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Summary

This study aimed to evaluate the ploidy and survival of larvae resulting from crosses between
tetraploid females and diploid males of yellowtail tetra Astyanax altiparanae, both females
(three diploids and three tetraploids) and males (n= 3 diploids). Breeders were subjected to
hormonal induction with pituitary gland extract from common carp fish (Cyprinus carpio).
Females received two doses at concentrations of 0.3 and 3.0 mg/kg −1 body weight and at inter-
vals of 6 h. Males were induced with a single dose of 3.0 mg/kg −1 applied simultaneously with
the second dose in females. Oocytes from each diploid and tetraploid female were fertilized with
semen from the same male, resulting in two crosses: cross 1 (diploid male and diploid female)
and cross 2 (diploid male and tetraploid female). The procedures were performed with separate
females (diploid and tetraploid) and diploid males for each repetition (n= 3). For ploidy deter-
mination, 60 larvae from each treatment were analyzed using flow cytometry and cytogenetic
analyses. As expected, flow cytometry analysis showed that progenies from crosses 1 and 2 pre-
sented diploid and triploid individuals, respectively, with a 100% success rate. The same results
were confirmed in the cytogenetic analysis, in which the larvae resulting from cross 1 had 50
metaphase chromosomes and those from cross 2 had 75 chromosomes. The oocytes have a
slightly ovoid shape at the time of extrusion. Diploid oocytes had a size of 559 ± 20.62 μm
and tetraploid of 1025.33 ± 30.91 μm. Statistical differences were observed between eggs from
crosses 1 and 2 (P= 0.0130). No significant differences between treatments were observed for
survival at the 2-cell stage (P= 0.6174), blastula (P= 0.9717), gastrula (P= 0.5301), somite
(P= 0.3811), and hatching (P= 0.0984) stages. In conclusion, our results showed that tetraploid
females of the yellowtail tetra A. altiparanae are fertile, present viable gametes after stripping
and fertilization using the ‘dry method’, and may be used for mass production of triploids. This
is the first report of these procedures within neotropical characins, and which can be applied in
other related species of economic importance.

Introduction

For aquaculture purposes, the use of sterile triploid fish improves carcass yield (do Nascimento
et al., 2017b; Kizak et al., 2013), growth (Tabata et al., 1999), and meat quality (Turner et al.,
2003). However, there are problems associated with early sex maturation, such as high disease
susceptibility (Taranger et al., 2010) and with ecological issues due to the escape of fertile fish
that could lead to problems of how hybridization, for example, is avoided (Benfey, 2016).

While triploids can naturally occur at low percentages in several species, such as Astyanax
scabripinnis (1.16–2.5%) (Luis Maistro et al., 1994), Trichomycterus davisi (2%) (Borin et al.,
2002), and loach (Misgurnus aguillicaudatus) (1.2–3.2%) (Zhang and Arai, 1999), artificially
induced triploids are achieved at high percentages using thermal, chemical, or pressure shocks
(Arai, 2001). These treatments prevent the extrusion of second polar bodies (Benfey, 2016) and
result in individuals containing three sets of chromosomes (Arai and Fujimoto, 2018).

However, the application of such shocks can negatively affect survival, increase the percent-
age of abnormal larvae, and do not totally guarantee triploidization rates (Adamov et al., 2017).
In this case, the use of tetraploid individuals by breeders becomes an interesting alternative for
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the mass production of triploids and also avoids the deleterious
effects caused by the several shocks used for second polar body
retention (Arai, 2001; Dunham, 2004). Tetraploid fish, however,
are difficult to achieve and limited to a few species (Yoshikawa
et al., 2007; Piferrer et al., 2009).

In neotropical regions, for example, tetraploid fishes are
described only in two species: the silver catfish Rhamdia quelen
(Garcia et al., 2018) and the yellowtail tetra Astyanax altiparanae
(do Nascimento et al., 2020). In the last decade, the yellowtail tetra
(A. altiparanae) has become an important model organism for
basic and applied studies, such as the induction of triploid, tetra-
ploid, and gynogenetic fishes (Adamov et al., 2017; do Nascimento
et al., 2017a, 2020, 2021)

The results indicated that triploid females are sterile (do
Nascimento et al., 2017a) and present increased performance
(do Nascimento et al., 2017b), suggesting that the mass production
of such fish is desirable. Triploids (Adamov et al., 2017) and trip-
loid hybrids (Piva et al., 2018) were also produced artificially and
checked for sterility and ploidy status (Xavier et al., 2017). The rise
of spontaneously occurring triploids was also investigated in vivo
(dos Santos et al., 2018) and in vitro (do Nascimento et al., 2018).

Despite the previous achievements mentioned previously, none
of those procedures gave rise to a 100% triploid fish, and this may be
achieved using diploid gametes from tetraploid individuals. In this
scenario, some studies have been performed to achieve these results.
The previous study of do Nascimento et al. (2020), for example,
showed that high percentages of triploids were produced using tetra-
ploid males. However, as far as we know, viable tetraploid females
used for mass production of triploids have never been described in a
neotropical species. Therefore, the aim of the present study was to
investigate the ploidy of progeny obtained by crossing tetraploid
females with diploid males in Astyanax altiparanae.

Materials and methods

The experimental procedures were conducted in accordance with
the Ethics Committee on Animal Use of the Federal Rural
University of Rio de Janeiro (CEUA 009-11-2019). The experiment

was performed from January to March 2021 at the Centro Nacional
de Pesquisa e Conservação da Biodiversidade Aquática Continental/
Instituto Chico Mendes de Conservação da Biodiversidade
(CEPTA/ICMBio) in Pirassununga, São Paulo State, Brazil.

Induced spawning, gamete collection, and incubation of
Astyanax altiparanae

Females (three diploids and three tetraploids) and males (n= 3 dip-
loids) of A. altiparanae with ploidy confirmed using flow cytometry
were used. Breeders were subjected to hormonal induction (Yasui
et al., 2015) with pituitary gland extract from common carp fish
(Cyprinus carpio). Females received two doses (applied intraperito-
neally) at concentrations of 0.3 and 3.0 mg/kg−1 body weight and at
intervals of 6 h. The males were induced with a single dose of
3.0mg/kg−1 applied simultaneously with the second dose in females.

After induction, the fish were kept in a 60-litre aquarium with
the temperature set at 26ºC. When the spawning behaviour was
observed, with themale chasing the female, males and females were
anaesthetised with eugenol (Biodinâmica, Ibiporã, Brazil), which
was diluted in ethyl alcohol in the proportion of 1 ml of euge-
nol/10 mL of alcohol (98º GL). Sperm were collected using a
1000-μl pipette (Eppendorf, Hamburg, Germany) and stored in
1.5-ml macrotubes containing 400 μl of modified Ringer’s solution
(128.3 mM NaCl, 23.6 mM KCl, 3.6 mM CaCl2, 2.1 mM MgCl2).
Subsequently, the oocytes were stripped on 90-mm Petri dishes
covered with plastic film (Alpfilm, São Paulo, Brazil).

A small sample of oocytes from diploid (n= 15) and tetraploid
(n= 15) females fixed in 2.5% glutaraldehyde was separated to
measure the diameter (μm). Oocytes from each diploid and tetra-
ploid female were fertilized with sperm from the samemale, result-
ing in two crosses: cross 1 (diploid male and diploid female) and
cross 2 (diploid male and tetraploid female). These procedures
were performed with separate females (diploid and tetraploid
and male diploid) for each replication (n= 3) (Figure 1). Two
embryo aliquots (~100) from each cross were selected (N= 600)
for developmental analysis using a stereomicroscope (Nikon
SMZ 18, Tokyo, Japan) and Nis-Ar Elements software (Nikon,

Figure 1. Experimental design evaluating progenies of
cross 1 (female 2n ×male 2n) and cross 2 (tetraploid females
and diploid males) in Astyanax altiparanae.
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Tokyo, Japan). Survival rates (%) were measured during the cleav-
age, blastula, gastrula, somite, and hatching stages with subsequent
normal and abnormal larvae according to dos Santos et al. (2016).

Confirmation of ploidy status

For ploidy determination, 60 larvae from each treatment were ana-
lyzed using flow cytometry and cytogenetic methods. Flow cytom-
etry was performed according to the protocol developed by Xavier
et al. (2017). The samples (each larva) were transferred to micro-
tubes containing 120 μl of cell lysis solution (9.53 mM
MgSO4.7H2O, 47.67 mM KCl, 15 mM Tris, pH 8.0, 74 mM of
sucrose, and 0.8% of Triton X-100) for 10 min. Afterwards, nuclei
staining was performed by adding 800 μl of 4 0,6-diamidino-2-phe-
nylindole (DAPI; Sigma #D5773, St. Louis, USA). The resultant sol-
ution was passed through a 30-μm filter and analyzed using a flow
cytometer (CyFlow Ploidy Analyzer, Partec, GmbH, Germany).

Procedures for chromosome preparations (cytogenetics) were
performed according to Foresti et al. (1993). Briefly, 20 embryos
from each replicate (n= 60) were separated at the somite stage.
Embryos were maintained in colchicine (0.007 %) for 4 h, and then
the chorion was removed using a Pronase solution (0.03%). The
larvae were anaesthetised in eugenol solution (1 ml of eugenol/
10 ml of alcohol 98º GL) and individually dissociated (whole) in

a Petri dish containing 7 ml of hypotonic KCl solution
(0.075 M). Samples were maintained at 37°C for 21 min, fixed
in methanol and acetic acid (3:1), and then stained with Giemsa
solution (5%).

Results are presented as the mean ± standard error. The data
were previously checked for normality and homogeneity using
the Lilliefors and Levine’s tests, respectively. Afterwards, one-
way analysis of variance (ANOVA) and Tukey’s post hoc tests were
performed. The software STATISTICA v.10.0 (Statsoft, Tulsa,
USA) was used and significance was set at P< 0.05.

Results

Early development

The oocytes presented a slightly ovoid shape at the time of extru-
sion, in which diploid oocytes had a size of 559 ± 20.62 μm and
tetraploid of 1025.33 ± 30.91 μm. Statistical differences were
observed between eggs from crosses 1 and 2 (P= 0.0130).

The embryos from cross 2 (triploids) showed some delay (45
min) from the epibolismmovements when compared with the dip-
loid embryos of cross 1 (Figure 2H). Most larvae from cross 2 pre-
sented irregular formations at the final portion of the tail
(Figure 3B).

Figure 2. Embryonic development of Astyanax altiparanae was obtained through crosses between (female 2n × male 2n) and (female 4n × male 2n). (A, E) Animal pole differ-
entiation; (B, F) blastula; (C, G) gastrula; (D, H) segmentation. Arrow indicates a small delay in yolk covering and embryonic shield formation. Arrowhead indicates delay in cephalic
and caudal region formation.

Figure 3. External morphology of (A) larvae and (B) abnormal Astyanax altiparanae obtained through cross 1 (female 2n × male 2n) and cross 2 (female 4n × male 2n). Arrow
indicates an anomaly in the final portion of the tail.
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Data on early development into 2-cell stage, blastula, gastrula,
somite, and hatching of abnormal and normal larvae, as well as the
respective ploidy status, are detailed in Table 1. Despite morpho-
logical differences during critical stages of development, cross 2
embryos showed similar survival when compared with cross 1
embryos. No differences between treatments were observed for
survival at the 2-cell (P= 0.6174), blastula (P= 0.9717), gastrula
(P= 0.5301), somite (P= 0.3811), and hatching (P= 0.0984)
stages.

Confirmation of ploidy status

As expected, flow cytometry analysis showed that progenies from
crosses 1 and 2 presented 100% diploid and triploid individuals,
respectively (Table 1; Figures 3B, 4A). The same results were con-
firmed in the cytogenetic analysis. The larvae resulting from cross 1
had 50 metaphase chromosomes, and those from cross 2 had 75
chromosomes (Figure 5).

Discussion

In this study, for the first time in a neotropical species, triploid fish
were obtained using tetraploid females and diploid males ofA. alti-
paranae. These results are very interesting for fish aquaculture, as
triploid females of yellowtail tetra present increased growth
parameters when compared with diploids, such as carcass yield

(do Nascimento et al., 2017b) and sterility (do Nascimento
et al., 2017a). Therefore, the large-scale production of triploid
(in special females) using tetraploids in this species could guaran-
tee increased production and also reduce the risks of environmen-
tal impacts, as the possible escapes of sterile fish reduce the risks of
introgression through hybridization (Benfey, 2016).

In aquaculture, tetraploid fish are an interesting alternative for
the mass production of triploid fish, as observed in other studies
(Nam and Kim, 2004; Weber et al., 2014; do Nascimento et al.,
2020). Additionally, the protocols for triploid induction estab-
lished by Adamov et al. (2017) and those currently used for triploid
induction in A. altiparanae do not guarantee 100% of triploids.
Therefore, the current protocol overcomes the deleterious effects
of heat shock, and 100% triploidy fish were obtained.

However, lower percentages of normal larvae were observed in
the triploid group. This unexpected result, conversely, does not
limit the large-scale production of triploids by these methods
because high hatching rates were still achieved. In the previous
work of Weber et al. (2014), for example, the deformity was much
lower in triploids derived from the cross of a tetraploid with a dip-
loid than in shock-induced conditions. Therefore, we can attribute
the results to other variables such as differences in reproductive
performance in tetraploid and diploid females. Additionally, some
studies have also shown that the first generation of tetraploids has
lower reproductive potential (Chourrout 1984; Chourrout et al.,
1986; Myers, 1986; Blanc et al., 1987, 1993; Hershberger and

Table 1. Ploidy and survival (%) of yellowtail tetra A. altiparanae in percentage (±SE) resulting from cross 1 (female 2n ×male 2n) and cross 2 (female 4n ×male 2n)

Treatments

Ploidy
of

parents

Eggs
Fertilization

(%)
Blastula
(%)

Gastrula
(%)

Somite
(%)

Hatch
(%)

Normal
(%)

No. of larvae
analysis

Ploidy (%)

♀ ♂ 2n 3n

Cross 1 2n 2n 100 93.78 ±
2.43a

89.53 ±
4.86a

85.23 ±
6.64a

81.96 ±
7.52a

77.38 ±
8.22a

93.64
±2.24a

60 100 0.00

Cross 2 4n 2n 93 94.92 ±
0.64a

89.30 ±
4.02a

79.60 ±
4.82a

71.33±
7.76a

55.01
±6.41a

58.39 ±
2.74b

60 0.00 100

P-value – 0.6174 0.9717 0.5301 0.3811 0.0984 0.0005

a,bData were obtained from different gamete sources resulting in three replications. Different superscript letters within a column indicate statistical differences using the Tukey multiple range
test (ANOVA; P< 0.05). SE, standard error.

Figure 4. Flow cytometry histogram showing the relative DNA content of larvae from (A) cross 1 (female 2n ×male 2n) diploid group and (B) cross 2 (female 4n ×male 2n) triploid
group Astyanax altiparanae.
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Hostuttler 2005, 2007) and, subsequently, higher normality and
egg quality were observed in the second generation of tetraploids.
Therefore, the same results may be observed in our study and these
effects must be addressed in future studies.

Fish ploidy was determined using flow cytometry and chromo-
some preparations (Allen, 1983; Xavier et al., 2017). As thesemeth-
ods present specific advantages (Piferrer et al., 2009), the
combination of both techniques ensures the accuracy of the cur-
rent study. Therefore, the cytogenetic method could be an interest-
ing alternative when a flow cytometer is not available, due to the
low cost. In conclusion, our results showed that tetraploid females
of the yellowtail tetra A. altiparanae are fertile, present viable
gametes after stripping and fertilization using dry methods, and
may be used formass production of triploids. This is the first report
of these procedures within neotropical characins. These results are
innovative and can be applied to other related species of economic
importance.

Data availability statement. The data that support the findings of this study
are available from the corresponding author upon reasonable request.
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