ-Jd .

(ii) There exists a positive constant K > 0 such that the inequality εd^ {d—4)κ

holds for the discriminant d of any real quadratic field Q{ /d~) except Q(j/5).

Recently, A. Baker [1] and H. M. Stark [5] proved independently that

there exist exactly only nine imaginary quadratic fields of class number one.

On the other hand, C.F. Gauss conjectured that there exist infinitely many

real quadratic fields Q( /d') of class number one, moreover that there exist

infinitely many real quadratic fields Q(/p) of class number one, of which

discriminant p is prime and congruent to 1 mod 4.

If we assume that this Gauss' conjecture concerning the class number of

real quadratic fields is true, then it is proved that the assertion (i) of the main

theorem is true (Proposition 1). From this fact and an already known general

estimation1)

-7Γ log d < logεd < τ/d (-TΓ log d + l)
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i) Cf. L.K. Hua [2], M. Newman [4].
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concerning the fundamental unit of the real quadratic fields Q(/<Γ), it is

probable that the assertion (i) is true and the assertion (ii) is not true.

§2

In order to prove the main theorem we must prepare the following two

lemmas:

LEMMA 1. Let [dn] be a sequence of discriminants dn>0 of real quadratic

fields satisfying lim dn — oo, and let r > 0, a, b three real constants such that the
n—>co

inequality εdn>a{dn — b)r holds for this sequence. Then, for an arbitrarily given

positive number ε > 0 there exists a natural number nQ = no(ε) such that the inequality

^dn "^ \2r~ "*~ ε)^n holds for any natural number n bigger than n0.

Proof From the class number formula2)

concerning real quadratic field Q{-fd) and L.K. Hua's estimation3)

L(d) < -L log d + 1

concerning L-function L{d) of Q{ /d~), we have

On the other hand, the assumption Hm dn = oo implies \imτ-^,Tr , N r =
Γ n~>oo Γ n->oo\θga{dn—b)

— . Therefore, for an arbitrarily given positive number ε > 0 there exists

a natural number nQ = no(ε) such that the inequality

log dn+2 1 , 2 (2)

<-7- + 2 ε ( 2 )

holds for any natural number n bigger than n0. Hence, it follows from

(1) and (2) that for any natural number n bigger than nQ the relation

loga(dn-b)τ

2) Cf. e.g. E. L a n d a u [3], p . 152.

3) Cf. L.K. H u a [2].
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holds, which is our assertion.

LEMMA 2 Let N be the set of the discriminants d>0 of all real quadratic

fields Q{i/d), and define the subset Nr of N for any real number r ^ 0 by Nr =

{d^N; εd > (d—4)r}. Then the set function Nr defined in [0, oo) has the following

properties:

(1) 0 < rx < r2 implies Nrι 2 Nr2.

(2) 0 ^ r < -ί- zmp/w iVr = iV.
Δ

(3) iVΊ contains all prime numbers p congruent to 1 mod 4.

(4) iVj contains all d in N such that PelΓs equation x2—dy2——4 is solvable.

(5) If Nr contains infinitely many elements for some positive number r > 0 , i.e.

7Vr = {dn e N; dx < d2 < < dn < }, then for an arbitrarily given positive

number ε > 0 there exists a natural number n0 = no(ε) such that the inequality

h<in < \~2r~ ̂  δ j / ϊ Λfl/ώ /or β/y; natural number n bigger than n0.

(6) If Nr contains only a finite number of elements for some positive number

r > 0, then there exists a real number r0 bigger than r such that Nr, = {5} for any

real number rf bigger than r0.

Proof (1) Since for any element d in Nr2 the inequality εd>{d — 4)r2

holds and r2 is bigger than rlf the inequality εd>(d—4)ri holds. Hence we

get d<=Nri.

(2) If we notice that u^l and t2 = du2 + 4>d hold in εd = -
Δ

then we get εd>i/d. Hence the inequality εd > {d—4)1/2 holds for any d in
N.

(3) It is obtained by M. Newman [4] that the inequality εp > φ — 3

holds for any prime p congruent to 1 mod 4. From this fact our assertion

follows immediately.

(4) If Pell's equation x2 — dy2 = —4 is solvable for d in N9 then for

the least positive integral solution {x,y) = {tQ,uQ) we have ε2 = -~-(to+ uoi/d )

> τ/d — 4 , because ^ 0 ^ l a n d ίo = ^ o ~ 4 ^ J — 4 hold. Hence we get

Sd = {εd)
2 > d — 4, from which our assertion follows immediately.

(5) Since Nr 3 dn is equivalent to εdn>{dn — 4)r for any natural num-

ber n, and lim rfn = oo holds, our assertion is clear by lemma 1.
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(6) If we set Nr = {5<d1<d2<- •< ds], then the inequality sd|>(rf<—4)r

holds for i = 1, 2, , s and the inequality εd < (d — 4)r holds for any d ψ 5

in N different from d€ [i = 1, 2, , s). Hence, if we define the positive

number γi bigger than r by εdt = (rf<— 4)r* and set r0 = Max r<, then we

have

d< = (d, - 4)r ^ (rf« - 4)ro <: (d4 - 4)r/

for any r' bigger than r0 and any d in N different from d{ (/ = 1, 2, ,s).

Therefore, iVr/ = {5} for any rr bigger than r0, which is our assertion.

Proof of the theorem, (i) If for any r ^ 0 iVr contains infinitely many

elements, we put ε = δj2 for an arbitrarily given positive number £>0. Then,

since for any r satisfying r ^ 1/δ Nr also contains infinitely many elements,

it follows from (5) of lemma 2, that there exist infinitely many d in Nr

such that the relation

hd

holds. Therefore, in this case the first assertion (i) of the main theorem

is true.

(ii) If for some positive number r > 0 Nr contains at most only a finite

number of elements, then by (6) of lemma 2, there exists a real number r0

such that Nr, = {5} for any real number rr bigger than r0. Therefore,

in this case there exists a positive constant K > 0 such that the inequality

εd ^ (d — 4)κ holds for any d ψ 5 in TV, and the second assertion (ii) of the

main theorem is true.

Thus, our main theorem is completely proved.

§3.

PROPOSITION. If we assume that Gauss' conjecture concerning the class number

of real quadratic fields is true, then for an arbitrarily given positive number δ>0 there

exist infinitely many real quadratic fields Q{)/d ), of which discriminant d satisfies

the inequality hd<. δ-Jd .

Proof If we assume that Gauss' conjecture concerning the class number

of real quadratic fields is true, there exist infinitely many real quadratic fields

Q(i/d ), of which class number is equal to one. Hence, even if for an arbit-
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rarily given positive number δ>0 we may add a condition d>ljδ2 moreover,

there exist infinitely many real quadratic fields Q{ Jd ) which satisfy all these

conditions. Therefore, for such infinitely many real quadratic fields Qb/d )

the relation hd = Kδ/cf holds, which is the assertion in our proposition.
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