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ON THE COMPLETE INVARIANCE PROPERTY 
IN SOME UNCOUNTABLE PRODUCTS 

PIOTR KOSZMIDER 

ABSTRACT. We consider uncountable products of nontrivial compact, convex sub­
sets of normed linear spaces. We show that these products do not have the complete 
invariance property i.e. they include a nonempty, closed subset which is not a fixed 
point set (i.e. the set of all fixed points) for any continuous mapping from the product 
into itself. In particular we give an answer to W.Weiss' question whether uncountable 
powers of the unit interval have the complete invariance property. 

0. Introduction. A space X is said to have the complete invariance property (CLP.) 
if and only if every nonempty closed subset F Ç X is a fixed point set i.e., if there is 
a continuous function f:X —» X such that x G F if and only \ff(x) — x [12]. There 
are many classes of spaces known to possess the C.I.P., among which are all convex 
subsets of normed linear spaces [12], and, hence in particular, all countable products of 
such spaces and among them the Hilbert Cube; the countable product of unit intervals. 
Other examples of spaces having the CLP. are compact finite dimensional manifolds [11] 
and locally compact metric groups [7]. Also, the behaviour of the CLP under products 
has been studied, it is known for example that there are spaces possessing the CLP such 
that their square does not have the CLP [8]. Regarding uncountable products it is known 
that if (Xa : a < K;) is a sequence of at most countable discrete spaces, then the product 
]la<« Xa does have the CLP [8]. 

We will consider products of essentially different spaces, namely spaces Xa which are 
compact, convex subsets of some normed linear spaces. Any product of such spaces has 
the fixed point property (any continuous function from such a space into itself has a fixed 
point)(see Theorem 4). Our result is that Ua<K Xa does not have the CLP In particular, 
we answer in the negative W.Weiss' question [13], whether uncountable products of the 
unit interval have the CLP I am grateful to him for suggesting the problem to me. 

The idea of the proof is as follows (see below for appropriate definitions and lem­
mas): for any uncountable cardinal K we construct some special closed set F Ç 2K Ç 
Ua<K Xa which we call a splitting set (see Definition 11). We show that for no con­
tinuous/: Ua<K Xa —> Ua<K Xa is the set F its fixed point set. In order to show this, 
we fix / continuous as above and assume that for all x G F we have f(x) — x. Now 
we use the fact that if K is uncountable, then there are many pairs of countable sub­
sets A,B of K such that A C B and that both fA — TTA °f- ïïa<n Xa —• UaeAXa and 
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fB = Ti-g of: Ua<K Xa —> UaeB^a depend respectively on A and B\ that is for all 
x,y e Ua<KXa we have 

(xA = TTA(X) = nA(y) = yA) =» (fA(x) =fA(y)) 

(xB = TTB(X) = 7TB(y) = yB) => (fB(x) =fB(y)) 

(see Definition 1, Lemma 3 and the second paragraph of section 1). We will find two 
such B, A for which the definition of a splitting set works (i.e. B C A such that there is 
a G A — B such that a ,B are as in Definition 11). 

Now let us consider a simple example of such a situation. Let B = { 0} , A = { 0,1} = 
«,X0 = Xi = I,a = 1, F = {(x,y) G I2 : y G {0,1}, (y = 0 => * G [0,0.5], j = 
1 => x G [0.5,1])} (draw a picture) where / denotes the unit interval and/: I2 —• /2 is 
such that/{0} depends on { 0} (See definition 1). 

Now we will show that/ must have a fixed point outside F. Suppose the opposite i.e., 
that/((x,_y)) = (x,y) if and only if (JC,)>) G F. Let us define for each f G / a function 
/ , : /—• / by ft(y) — 7T| {y (f(t,y)). Since/r0 | depends on { 0} , our assumption that F is 
a fixed point set of/ implies that the sets of all fixed points o f / ' s — fix(/) must be 
restricted in the following way: fix(/) = { 0} if t G [0,0.5), fix(/j) C { 0,1} if t = 0.5 
and fix(/) = {1} if t G (0.5,1]. Since/'s converge uniformly to/0.5 if f —» 0.5, this 
gives rise to a contradiction (draw a picture and look at the situation of the graphs of/ 's 
with respect to the main diagonal in I2). 

The last part of the argument involved the fact that at least some of fixed points of 
/ ' s should change in a continuous way (for a more specific and general formulation, 
appropriate in this special case, see [1]). Hence, we must to formulate some lemmas on 
the "continuity of fixed points" which would work in general a setting. It appears that 
lemma 6 is sufficient for our purposes. 

The paper is organized as follows: in section 1 we list our notational conventions; in 
section 2 we state basic facts about uncountable products of our spaces. In section 3 we 
prove the above-mentioned lemmas about the "continuity of fixed points". Section 4 is 
devoted to a construction of a splitting set i.e., a closed set F Ç Ha<K Xa witnessing the 
failure of the complete invariance property. 

1. Notational conventions. Our set-theoretic and general topological terminology 
is quite standard. All unexplained symbols and notions can be found in [5] or [6]. Each Xa 

is assumed to be a convex, compact subspace of some normed linear space (La, || | |a) (in 
particular, any product of such spaces has the fixed point property (see Theorem 4)), and 
is assumed to have more than one point. Note that our spaces Xa are always separable. 

If A Ç K;, x G IIa<K Xa, we denote by xA or TTA(X) the projection of x onto coordinates 
belonging to A. XA = UaeA Xa, hence xA = TTA(X) G XA and we of course distinguish 
X|a} from xa. Whenever A D B = 0, xA G XA,xB G XB we define xA^xB G XAUB by 
(xA^xB)A = xA, (xA^xB)B = xB. If A Ç K is countable, thenXA is a metric space; since 
any factor is metric, we will always assume that the metric on XA is of the form 

1) P\X,y)=ZllX{a)~y(a)lla 
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where f^\ A —» u: — {0} is some 1-1 function. When we consider two A Ç B G [K]" 
countable subsets of K, then we assume that pA, pB, and pB~A are related in the following 
way:/fî | A = fA, fB \ (B-A) = fB-A, hence 

2) PA(xA,yA) + pB~A(xB-A,yB-A) = pB(x, y). 

Of course we cannot arrange this for all A Ç B G [KY* but when we fix A,B we can 
construct such metrics equivalent to the topologies on XA, XB, XB~A. By BA (r, a) (BA(r, a)) 
we denote a ball (a closed ball) around a G XA of radius r € R+ with respect to pA. Since 
each Xa is a convex subset of a linear space, we may consider a convex combination of 
points from XA given by 

[tx + (1 - r)y](«) = **(<*) + (1 " 03<«) ^ ^a 

for t G [0,1], Jc,.y G XA, a ÇA. Note that for a normed linear space we have the 
following relation satisfied for all a in A 

Vt G [0,1] || x(a)-[tx(a)+(l-t)y(a)] \\a= (l-t) \\ x(a)-y(a) \\a<\\ x(a)-y(a) \\a. 

Hence, by 1) it gives us 

3) Vf G [0,1] pA(x,tx + (l- t)y) < pA(x,y). 

CIA(F) for F Ç XA denotes a closure of F in XA. Closures may also be denoted by F if 
the space in which we have taken the closure is clear from the context. 

Since Xa is compact, it is a bounded subset in La\ hence, we may w.l.o.g. (i.e., still 
having the metric given by a norm) assume that 

Va e A\/x,y e XA p{a}(x(a),y(a)) < 1. 

Thus, 

p\x,y) < 1 

holds for all countable A. 

By/ ,g ,h we will denote continuous functions. lff:X —> X, then fix(/") = {x G 
X : f(x) = x}; if/ : X —• Yla^Xa, A Ç «, then/A:X —> I laeA^ is defined by 
fA(x) = (f(x))A. C C [K,]U is called a c/wZ? set if and only if it is unbounded in [rc]^ (i.e., 
VJC G [«]̂ 3_y G C x Ç y) and if C is closed (i.e., if (xn)n<EuJ Ç C is an increasing sequence 
of sets, then \JneujXn G C). S Ç [KY is called a stationary set iff it has a nonempty 
intersection with every club set (see Baumgartner's article in [6]). / will denote the unit 
interval. 
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2. Basic facts. 

DEFINITION 1. Let A G [K]U, f: Ua<n Xa —• X be a continuous function. Then we 

say thatf depends on A, iff 

Vx, v G I I Xa(xA = yA => f(x) =f(y)) 

Iff A . UXa —» XA depends on A, thenfA: UaeA^a —• IlaeA^a w Je / zn^ by fA(xA) = 

/ ( * ) A . 

THEOREM 2 ([9]). Let f\ Ha<n Xa —> X be a continuous function. IfX is a metric 

space andXa
 fs are compact spaces, thenf depends on some A G [K]". 

(For extensive references on the subject see [3]) 

LEMMA 3. Let us suppose for each a < K, Xa is a compact, metric space, 

/ • Tla<K Xa —• ]lar<« Xa be a continuous function. Then there is a club set Cf Ç [K]^ 

such that for all A G Cf, fA depends on A. 

PROOF. First let us use Theorem 2 and for each a G « find Aa such that f{a}
: 

Ua<K Xa -^Xa depends on Aa. Let 

Cf={Xe [K]U : Va G X Aa C X} . 

m 

THEOREM 4. Suppose Va < K Xa is a compact, convex subset of a normed linear 

space, then Tla<n Xa has the fixed point property. 

PROOF. For every F G M<u, the product UaeFXa is a convex, compact subset of 

a normed linear space (see [2]) so by the Schauder Theorem ([10]) every finite product 

of Xa 's has the fixed point property. By the compactness of every factor this implies that 

the whole product has the fixed point property ([4]). 

3. Geometric lemmas. 

LEMMA 5. LetAe [K]U, a eA,f:XA—> XA, U C Xa be open. Let us suppose that 

there is ana G £/ such that 7T{a} (fix(/)) H U = {a}, and that we are given a family of 

continuous functions T from XA into XA such that 

i) Ve > 0 3/e G r V * G 7T^}(U)pA{f(x)Mx)) < e. 

a) V£>0 7rM(fix(/;))n u = 9 
then there is a function g:XA —> XA such that 

Hi) ^{a}(nx(^))n = 0 

iv) VJC G XA (jc(a) #U=> g(x) =f(x)). 

PROOF. Take rx > r2 > 0 such that fl{ a> (r{, a), Bia> (r2, a) C U. Fix (3,7 : / —> / 

such that/3 ( 0 + 7 ( 0 = 1 for te I, (3(t) = Oforf > n and 7 ( 0 = Oforf < r2. 
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Also consider the function tp: {x G XA : r\ > p^a^ (x{a),a) > ri\ —> /?+, defined 
by ^ W = pA(x,/(x)). <̂  is positive since 7T|a}(dom(^) Ç (7— {a}, ir{ay(fix(f))n U = 
{ a} (by the assumptions). Since dom((/?) Ç XA is closed, hence compact, there is S > 0 
such that <̂ (JC) > S for all je G dom((^). Fix e < S and define g: ZA —• XA as follows 

where t = p ^ (x(cr), a). First note that by convexity of XA, g indeed goes into XA. 
Also, since /? | [1, r\] — 0 and for all JC such that x(a) £ U p^a^(x(a),a) > r\ we 

have g(x) = f(x) for all i G l A such that x(a) £ U. So we are left with the proof that 
7r{a}(Mg))nu=(b: 

a)ifx(a) G U and p^ (a,x(a)) > a, then since gix) = fix) and7T{a}(fix(x))D U — 
{ a}, we have g(;c) ^ JC; 

b)if xia) G £/ and p^ia.xia)) < r2, then g(x) = fix) so g(x) ^ x by the assump­
tion that 7r{a} (fix(/è)) Pi (7 = 0; 

c) if x(a) G £/ and r2 < p^a^(a,x(a)) < n , then by 3) (Section 1) we have 

pA(fix\Pit)fix)+lit)fix)) < pAifix),fix)) < e 

for all x G TT7~K iU) since pA (fix), fix)) < e (by i)). Hence pA (#(*),/(•*)) < e, but since 
JC G dom 99 we have pA(fix),x) > 6 > e, so //(#(*), x) > 0, so gix) ^ x. m 

LEMMA6. Let A G [K]", a G A, / : XA —> XA. Suppose we are givenp, q eXa, p ^ 
q and two families of functions O, Y from XA into XA such that 

i) Ve > 0 3/e G O, 3g£ G T Vx G XA P V W , / , W ) , P V W , ^ W ) < e 

"). Ve > 0 7r{a}(fix(fe)) = {/>}, 7r{a}(fix(g,)) = {<?} 

Then there exists r G Xa, r ^ {p,q} such that ^{a} (fix(/")) 3 r. 

PROOF. Suppose the opposite i.e. 7T{a}(fix(/)) Ç {p,q}. Choose two open sets 
Up, Uq such that/7 £ Up Ç Xa, q e Uq Ç Xa with disjoint closures. First apply 
Lemma 5 for/, O, 6^, by /)and //) the assumptions are satisfied. We obtain g: XA —• XA 

such that 7T|a} (fix(g)) D [ / 9 = 0 and the following holds: for all x such that xia) $ Uq 

we have gix) = /(x), so 

iiï) V* .s. f. xia) G ^ s(x) = /(*), ?r{a} (fix(g)) Ç {/?}. 

Since if r G 7T|a} (fix(g)) then r ^ Uq but then r G 7T{a} (fix(f)) Ç {/?,#}, hence r = p. 
Now apply Lemma 5 for g, T, L^, by /), //), ///), iv). We get h: XA —-> XA such that 

7T{a} (fix(/i)) D Up — 0 and the following holds: for all x such that xia) £ Up hix) = 
gix). Now note that fix(/i) = 0: if r G 7T{a} (fix(/z)), then r ^ 6^ so r G 7T{a} (fix(g)) Pi 
{XA — Up) = 0 by /v); hence, we arrive at a contradiction with the fixed point property 
for XA which follows from the assumptions about Xa 's and Theorem 4. • 

DEFINITION 7. Let B Ç A, xB G Xfi, / : ZA -> XA, then/^ : XA~B -^ XA~B is defined 
as follows: 

fxBiyA-B) = (7(*zOA-5)),4-fl. 
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LEMMA 8. Let 6 Ç A , A, B G [K]U , / : XA —> XA, such thatfg depends on B and that 

there is a fixed point x G XA off. IfyA-B is a fixed point offXB, then xB^yA-B is a fixed 

point off 

PROOF. f(xB^yA-B)B — *B since fB depends on B and x is a fixed point of/. Also, 

(f(xB~yA-B))A-B = fxB(yA-B) = yA-B, which completes the proof. • 

LEMMA 9. Let A, B G [« ]" , B Ç A, a e A - B, F Ç XA be closed , p0ipi G 

Xa, Po ^ Pu Fpo^Fpi Q F> clB(7TB(FPo))n clB(-KB(Fpx)) ^ 0. Suppose also 

i) 7T{a](^
l(7TB(FPi))nF) = { p j / o r / = 0,1 

ii) 7T(a}(F) Ç {p0,p\}. 

Suppose thatf: XA —-» X \ /# depends on B and that for all x G F we have f(x) = x. 

Then there is x £ XA — F such thatf(x) = x. 

PROOF. Suppose the opposite i.e./(jc) = x if and only if x G F. Let x G F. Consider 

the set of all fixed points of/^. By lemma 8, if yB-A G fix(fXB), then (xs^v^-s) G fix(/"). 

So by the assumption that/(jc) = JC iff JC G F, we obtain that xB^yA~B £ F. Hence, by /) 

we obtain that for each x G FA. we have 7r{a} (fix(^B) Ç {/?,}. Generally by //) for each 

x G F we have ^ ^ ( f i x ^ ) ) Ç { p 0 , P i } . 

Let z G F be such that ZB G clB(nB(FPQ)) n clB(irB(FP])). Now in order to arrive 

at a contradiction, we are going to apply lemma 6 f o r / = fZB:XA~B —> X A _ S , O = 

{/cfi • JC G F P o } , T = {fXB : JC G F P l } in the following way: lemma 6 implies that 

there is an r G Xa, r $ {po,p\} such that r G 7T|a|(fix(/Zfi). But if yA-B £ fi*(/zfl)
 a n d 

^{a} fe^yA-fi) = r then ZB^yA-B & F by //). On the other hand by lemma 8, ZB^yA-B 

is a fixed point of/. It contradicts the assumption that/(jc) = x if and only if JC G F. 

So let us check if the assumptions of lemma 6 are satisfied. The assumption //) is 

satisfied by our above observations. For the assumption /) fix e > 0. Since XA is compact, 

/ : XA —-> XA is uniformly continuous. Hence there is è > 0 such that if pA{x, x/) < 6, then 

PA{f{x)J{x')) < e. Since zfî G CIB(TTB(FPO)), there is anx G Fp0 such that pB(zB,xB) < <5. 

We claim that DA~B(fZB,fxB) < £• This is because for any yA-B G XA-jB we have 

PA(ZB~yA-B,xB~yA-B) = PB(ZB,*B) < S 

(see 2) section 1). Hence pA(f(zB^yA-B),f(*B^JA-B)) < £• So (by 1) sectionl) 

PA~B(fzB(yA-B),fXB(yA-B)) < e 

for any yA-B G X 4 " 5 . Hence/XB e O a n d D ^ a } (fZB,fxB) < £ (again by the above and 1) 

section 1)). So, the assumption /) is satisfied for <Ê>. Checking /) for F is similar. • 

LEMMA 10. Let A G [«]" . Suppose that F Ç X" is closed, thatf\XK —> X* am/ 

that fA depends on A. If there is XA G (X4 — TTA(F)) such that fA{xA) — XA, then there 

exists x G (XK — F) such that x — f(x). 

PROOF. Take /^ : XK~A —> XK~A. It has a fixed point, say yK_A by theorem 4. Since 

fA{xA) = XA, as in lemma 8, we obtain that XA ~yK-A is a fixed point of/ and that it is not 

in F since its projection on A, XA is not in the projection of F on A. m 
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DEFINITION 11. F Ç 2K is called a splitting set iff F is closed and there is a stationary 
set S Ç [KJ^ such that for each B e S there is an a e K — B, F0, F\ Ç F such that 

i) c/ f l(7T5(Fo))nc/ f i(7T f l(F1))^0 

ii) ^ W ( ^ W ^ ) ) n /^ = {i}/*ri = 0,1. 

THEOREM 12. Suppose that n is an uncountable cardinal and that (Xa ) 'sfor a < K 
are compact and convex subsets of some normed linear spaces and have at least two 
points. If there exists a splitting set F Ç 2K then Ua<K Xa does not have the complete 
invariance property. 

PROOF. Choose distinct/?^,/?" G Xa distinct. We may now find a homeomorphic 
copy (using the coordinatewise homeomorphism between 2K and Ila<«{Po'/77}) °f a 

splitting set F in Ha<« { P%, P\ } which is a closed subset of Ua<K Xa. We will show that 
for this copy denoted also by F there is no continuous function/: Ua<K %a —-> Ua<n Xa 
such that/(x) = x if and only if x G F. 

Let Cf = {A E [K]U : /A depends on A}. Since C/ is a club set by lemma 3, so 
take B £ CfPi S, a Eft— B where S and a are taken from the definition of a splitting 
set (definition 11). Also fix A G [K]W D C/ such that 5 Ç A, a G A (by cofinality 
of club sets in [K]U). NOW apply lemma 9 for FPi — 7rA(Fi) and/ = fA. By definition 
the assumptions of the lemma are satisfied; in particular, //) follows from the fact that 
F Q Yla<K {Po >p*i } • So by lemma 9 there is an XA $ TTA(F) such t h a t / 4 ^ ) = XA. NOW 

apply lemma 10 to get x £ F such that/(x) — x. m 

4. A construction of a closed set. 

THEOREM 13. There is a splitting set F Ç 2"" 

PROOF. We will construct closed ira (F)'s by induction on a such that UJ < a < uj\. 
Of course we will require that 

i) V/3 < airp(F) = ir0(ira(F)) 
ii) If a is a limit ordinal then na(F) — {x G 2a : V/3 < a x@ G np (F)} 

i.e. the construction is an inverse limit construction. For a — UJ we put 7ra(F) = 2W. For 
any a such that UJ < a < uj\ we will ensure that la is a non-isolated point of 7ra(F), 
where 1 G 2W| is such that l(/3) = 1 for all f3 < u\. Note that if 1/3 is a non-isolated 
point of 7r#(F) for any f3 < a and a is a limit ordinal, then according to //), la is a 
non-isolated point in 7ra (F); also, //) implies that ira (F) is closed in 2a and that for each 
(3 < a 7Tp (F) — TTp (7ra(F)) in the case of a limit. 

So now let us assume that a — f3 + I and that we are given (7r7(F))7</3 satisfying /) 
with a non-isolated lp. The above and the fact that (3 has to be countable in this case and 
that 2^ is zero-dimensional, implies that there is a sequence (Un)n<uj of clopen subsets 
of ?[p (F) such that 

iii) (Un)n<uj is a nested neighbourhood base at 1̂  ; 

iv) V n ( ^ - * O ^ 0 ; 
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Now define 7ra(F): x G 7ra(F) if and only if x G 2a and the following conditions are 
satisfied: 

vi) X/3 G 7173(F); 

vii) (*(/? ) = i) iff (x0 G (£/£ - £/f+1 ) and n = 2k + / for some A; G a;) or (1^ = x0 ). 

So 1̂  is split in both possible directions 0 and 1, while the points from 
U*eu;(̂ 2Jfc+i — Uu+i+O n a v e on^y extensions with projections on {/3} equal to /. Now 
we have to check that 7ra (F) is closed , with non-isolated \a and satisfies /). By v) we get 
npiitaiF)) 2 Kp(F), by vi) irp(7ra(F)) Ç 7173(F); hence, by the induction assumptions, /) 
is satisfied. Suppose now that la were isolated. Then thate would be U Ç 7173(F) open 
such that 1/5 G U md(ira(F)-{\a})n(Ux{l}) = 0. But, by ///) there is n G a; such 
that lfin x { 1} Ç U x { 1}. Let y G (f/fn+1 - t ^ + 2 ) (by iv), by vîi) y~1 G TT„(F) and 
y~̂  1 G £/ x {1} , which gives us a contradiction. Also, 7ra(F) is closed in 2a because if 
x G (2a — 7ra(F)), then in the case jt/3 ^ np(F) we are done because 7173(F) is closed. If 
*/3 £ ^ ( ^ K then Jt/3 G (É/̂ t+i ~ !̂L+/+i) anc**(/^) = 1 — '* f° r s o m e / = 0,1 but then 
(̂ 2*+/ ~~ ̂ 2k+i+0 x { 1 — '̂} is clopen and isolates xp from 7Ta(F). 

Now let us check that F = TT̂ , (F) is a splitting set. Put S = { £ G [^i]w : 5 G w i } , 
fixfiGSand let a = 5. Let 

Ft = {xeF: ^(x) G U (*C- - *4i+i)} 

Let us check /) of the definition 11. We claim that 

1/3 Gc/^(7r^(Fo))nd(7r^(F,)) 

which follows from ///). For //) of the definition 11, let x G 717̂ 1 (7173 (F/))Pl F, which means 
that 7rp(x) = xp e TTp(Fi) and x G F. This implies that 7173 (x) G lifted É/̂ +i ~~ U2k+i+\) 

and that 7173+1 (x) G 7173+1 (F), but this means (by vii) that 7T{a j (JC) = /. This completes the 
proof of the theorem. • 

LEMMA 14. If there is a splitting F Ç 2U], f/ien ^ r e /s a splitting H Q 2K for any 
uncountable ordinal K. 

PROOF. Let Sf be a stationary set ensuring that F is a splitting set. If B G Sf let 
aB G {UJ\ — B), FQ, FB be such that /), //) of the definition 11 are satisfied. Let us check 
that H = F x 2K_Wl is a splitting subset of 2K. Of course / / is closed. Moreover 5 = 
{B G [«]" : 5 D a;i G S>} is stationary. Take B G 5, such that 5 Pi wi = Bf <E SF and 
take F̂ f x 2B~B\ FB' x 2fi-fi'. Then /), ii) of the definition 11 are satisfied. • 

As corollaries from the above lemmas we obtain the following theorems. 
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THEOREM 15. For any uncountable n there is a splitting set F C 2K 

THEOREM 16. Suppose each Xa has at least two points and is a compact, convex 

subset of a normed linear space. Suppose K, is an uncountable cardinal, then l\a<K Xa 

does not have the complete invariance property. 
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