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Abstract

The idea that the cohomology of finite groups might be fruitfully approached via the
cohomology of ambient semisimple algebraic groups was first shown to be viable in the
papers [E. Cline, B. Parshall, and L. Scott, Cohomology of finite groups of Lie type, I,
Publ. Math. Inst. Hautes Études Sci. 45 (1975), 169–191] and [E. Cline, B. Parshall,
L. Scott and W. van der Kallen, Rational and generic cohomology, Invent. Math. 39
(1977), 143–163]. The second paper introduced, through a limiting process, the notion
of generic cohomology, as an intermediary between finite Chevalley group and algebraic
group cohomology. The present paper shows that, for irreducible modules as coefficients,
the limits can be eliminated in all but finitely many cases. These exceptional cases
depend only on the root system and cohomological degree. In fact, we show that, for
sufficiently large r, depending only on the root system and m, and not on the prime p
or the irreducible module L, there are isomorphisms Hm(G(pr), L)∼= Hm(G(pr), L′)∼=
Hm

gen(G, L′)∼= Hm(G, L′), where the subscript ‘gen’ refers to generic cohomology and L′

is a constructibly determined irreducible ‘shift’ of the (arbitrary) irreducible module L
for the finite Chevalley group G(pr). By a famous theorem of Steinberg, both L and
L′ extend to irreducible modules for the ambient algebraic group G with pr-restricted
highest weights. This leads to the notion of a module or weight being ‘shifted m-generic’,
and thus to the title of this paper. Our approach is based on questions raised by the
third author in [D. I. Stewart, The second cohomology of simple SL3-modules, Comm.
Algebra 40 (2012), 4702–4716], which we answer here in the cohomology cases. We
obtain many additional results, often with formulations in the more general context of
ExtmG(pr) with irreducible coefficients.

1. Introduction

Let G be a simply connected, semisimple algebraic group defined and split over the prime field
Fp of positive characteristic p. Write k = F̄p. For a power q = pr, let G(q) be the subgroup of
Fq-rational points in G. Thus, G(q) is a finite Chevalley group. Let M be a finite-dimensional
rational G-module and let m be a nonnegative integer. In [CPSvdK77], the first two authors
of this paper, together with Cline and van der Kallen, defined the notion of the generic
m-cohomology

Hm
gen(G,M) := lim←−

q

Hm(G(q), M)
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of M . The limit is, in fact, a stable limit for any given M . Moreover, Hm
gen(G,M)∼= Hm(G,M [e0]),

where M [e0] denotes the twist of M through some e0th power of the Frobenius endomorphism
of G. Although the nonnegative integer e0 may be chosen independently of p and M , it can
also be chosen as a function e0(M) of M . Unfortunately, given a rational G-module M for
which one wants to compute Hm(G(q), M), it is frequently necessary to take e0(M)> 0. This
problem and related computational issues have been noted by others; see [FFSS99, p. 664] and
[UGA12, § 1]. Worse, it may be necessary to enlarge q in order to obtain Hm(G(q), M)∼=
Hm

gen(G,M). The problem is exacerbated if one is interested in calculations for an infinite family
of modules M , such as the irreducible G-modules. By a famous result of Steinberg, all irreducible
kG(q)-modules are, up to isomorphism, the restrictions to G(q) of the irreducible rational G-
modules whose highest weights are q-restricted.

We propose here a remedy to this situation. Observe that, for any q-restricted dominant
weight λ and nonnegative integer e, there is a unique q-restricted dominant weight λ′ with
L(λ)[e]|G(q) = L(λ′)|G(q). Write λ′ = λ[e]q and L(λ′) = L(λ)[e]q . We shall refer to any weight λ′ of
this form as a q-shift of λ. The main result, Theorem 5.8, in this paper shows that, for r� 0,1

and any q-restricted dominant weight λ,

Hm(G(q), L(λ))∼= Hm
gen(G, L(λ′))∼= Hm(G, L(λ′)), (1.0.1)

for some q-restricted weight λ′ = λ[e]q with e= e(λ) = e(λ, q) > 0. Similar results hold for
ExtmG(q)(L(µ), L(λ)) with λ, µ both q-restricted, though with some conditions on µ. The first
isomorphism in (1.0.1) may be viewed as saying that L(λ) is ‘shifted m-generic at q’; see the end
of this introduction.2 The map λ 7→ λ[e]q defines an action of the cyclic group Z/rZ on the set
X+
r of q-restricted weights, and λ′ in (1.0.1) is a ‘distinguished’ member in the orbit of λ under

this action, chosen to optimize the positions of zero terms in its p-adic expansion.
The origin of these results goes back to Extm-questions raised by the third author in

[Ste12a, § 3], where the q-shift λ[e]q of λ was denoted λ{e}, and L(λ{e}) was called a q-wrap
of L(λ). While raised for general m> 0, these questions arose in part from observations
for m= 1, 2, namely, from noting a parallel between the 2-cohomology result [Ste12a,
Theorem 2] and a 1-cohomology result in [BNP06, Theorem 5.5], which also had an Ext1-analog
[BNP06, Theorem 5.6]. The conclusions of all these results involve what we now call q-shifted
weights.3 Essentially, our main Theorem 5.8 provides a strong answer to [Ste12a, Question 3.8]
in the cohomology cases, in addition to interpreting it in terms of generic cohomology. Also,
Theorem 6.2(c) proves a similar result for ExtmG(q)(L(µ), L(λ)) when p is sufficiently large, and
with no requirement on r, but with λ and µ required to have a zero digit in common (i.e.,
λi = µi = 0 for some i < r, using the terminology below). Remark 5.9 gives an example showing
this result is near best possible, especially when λ= µ, and that the original [Ste12a, Question
3.8] must be reformulated. Such a reformulation is given in Question 5.10.

Our investigation yields many other useful results. We mention a few. First, any dominant
weight λ has a p-adic expansion λ= λ0 + pλ1 + p2λ2 + · · · , where each λi is p-restricted. We
call the pairs (i, λi) digits of λ, and we say a digit is 0 if λi = 0. Theorem 5.4 states that, given
m> 0, there is an integer d, depending only on the root system Φ and m, such that, for any

1 The lower bound on r here depends only on the root system Φ of G and the cohomological degree m, and not
on p or λ. Moreover, this bound can be recursively determined.
2 We ask in Question 5.10 below if the Ext-analog of the first isomorphism holds for all q-restricted λ and µ,
though we know conditions on µ are needed for the second.
3 As far as we know, [BNP06, Theorem 5.6] is the first use of q-shifted weights in a general homological theorem.
However, this shifting (or wrapping) behavior for SL2 had been observed much earlier: see [AJL83, Corollary 4.5].
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prime p, any power q = pr, and any pair of q-restricted weights λ, µ, if ExtmG(q)(L(µ), L(λ)) 6= 0,
then λ and µ differ in at most d of their respective digits. Thus, in the cohomology case, if
Hm(G(q), L(λ)) 6= 0, then λ has at most d nonzero digits. Versions of these results hold for both
rational G-cohomology and Extm-groups; see Theorem 5.2. These digit-bounding results were
inspired by questions in [Ste12a, Question 3.10], which we answer completely.

Second, combining the main Theorem 5.8 with the large prime cohomology results [BNP01,
Theorem 7.5] gives a new proof4 that there is a bound on dim Hm(G(q), L(λ)), for q-restricted λ,
depending only on Φ and m, and not on p or r. In fact, after throwing away finitely many values
of q, Theorem 5.12 shows that dim Hm(G(q), L(λ)) is bounded by the maximum dimension of the
spaces Hm(G, L(µ)), with p and µ ∈X+ allowed to vary (with only m and Φ fixed). The latter
maximum has been shown to be finite in [PS11, Theorem 7.1]. Indeed, apart from finitely many
exceptional q, the finite group cohomology Hm(G(q), L(λ)) identifies with a rational cohomology
group Hm(G, L(µ)), for an explicitly determined dominant weight µ (which depends on λ).

Though the main focus of this paper is on results which hold for all primes p, we collect
several results in § 6, most formulated in the ExtmG(q)-context, which are valid in the special case
when p is modestly large. One such result is Theorem 6.2(c) discussed above. This theorem, given
in a ‘shifted generic’ framework, leads also to a fairly definitive treatment of generic cohomology
for large primes in Theorem 6.5 and the Appendix A.

A key ingredient in this work is the elegant filtration, due to Bendel, Nakano and Pillen,
of the induced module Gr(k) := indGG(q) k; see [BNP11] and the other references at the start of
§ 4. This result is, in our view, the centerpiece of a large collection of results and ideas of these
authors, focused on using the induction functor indGG(q) in concert with truncation to smaller
categories of rational G-modules. The filtration of Gr(k) is described in Theorem 4.2 below, and
we derive some consequences of it in § 4.

Also, the specific theorems and ideas establishing generic cohomology, as originally formulated
in [CPSvdK77], play an important role in § 5, both directly and as a background motivation for
exploring digit bounding.

Finally, to explain the title of this paper, a finite-dimensional, rational G-module M may be
called ‘m-generic at q’ if Hm(G(q), M)∼= Hm

gen(G,M).5 A natural generalization of this notion
is to say that M is ‘shifted’ m-generic at q if there exists a module M ′ which is m-generic
at q and such that M ′|G(q)

∼=M [e]|G(q) for some e> 0. Thus, Hm(G(q), M)∼= Hm(G(q), M ′)∼=
Hm

gen(G,M ′). Our paper shows that many modules may be fruitfully regarded as shifted m-
generic at q, when it is unreasonable or false that they are m-generic at q. The digit-bounding
results discussed above, which mesh especially well with the generic cohomology theory, provide
the main tool for finding such modules in nontrivial cases, and this is the strategy for the proof of
Theorem 5.8. In fact, Theorem 5.8 shows that often one can obtain the additional isomorphism
Hm

gen(G,M ′)∼= Hm(G,M ′), an attractive property for computations.

2. Some preliminaries

Fix an irreducible root system Φ with positive (respectively, simple) roots Φ+ (respectively, Π)
selected.6 Let α0 ∈ Φ+ be the maximal short root, and let h= (ρ, α∨0 ) + 1 be the Coxeter number

4 The first proof that such a bound exists is in a joint paper [BNPPSS12] of the present three authors together
with Bendel, Nakano and Pillen.
5 In practice, this often happens when the stable limit defining the generic cohomology has already occurred at q;
however, we do not make this part of the definition.
6 The assumption that Φ is irreducible is largely a convenience. The reader can easily extend to the general case,
i.e., when the group G below is only assumed to be semisimple.
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of Φ (where ρ is the half sum of the positive roots). Write X for the full weight lattice of Φ, and
let X+ ⊂X be the set of dominant weights determined by Π.

Now fix a prime p. For a positive integer b, let X+
b := {λ ∈X+ | (λ, α∨)< pb, ∀α ∈Π } be the

set of pb-restricted dominant weights. At times it is useful to regard the 0 weight as (the only)
p0-restricted dominant weight.

Let G be a simple, simply connected algebraic group, defined and split over a prime field Fp
and having root system Φ. Fix a maximal split torus T , and let B ⊃ T be the Borel subgroup
determined the negative roots −Φ+. For λ ∈X+, L(λ) denotes the irreducible rational G-module
of highest weight λ. If F :G→G is the Frobenius morphism, then, for any positive integer b, let
Gb = Ker(F b) be the (scheme theoretic) kernel of F b. Thus, Gb is a normal, closed (infinitesimal)
subgroup of G. Similar notations are used for other closed subgroups of G.

The representation and cohomology theory for linear algebraic groups (especially semisimple
groups and their important subgroups) is extensively developed in Jantzen’s book [Jan03], with
which we assume the reader is familiar. We generally follow his notation (with some small
modifications). The reader should keep in mind that ExtmG (L(λ), L(µ))∼= ExtmG (L(µ), L(λ)) and
a similar statement holds for G(q). Often we write the L(µ) on the left, because µ sometimes
plays a special role (with restrictions of some kind), and taking µ= 0 gives Hm(G, L(λ)). But
we are not always consistent, as in some places where it is more convenient to have L(µ) on the
right. If M is a rational G-module and b is a nonnegative integer, write M [b] for the rational
G-module obtained by making g ∈G act through F b(g) on M . If M already has the form
M ∼=N [r] for some r > b, write M [−b] :=N [r−b].7

Let indGB be the induction functor from the category of rational B-modules to rational
G-modules. (See § 4 for a brief discussion of induction in general.) Given λ ∈X, we denote
the corresponding one-dimensional rational B-module also by λ, and write H0(λ) for indGB λ.
Then H0(λ) 6= 0 if and only if λ ∈X+; when λ ∈X+, H0(λ) has irreducible socle L(λ) of highest
weight λ, and formal character ch H0(λ) given by Weyl’s character formula at the dominant
weight λ. In most circumstances, especially when regarding H0(λ) as a co-standard (i.e., a dual
Weyl) module in the highest weight category of rational G-modules, we denote H0(λ) by ∇(λ).
Given λ ∈X, let λ∗ :=−w0(λ), where w0 is the longest element in the Weyl group W of Φ. If
λ ∈X+, then λ∗ ∈X+ is just the image of λ under the opposition involution. For λ ∈X+, put
∆(λ) =∇(λ∗)∗, the dual of ∇(λ∗). In other words, ∆(λ) is the Weyl module for G of highest
weight λ. Of course, L(λ)∗ = L(λ∗).

For i> 0, let Ri indGB be the ith derived functor of indGB. Then Ri indGB = 0 for i > |Φ+|.
We will need another notion of the magnitude of a weight. If b is a nonnegative integer, λ ∈X

is called b-small if |(λ, α∨)|6 b for all α ∈ Φ+. If λ ∈X+, λ is b-small if and only if (λ, α∨0 ) 6 b.
We say a (rational) G-module is b-small provided all of its weights are b-small. Equivalently,
it is b-small provided its maximal weights (in the dominance order) are b-small. In particular,

7 For more discussion of the Frobenius twist of a representation, see [Jan03, I.9]. Our notation V [r] agrees with

that in [Jan03], which also discusses another Frobenius twist V (r) defined by modifying the action of the base
field on the vector space V . When V is defined over the prime field Fp (in the sense of algebraic groups, using a
prime field comodule structure for a prime field coordinate algebra of G), the two twisted modules are isomorphic.

The use of the modules V (r) leads to semilinear maps, which can be avoided using the modules V [r]. (In this way,

the semilinear maps in [CPSvdK77] can be avoided.) The ‘twisting’ maps H•(G, V )→H•(G, V [r]), used below in
§ 5, are just the inflation maps through F r; see also [CPS83, § 1], where the inflation map is shown to agree with

the abutment map in the Hochschild–Serre spectral sequence Es,t
2 = Hs(G/Gr,H

t(Gr, V
[r]))⇒Hs+t(G, V [r]). In

particular, these maps are linear. We thank the referee for suggesting that the authors clarify this point.
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if λ ∈X+ is b-small, then any highest weight module M with highest weight λ, e.g., L(λ), ∇(λ),
or ∆(λ), is also b-small. We make some elementary remarks about small-ness.

Lemma 2.1. Let ν be any dominant weight and let b, b′, r, u be nonnegative integers.

(a) If b > 0, assume u> [logp b] + 1, where [ ] denotes the greatest integer function. Then
b6 pu − 1, and, if ν is b-small, ν is pu-restricted.

(b) If ν is pr-restricted, then ν is (h− 1)(pr − 1)-small.

(c) Let M and N be two highest weight modules for G with highest weights ν, µ. If µ and
ν are b-small and b′-small, respectively, the tensor product M ⊗N is (b+ b′)-small.

(d) If λ, µ ∈X+
b are both pb-restricted, then all composition factors of L(λ)⊗ L(µ) are

pb+[logp(h−1)]+2-restricted. If, in fact, p> 2h− 2 all the composition factors of L(λ)⊗ L(µ)
are pb+1-restricted.

Proof. First we prove property (a). The case b= 0 is clear, so assume b > 0. If b> pu, then
logp b> [logp b] + 1, which is false. Thus, b6 pu − 1. If ν is b-small, then (ν, α∨) 6 b for each
α ∈ Φ+, so ν is pu-restricted. Hence, property (a) holds.

For property (b) we note (ν, α∨0 ) 6 ((pn − 1)ρ, α∨0 ) 6 (pr − 1)(h− 1). This proves property
(b) since ν ∈X+ is dominant.

For property (c), the highest weight of M ⊗N is (b+ b′)-small. Since any other weight of
M ⊗N is obtained by subtracting positive roots, the statement follows.

To prove property (d), note that property (b) implies that λ and µ are (h− 1)(pb − 1)-small.
Thus, by property (c), all composition factors of L(λ)⊗ L(µ) are 2(h− 1)(pb − 1)-small. Then,
by property (a), all composition factors of L(λ)⊗ L(µ) are pe-restricted, where

e= [logp(2(h− 1)(pb − 1))] + 1

6 [logp 2 + logp(p
b − 1)] + [logp(h− 1)] + 2

6 b+ [logp(h− 1)] + 2.

The case p> 2h− 2 follows similarly. 2

3. Bounding weights

Let U =Ru(B) be the unipotent radical of B, and let u be the Lie algebra of U .

Lemma 3.1. For any nonnegative integer m, the T -weights in the ordinary cohomology space
Hm(u, k) are 3m-small (and they are sums of positive roots).

Proof. The T -weights in Hm(u, k) are included among the T -weights of the exterior power∧m(u∗) appearing in the Koszul complex computing H•(u, k). Hence, they are sums of m positive
roots. Since each positive root is 3-small, these weights are 3m-small. 2

Recall that, for r > 1, Ur is the Frobenius kernel of F r|U .

Lemma 3.2. For any nonnegative integer m, the T -weights of Hm(U1, k) are 3mp-small.

Proof. By [Jan03, I.9.20] and [FP86, (1.2)(b)] there are spectral sequences{
p= 2 : Ei,j2 := Si(u∗)[1] ⊗Hj(u, k) =⇒ Hi+j(U1, k),

p 6= 2 : E2i,j
2 := Si(u∗)[1] ⊗Hj(u, k) =⇒ H2i+j(U1, k).
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Suppose that p= 2. A weight ν in Hm(U1, k) is a weight in Ei,j2 for some i+ j =m. Using
Lemma 3.1, the largest value of (ν, α∨) clearly occurs when i=m and j = 0. Since the weights
of Sm(u∗)[1] are given as a sum

∑m
k=1 pαk, the weight ν is 3mp-small. Similarly, when p > 2, the

weight µ is 3(m/2)p-small, so certainly 3mp-small also. 2

Lemma 3.3. For any r > 0 and nonnegative integer m, the T -weights of Hm(Ur, k) are 3mpr-
small.

Proof. The case r = 1 follows from the previous lemma. We prove the result by induction using
the Lyndon–Hochschild–Serre spectral sequence

Ei,j2 := Hi(Ur/U1,Hj(U1, k)) =⇒ Hi+j(Ur, k).

The Ei,j2 -term has the same weights for T as the T -module

Hi(Ur/U1, k)⊗Hj(U1, k)∼= Hi(Ur−1, k)[1] ⊗Hj(U1, k).

By induction, the weights on the left-hand tensor factor are p(3ipr−1) = 3ipr-small. On the right-
hand side, the weights are 3jp-small. Adding these together, the worst case occurs for i=m,
and the lemma follows. 2

The following is immediate.

Corollary 3.4. Suppose the weight λ is b-small. Then the weights of Hm(Br, λ)∼=
(Hm(Ur, k)⊗ λ)Tr are (3mpr + b)-small. Moreover, the weights of Hm(Br, λ)[−r] are (3m+
[b/pr])-small, where [ ] denotes the greatest integer function.

Theorem 3.5. Let m be a nonnegative integer, and let r, b be positive integers. Let M be a
b-small G-module. Then the G-module Hm(Gr, M)[−r] is (3m+ [b/pr])-small.

In particular, if M is pr-restricted, then Hm(Gr, M)[−r] is (3m+ [(h− 1)(pr − 1)/pr]) 6
(3m+ h− 2)-small.

Proof. We will show the statement holds when M is an induced module with highest b-small
weight λ; thence we deduce that the statement holds for L(λ), so the statement follows for all
M , since it holds for its composition factors.

By [Jan03, II.12.2], there is a first quadrant spectral sequence

Ei,j2 :=Ri indGB Hj(Br, λ)[−r] =⇒ Hi+j(Gr,H0(λ))[−r].

Any weight in Hm(Gr,H0(λ))[−r] is a weight of Ei,j2 for some i, j with i+ j =m, hence a
weight of Hi(µ) for some µ ∈Hj(Br, λ)[−r]. So it suffices to show that any weight of Hi(µ)
for µ ∈Hj(Br, λ)[−r] is (3m+ [b/pr])-small.

By Corollary 3.4, a weight µ of Hj(Br, λ)[−r] is (3j + [b/pr])-small; hence it is also b′ := (3m+
[b/pr])-small. Choose w ∈W so that w · µ ∈X+ − ρ. If w · µ is not in X+ then R•IndGBµ= 0.
Hence we may assume that w · µ ∈X+. Now, w · µ= w(µ) + wρ− ρ6 w(µ). Since w · µ ∈X+,
w · µ is b′-small if and only if (w · µ, α∨0 ) 6 b′. But

(w · µ, α∨0 ) 6 (w(µ), α∨0 ) = (µ, w−1α∨0 ) 6 b′.

Now if L(ν) is a composition factor of Ri indGB µ, the strong linkage principle [Jan03, II.6.13]
implies ν ↑ w · µ and is, in particular, b′-small.

Thus we have proved the statement in the case M = H0(λ).
For the general case, we apply induction on m. We have a short exact sequence 0→ L(λ)→

H0(λ)→N → 0 where the G-module N has composition factors whose high weights are less
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than λ in the dominance order and are therefore b-small. Associated to this sequence is a long
exact sequence of which part is

Hm−1(Gr, N)[−r]→Hm(Gr, L(λ))[−r]→Hm(Gr,H0(λ))[−r]

so that any G-composition factor of the middle term must be a G-composition factor of one
of the outer terms. Now, the composition factors of the rightmost term are (3m+ [b/pr])-small
by the discussion above. Since N has composition factors with high weights less than λ in the
dominance order, these weights are (3(m− 1) + [b/pr])-small by induction, and are, in particular,
(3m+ [b/pr])-small. Thus the weights of the middle term are also (3m+ [b/pr])-small.

This proves the statement in the case M = L(λ). The case for all b-small modules M now
follows since it is true for each of its composition factors.

For the last statement, we use Lemma 2.1(b). 2

The following corollary for general m follows from the previous theorem. For m= 1, it is
proved in [BNP04b, Proposition 5.2].

Corollary 3.6. Let λ, µ ∈X+
r . For any r > 1, the weights of ExtmGr

(L(λ), L(µ))[−r] are

(3m+ 2h− 3)-small. If m= 1, the weights of Ext1Gr
(L(λ), L(µ))[−r] are (h− 1)-small.

Remarks 3.7. (a) The result [BNP04b, Proposition 5.2] quoted above also gives, for m> 1, an
integer b such that the weights in ExtmGr

(L(λ), L(µ))[−r] are b-small. However, b is multiplicative
in h and m, and so is weaker than Corollary 3.6 for large m and h (for instance if m, h> 4). For
p > h and m> 2 note that our bound coincides with that given in [BNP04b, Proposition 5.3]
using the improvements from remark (c) below.

(b) It is interesting to ask when ExtmGr
(L(λ), L(µ))[−r] for λ, µ ∈X+

r has a good filtration.
Even for r = 1, there are examples due to Sin (for instance, see [Sin94, Proposition 4.11]) showing
that for small p this question can have a negative answer. Obviously, if p> 3m+ 3h− 4 (or
p> 2h− 2 in case m= 1), then ExtmGr

(L(λ), L(µ))[−r] has highest weights in the lowest p-alcove,
so it trivially has a good filtration.8

(c) The reader may check that many of the results in this section can be improved under
certain mild conditions. For instance, if Φ is not of type G2, its roots are all 2-small. In this
instance, wherever we have ‘3m’ it can be replaced with ‘2m’. In addition, if p > 2, the last
sentence of the proof of Lemma 3.2 shows that one can replace m with [m/2]. The same statement
follows for most formulas in the remainder of the paper; however, we will not elaborate further
in individual cases.

4. Relating G(q)-cohomology to G-cohomology

Inspired by [BNP01, BNP02, BNP04a, BNP06, BNP11], Theorem 4.4 establishes an important
procedure for describing G(q)-cohomology in terms of G-cohomology. This result will be used in
§ 5 to prove the digit-bounding results mentioned in the Introduction.

Before stating the theorem, we review some elementary results. The coordinate algebra
k[G] of G is a left G-module (f 7→ g · f, x 7→ f(xg), x, g ∈G, f ∈ k[G]) and a right G-module
(f 7→ f · g, x 7→ f(gx), x, g ∈G, g ∈ k[G]). Given a closed subgroup H of G and a rational H-
module, the induced module indGH(V ) := MapH(G, V ) consists of all morphisms f :G→ V

8 The first two authors have proved in [PS13, Theorem 5.3] that a good filtration of Extm
Gr

(L(λ), L(µ))[−r]

always exists for restricted regular weights when r = 1, p> 2h− 2 and the Lusztig character formula holds for all
irreducible modules with restricted highest weights.
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(i.e., morphisms of the algebraic variety G into the underlying variety of a finite-dimensional
subspace of V ), which are H-equivariant in the sense that f(h · g) = h · f(g) for all g, h ∈G. If x ∈
G and f ∈ indGH V , then x · f ∈ indGH V , making indGH V into a rational G-module (characterized
by the property that indGH is the right adjoint of the restriction functor resGH :G-mod →
H-mod). If G/H is an affine variety (e.g., if H is a finite subgroup), then indGH is an exact functor
[CPS77, Theorem 4.3], which formally takes injective H-modules to injective G-modules. Thus,
H•(H, V )∼= H•(G, indGH V ) for any rational H-module.

Let q = pr for some prime integer p and positive integer r, and let m be a fixed nonnegative
integer which will serve as the cohomological degree. As in § 2, let G be the simple, simply
connected algebraic group defined and split over Fp with root system Φ.

Lemma 4.1 [Kop84]. Consider the coordinate algebra k[G] of G as a rational (G×G)-module
with action

((g, h) · f)(x) = f(h−1xg), g, h, x ∈G, f ∈ k[G].

Then k[G] has an increasing G×G-stable filtration 0⊂ F′0 ⊂ F′1 ⊂ · · · in which, for i> 1,
F′i/F

′
i−1
∼=∇(γi)⊗∇(γ∗i ), γi ∈X+, and

⋃
i F
′
i = k[G]. Each dominant weight γ ∈X+ appears

exactly once in the sequence γ0, γ1, γ2, . . . .

Theorem 4.2 [BNP11, Proposition 2.2 and Proof]. (a) The induced module indGG(q)(k) is
isomorphic to the pull-back of the G×G-module k[G] above through the map G→G×G,
g 7→ (g, F r(g)).

(b) In this way, indGG(q) k inherits an increasing G-stable filtration 0⊂ F0 ⊂ F1 ⊂ · · · with⋃
Fi = indGG(q) k, in which, for i> 1, Fi/Fi−1

∼=∇(γi)⊗∇(γ∗i )[r]. Moreover, each dominant weight

γ ∈X+ appears exactly once in the sequence γ0, γ1, . . . .

Following [BNP11], put Gr(k) := indGG(q) k, with q = pr. The filtration F• of the rational
G-module Gr(k) arises from the increasing G×G-module filtration F′• of k[G] with sections
∇(γ)⊗∇(γ∗). Since these latter modules are all co-standard modules for G×G, their order in
F′• can be manipulated, using the fact that

Ext1G×G(∇(γ)⊗∇(γ∗),∇(µ)⊗∇(µ∗)) = 0 unless µ < γ (and µ∗ < γ∗). (4.2.1)

Thus, for any nonnegative integer b, there is a (finite-dimensional) G-submodule Gr,b(k) of
Gr(k) which has an increasing G-stable filtration with sections precisely the ∇(γ)⊗∇(γ∗)[r]

with (γ, α∨0 ) 6 b, and with each such γ appearing with multiplicity 1. Such a submodule may be
constructed from a corresponding (unique) G×G-submodule of k[G] with corresponding sections
∇(γ)⊗∇(γ∗). With this construction, the quotient Gr(k)/Gr,b(k) has a G-stable filtration with
sections∇(γ)⊗∇(γ∗)[r], (γ, α∨0 )> b. More precisely, using (4.2.1) again and setting Gr,−1(k) = 0,
we have the following result.

Lemma 4.3. For b> 0,

Gr,b(k)/Gr,b−1(k)∼=
⊕

λ∈X+,(λ,α∨
0 )=b

∇(λ)⊗∇(λ∗)[r].

Also,
⋃
b>0 Gr,b(k) = Gr(k).

We will usually abbreviate Gr(k) to Gr and Gr,b(k) to Gr,b for b>−1. We remark that Gr(k)
is in some sense already an abbreviation, since it depends on the characteristic p of k.
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For λ, µ ∈X+
r , consider ExtmG(q)(L(λ), L(µ)). Because the induction functor indGG(q) is exact

from the category of kG(q)-modules to the category of rational G-modules, then

ExtmG(q)(L(λ)⊗ L(µ∗), k)∼= ExtmG (L(λ)⊗ L(µ∗), Gr), (4.3.1)

where q is pr.
The following result provides an extension beyond the m= 1 case treated in [BNP02,

Theorem 2.2]. A similar result in the cohomology case is given with a bound on p (namely,
p> (2m+ 1)(h− 1)) for any m by [BNP01, Proof of Corollary 7.4]. Our result, for Extm, does
not require any condition on p.

Theorem 4.4. Let b> 6m+ 6h− 8, independently of p and r, or, more generally,

b> b(Φ, m, pr) :=
[

3m+ 3h− 4
1− 1/pr

]
,

when p and r are given. Then, for any λ, µ ∈X+
r , we have

ExtmG(q)(L(λ), L(µ))∼= ExtmG (L(λ), L(µ)⊗ Gr,b). (4.4.1)

(Recall q = pr.) In addition,

ExtnG(L(λ), L(µ)⊗∇(ν)⊗∇(ν∗)[r]) = 0, ∀n6m, ∀ν ∈X+ satisfying (ν, α∨0 )> b. (4.4.2)

Proof. It suffices to show that

b> b(Φ, m, pr) =⇒ ExtnG(L(λ), L(µ)⊗ Gr/Gr,b) = 0, ∀n6m. (4.4.3)

Suppose that (4.4.3) fails. Then for some ν with (ν, α∨0 )> b and some nonnegative integer
n6m, we must have ExtnG(L(λ), L(µ)⊗∇(ν)⊗∇(ν∗)[r]) 6= 0. (That is, (4.4.2) fails.) For some
composition factor L(ξ)∼= L(ξ0)⊗ L(ξ′)[r] (ξ0 ∈X+

r , ξ′ ∈X+) of ∇(ν), we obtain

ExtnG(∆(ν)[r] ⊗ L(λ), L(µ)⊗ L(ξ0)⊗ L(ξ′)[r]) 6= 0 (4.4.4)

by rearranging terms. Here we use the fact that ∇(ν∗)∗ ∼= ∆(ν), the Weyl module of highest
weight ν. To compute the left-hand side of (4.4.4) we use a Lyndon–Hochschild–Serre spectral
sequence involving the normal subgroup Gr. The E2-page is given by

Ei,j2 = ExtiG(∆(ν), ExtjGr
(L(λ)⊗ L(µ∗), L(ξ0))[−r] ⊗ L(ξ′)), i+ j = n. (4.4.5)

Using Lemma 2.1(b)(c), we see that the module L(λ∗)⊗ L(µ)⊗ L(ξ0) is 3(h− 1)(pr − 1)-
small; thus by Theorem 3.5 we have ExtjGr

(L(λ)⊗ L(µ∗), L(ξ0))[−r] = ExtjGr
(k, L(λ∗)⊗ L(µ)⊗

L(ξ0))[−r] is (3j + 3h− 4)-small, and, in particular, is (3m+ 3h− 4)-small.
Put x= (ν, α∨0 )> b. Then, as L(ξ) is a composition factor of ∇(ν), ξ = ξ0 + prξ′ is

x-small. Clearly prξ′ is x-small also, and thus ξ′ is [x/pr]-small. So, the composition factors
of ExtjGr

(L(λ)⊗ L(µ∗), L(ξ0))[−r] ⊗ L(ξ′) are ([x/pr] + 3m+ 3h− 4)-small. Recall the fact, for
general ν, ω ∈X+, that Ext•G(∆(ν), L(ω)) 6= 0 implies that ν 6 ω. For ν as above and L(ω)
a composition factor of ExtjGr

(L(λ)⊗ L(µ∗), L(ξ0))[−r] ⊗ L(ξ′), it follows that ν 6 ω. Hence,
x= (ν, α∨0 ) 6 (ω, α∨0 ) 6 3m+ 3h− 4 + [x/pr]. Rearranging this gives

x6

[
3m+ 3h− 4

1− 1/pr

]
6 b,

which is a contradiction. This proves (4.4.1) and (4.4.2).
For the remaining part of the theorem, just note that the smallest value of pr is 2. Hence,

the largest value of v(Φ, m, pr) is 6m+ 6h− 8. 2
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5. Digits and cohomology

Any λ ∈X+ has a p-adic expansion λ= λ0 + pλ1 + · · ·+ prλr + · · · where each λi is p-restricted.
We refer to each pair (i, λi) as a digit of λ. We say the ith digit of λ is 0 if λi = 0. Clearly λ has
finitely many nonzero digits. Let also µ ∈X+. We say λ and µ agree on their ith digit whenever
λi = µi. We say λ and µ differ on n-digits if |{i : λi 6= µi}|= n.

Theorem 5.2 below requires the following result.

Lemma 5.1 [BNP06, Proposition 3.1]. Let λ, µ ∈X+
r and M a finite-dimensional rational

G-module whose (dominant) weights are (pr − 1)-small. Then

HomGr
(L(λ), L(µ)⊗M) = HomG(L(λ), L(µ)⊗M).

Hence, the left-hand side has trivial G-structure.

We can now prove the following ‘digit bounding’ theorem. It both answers the open question
[Ste12a, Question 3.10] in a strong way, and paves the way for the rest of this section.

Theorem 5.2. Given an irreducible root system Φ and a nonnegative integer m, there is an
integer δ = δ(Φ, m), so that if λ, µ, ν ∈X+, and ν is (3m+ 2h− 2)-small, then we have the
following, where φ= [logp(3m+ 2h− 2)] + 1.

(1) The condition

ExtnG(L(λ), L(ν)⊗ L(µ)) 6= 0
for some n6m implies λ and µ differ in at most δ digits.

(2) Also,

ExtmG (L(λ), L(µ)) 6= 0
implies λ and µ differ in at most δ − φ digits.

Proof. We prove both statements together by induction on m. Set b := 3m+ 2h− 2 and u := φ.
Thus, u= [logp b] + 1. Let λ◦ := λ0 + · · ·+ pu−1λu−1, so that λ= λ◦ + puλ′, for λ′ ∈X+; write
µ similarly. By Lemma 2.1, the b-small weight ν is pu-restricted. In fact, b6 pu − 1.

The case m= 0 follows easily from Lemma 5.1, with δ(Φ, 0) := φ, as shown below.
For statement (1), we have

H := HomG(L(λ), L(µ)⊗ L(ν)) = HomG(L(λ′),HomGu
(L(λ◦), L(µ◦)⊗ L(ν))[−u] ⊗ L(µ′))

with H assumed to be nonzero. As ν is (pu − 1)-small, Lemma 5.1 implies that the module
HomGu

(L(λ◦), L(µ◦)⊗ L(ν))∼= HomG(L(λ◦), L(µ◦)⊗ L(ν)) and so has a trivial G-structure.
Thus,

H = HomG(L(λ′), L(µ′))⊗HomG(L(λ◦), L(µ◦)⊗ L(ν)).
If this expression is nonzero, then λ′ = µ′ and λ◦, µ◦ can differ in at most all of their u= φ places,
so that λ and µ can differ in at most φ places. Statement (2) is trivial. This completes the m= 0
case.

Assume we have found δ(Φ, i) for all i < m such that the theorem holds when i plays the
role of m and δ(Φ, i) plays the role of δ(Φ, m). We claim that the theorem holds at m if we set
δ = δ(Φ, m) := 2φ+ maxi<m δ(Φ, i).

Suppose otherwise. Let b= (3m+ 2h− 2). Then either statement (1) fails with n=m,
namely, {

ExtmG (L(λ), L(ν)⊗ L(µ)) 6= 0 for some λ, µ, ν ∈X+,
with ν b-small and λ and µ differing in more than δ-digits,

(5.2.1)
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or statement (2) fails, namely,

ExtmG (L(λ), L(µ)) 6= 0, λ and µ differing in more than δ − φ digits. (5.2.2)

Let λ, µ, ν ∈X+
s be a such a counterexample with s minimal (where, in (5.2.2), we take ν = 0,

and, in (5.2.1), ν is b-small). We continue to write λ= λ◦ + puλ′, where λ◦ ∈X+
u , λ′ ∈X+.

We use a similar notation for µ.
We investigate λ and µ using the Lyndon–Hochschild–Serre spectral sequence for the normal

(infinitesimal) group Gu / G. First, suppose that

Em−i,i2 := Extm−iG (L(λ′), ExtiGu
(L(λ◦), L(ν)⊗ L(µ◦))[−u] ⊗ L(µ′)) 6= 0,

for some positive integer 0< i6m. Then Extm−iG (L(λ′), L(τ)⊗ L(µ′)) 6= 0 for some composition
factor L(τ) of ExtiGu

(L(λ◦), L(ν)⊗ L(µ◦))[−u]. By Lemma 2.1(b) and (c), all composition factors
of L(ν)⊗ L(µ◦)⊗ L(λ◦)∗ are (pu − 1)(2h− 2) + b6 (pu − 1)(2h− 1)-small. (Note that ν is
(pu − 1)-small.) Thus, by Theorem 3.5, τ is (3i+ 2h− 2) 6 (3(m− 1) + 2h− 2)-small.

By induction, µ′ differs from λ′ in at most δ(Φ, m− i) digits. (Apply statement (1) with
n=m− i and m− 1 playing the role of m.) So the number of digits where λ differs from µ is at
most φ+ δ(Φ, m− i) 6 δ − φ digits. This is a contradiction to (5.2.1) or to (5.2.2) in the ν = 0
case, as λ was assumed to differ from µ by more than δ − φ digits. Hence, we may assume that
the terms Em−i,i2 = 0, for all positive integers i6m.

By assumption, ExtmG (L(λ), L(ν)⊗ L(µ)) 6= 0, so,

Em,02
∼= ExtmG (L(λ′),HomGr

(L(λ◦), L(ν)⊗ L(µ◦))[−r] ⊗ L(µ′)) 6= 0.

Now, by Lemma 5.1,

HomGr
(L(λ◦), L(ν)⊗ L(µ◦))∼= HomG(L(λ◦), L(ν)⊗ L(µ◦))

has trivial G-structure, and

Em,02
∼= ExtmG (L(λ′), L(µ′)⊕t)∼= (ExtmG (L(λ′), L(µ′)))⊕t 6= 0,

where t= dim HomG(L(λ◦), L(ν)⊗ L(µ◦)) and λ′, µ′ ∈X+
s−u.

By minimality of s we have that λ′ and µ′ differ in at most δ − φ places. But µ◦ and λ◦ differ
in at most all their u= φ digits. So λ and µ differ in at most δ places.

This is a contradiction when ν 6= 0. So we may assume ν = 0 and

Em,02
∼= ExtmG (L(λ′),HomGu

(L(λ◦), L(µ◦))[−u] ⊗ L(µ′)) 6= 0.

The nonvanishing forces λ◦ = µ◦. Since u= φ > 0, we have, by minimality of s, that

ExtmG (L(λ′), L(µ′)) 6= 0 =⇒ λ′ and µ′ differ in at most δ − u places.

But as λ and µ agree on their first u places, so λ and µ differ in at most δ − u= δ − φ places.
This is a contradiction, and completes the proof of the theorem. 2

Remark 5.3. The proof of the theorem implies that if Ext1G(L(λ), L(µ)) 6= 0, then λ and µ differ
in at most 2 + 2[logp(h− 1)] digits; indeed, following the proof carefully, one sees these digits
can be found in a substring of length 2 + 2[logp(h− 1)].

Let r = [logp(h− 1)] + 1. Write λ= λ◦ + prλ′ = λ◦ + prλ′◦ + p2rλ′′, with λ◦, λ′◦ ∈X+
r ,

λ′, λ′′ ∈X+
r , and take a similar expression for µ. If Ext1G(L(λ), L(µ)) 6= 0 then either

Ext1G(L(λ′),HomGr
(L(λ◦), L(µ◦))[−r] ⊗ L(µ′)) 6= 0,

which implies λ◦ = µ◦ (and we are done by induction, say on the maximum number of digits
of λ and µ), or the space HomG(L(λ′), Ext1Gr

(L(λ◦), L(µ◦))[−r] ⊗ L(µ′)) 6= 0. Now the weights
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of Ext1Gr
(L(λ◦), L(µ◦))[−r] are (h− 1)-small by Corollary 3.6. By Lemma 2.1(a), h− 1 6 pr − 1.

By Lemma 5.1, the G-structure on HomGr
(L(λ′◦), L(τ)⊗ L(µ′◦)) is trivial for a composition

factor L(τ) of Ext1Gr
(L(λ0), L(µ0))[−r]. Hence, we must have HomG(L(λ′′), L(µ′′)) 6= 0, and we

can identify λ′′ and µ′′. Thus, λ and µ differ in their first 2r digits, as required.

Theorem 5.4. For every m> 0 and irreducible root system Φ, choose any nonnegative integer
m′ so that 3m′ + 2h+ 2 > 6m+ 6h− 8. Recall from Theorem 5.2 the integer δ = δ(Φ, m) and let
d= d(m) = d(Φ, m) be an integer >δ(Φ, m′). Then for all prime powers q = pr, and all λ, µ ∈X+

r ,

ExtmG(q)(L(λ), L(µ)) 6= 0

implies that λ and µ differ in at most d digits.

Proof. Let b= 6m+ 6h− 8. By Theorem 4.4,

E = ExtmG(q)(L(λ), L(µ))∼= ExtmG (L(λ), L(µ)⊗ Gr,b).

Also, Gr,b has composition factors L(ζ)⊗ L(ζ ′)[u] with ζ, ζ ′ in the set Ξ of b-small weights.
Then we have ExtmG (L(λ)⊗ L(ζ ′)[r], L(µ)⊗ L(ζ)) 6= 0 for some ζ, ζ ′ ∈ Ξ. By our choice

of m′, we have m′ >m, and the weight ζ is (3m′ + 2h− 2)-small. The result now follows from
Theorem 5.2. 2

Next, define some notation in order to quote the main result of [CPSvdK77].

(1) Let t be the torsion exponent of the index of connection [X : ZΦ].

(2) For a weight λ, define λ̄= tλ. Also let t(λ) be the order of λ in the abelian group X/Φ.
Let tp(λ) be the p-part of t(λ). Of course one has tp(λ) 6 t(λ) 6 [X : ZΦ].

(3) Let c(µ) for µ in the root lattice be the maximal coefficient in an expression of µ as a
sum of simple roots; for µ= 2ρ these values can be read off from [Bou82, Planches I–IX].

(4) Let c= c(α̃) where α̃ is the highest long root. One can also find the value of c from
[Bou82, Planches I–IX].

(5) For any r ∈ Z and any prime p, define e(r) = [(r − 1)/(p− 1)]; when r is at least 1, clearly
e(r) 6 r − 1.

(6) For any r ∈ Z and any prime p, let f(r) = [logp(|r|+ 1)] + 2; clearly f(r) 6 [log2(|r|+ 1)]
+ 2.

Then the main result of [CPSvdK77] is as follows.

Theorem 5.5 [CPSvdK77, 6.6]. Let V be a finite-dimensional rational G-module and let m be
a nonnegative integer. Let e, f be nonnegative integers with e> e(ctm), f > f(c(λ̄)) for every
weight λ of T in V . If p 6= 2, assume also e> e(ctp(λ)(m− 1)) + 1.

Then, for q = pe+f , the restriction map Hn(G, V [e])→Hn(G(q), V ) is an isomorphism for
n6m and an injection for n=m+ 1.

We alert the reader that this result will be applied by first determining e0, f0 satisfying
the inequalities required of e and f above, respectively, and then checking e> e0 and f > f0,
respectively, for actual values of e and f which arise in our applications.

Remarks 5.6. (a) As pointed out in [CPSvdK77, Remark 6.7(c)], it is not necessary to check
the numerical conditions in the theorem for each weight λ of V . It is sufficient to check these
conditions for the highest weights of the composition factors of V .
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(b) Let e, f be as in Theorem 5.5. For any e′ > e, twisting induces an isomorphism
Hm(G, V [e]) ∼→Hm(G, V [e′]). In fact, the theorem implies there are isomorphisms

Hm(G(pe
′+f ), V [e]) Hm(G, V [e])∼oo ∼ // Hm(G(pe+f ), V [e]),

where on the left-hand side we write e′ + f = e+ f ′, f ′ = f + e′ − e. Now consider the following
diagram.

Hm(G, V [e′]) ∼ // Hm(G(pe
′+f ), V [e′])

Hm(G, V [e])

twisting

OO

∼ // Hm(G(pe+f ), V [e])

The left-hand vertical map is an injection [CPSvdK77], so since the two cohomology groups on
the right-hand side have the same dimension (notice there is an isomorphism Hm(G(q), V )∼=
Hm(G(q), V [e]) for any e> 0, since F e induces an automorphism of G(q)), it must be an
isomorphism. Compare [CPSvdK77, Corollary 3.8].

In particular, Hm(G, V [e])∼= Hm
gen(G, V ) (essentially, by the definition of generic cohomology).

Lemma 5.7. (a) If λ ∈X+
r , then f(c(λ̄)) 6 r + [logp(tc(2ρ)/2)] + 2. In particular, setting

f0 = f0(Φ) = log2(tc(2ρ)/2) + 2, we have f(c(λ̄)) 6 r + f0.

(b) Set e0 = e0(Φ, m) = ctm. Then, for λ ∈X+, e0 > e(ctm) and, for all p 6= 2, e0 >
e(ctp(λ)(m− 1)) + 1.

Proof. (a) Note that c(λ̄) = c(tλ) 6 c(t(pr − 1)ρ) = t(pr − 1)c(2ρ)/2 and c(λ̄) + 1 6 tprc(2ρ)/2.
Thus, f(c(λ̄)) = [logp(c(λ̄) + 1)] + 2 6 r + [logp(tc(2ρ)/2)] + 2. The second statement is clear.

(b) Note that tp(λ) 6 t. We leave the details to the reader. 2

As an overview for the proof of the following theorem, which becomes quite technical, let us
outline the basic strategy. We show that if there is a nontrivial m-extension between two L(λ)
and L(µ) which are q = pr-restricted, one can insist that r is so big that Theorem 5.4 implies
that the digits of the weights of the two irreducible modules must agree on a large contiguous
string of zero digits. Since the cohomology for a finite Chevalley group is insensitive to twisting
(as noted above), one can replace the modules with Frobenius twists. The resulting modules are
still simple; so, wrapping the resulting non-pr-restricted factors to the beginning, we may assume
they are pr-restricted high weights λ′ and µ′, respectively. In particular we can arrange that a
large string of zero digits occurs at the end of λ′ and µ′. This forces λ′ and µ′ to be bounded
away from q. The result is that we can apply Theorem 5.5 above.

We recall some notation from the Introduction. Let q = pr be a p-power. For e> 0 and λ ∈X,
there is a unique λ′ ∈X+

r such that λ′|T (q) = peλ|T (q). Denote λ′ by λ[e]q .

Theorem 5.8. Let Φ be an irreducible root system and let m> 0 be given.

(a) There exists a nonnegative integer r0 = r0(Φ, m) such that, for all r > r0 and q = pr for
any prime p, if λ ∈X+

r , then, for some e> 0, there are isomorphisms

Hn(G(q), L(λ))∼= H(G(q), L(λ)[e])∼= Hn(G, L(λ′)), n6m,

where λ′ = λ[e]q . In addition, these isomorphisms can be factored as

Hn(G(q), L(λ))∼= Hn(G(q), L(λ′))∼= Hn
gen(G, L(λ′))∼= Hn(G, L(λ′)).
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Also, for any `> 0, the restriction maps,

Hn(G(pr+`), L(λ′))→Hn(G(q), L(λ′)), n6m,

are isomorphisms.
(b) More generally, given a nonnegative integer ε, there is a nonnegative integer r0 =

r0(Φ, m, ε) > ε such that, for all r > r0, if λ ∈X+
r and µ ∈X+

ε , there exists an e> 0 and an
isomorphism

ExtnG(q)(L(µ), L(λ))∼= ExtnG(L(µ′), L(λ′)), n6m,

where λ′ = λ[e]q , µ′ = µ[e]q . In addition,

ExtnG(q)(L(µ), L(λ))∼= ExtnG(q)(L(µ)[e], L(λ)[e])∼= ExtnG(q)(L(µ′), L(λ′))
∼= ExtnG,gen(L(µ′), L(λ′))∼= ExtnG(L(µ′), L(λ′))

for all n6m. Also, for any `> 0, the restriction map

ExtnG(pr+`)(L(µ′), L(λ′))→ ExtnG(q)(L(µ′), L(λ′))

is an isomorphism.

Proof. Clearly, part (a) is a special case of part (b), so it suffices to prove part (b).
By Theorem 5.4, there is a nonnegative integer d= d(Φ, n) so that, given λ, µ ∈X+

r , then
λ and µ differ in at most d digits if ExtnG(q)(L(µ), L(λ)) 6= 0. We have d(Φ, n) > δ(Φ, n),
where the latter integer satisfies Theorem 5.2, so that λ and µ differ in at most d digits if
ExtnG(L(µ), L(λ)) 6= 0. (For convenience, we are quoting Theorems 5.4 and 5.2 with λ and µ in
reverse order. This does not cause any problem.) Of course, we may also take d> ε. Equally, it
is clear that for e′ > 0, λ and µ differ in at most d digits if ExtnG(L(µ)[e

′], L(λ)[e
′]) 6= 0. Therefore,

if λ and µ differ in more than d= d(Φ, n) digits, the claims of part (b) hold with λ′ = λ, µ′ = µ,
and e= 0 since all the relevant cohomology groups vanish.

In the same spirit, if ExtnG(q′)(L(µ), L(λ)) 6= 0 for some larger power q′ of p, then λ and µ
differ in at most d digits. So if λ and µ differ in more than d digits, the relevant Ext-groups all
vanish, so that the isomorphisms of part (b) hold with λ= λ′, µ= µ′ and e= 0.

Put d′ = maxn6m d(Φ, n). By the discussion above, we can assume that λ and µ differ by at
most d′ digits. Recall also the constants e0 = e0(Φ, m), f0 = f0(Φ) from Lemma 5.7. Set

r0 := r0(Φ, m, ε) = (d′ + 1)(e0 + f0 + g + 1) + ε− 1,

where g = g(Φ) := [log2(h− 1)] + 2 > [logp 2(h− 1)] + 1. We claim that part (b) holds for r0.
The hypothesis of part (b) guarantees that µ ∈X+

ε , and r > r0. Observe r0 > ε, so that µ ∈X+
ε

is pr-restricted. Also, λ ∈X+
r under the hypothesis of part (b). In particular, every composition

factor L(τ) of L(µ∗)⊗ L(λ) is pr+g-restricted by Lemma 2.1.
By the ‘digits’ of λ and µ, we will mean just the first r digits, the remainder being zero. By

hypothesis, µ ∈X+
ε , so all of its digits after the first ε digits are zero digits. We claim that λ and

µ have a common string of at least (r − ε+ 1)/(d′ + 1)− 1 zero digits. To see this, let x denote
the longest string (common to both λ and µ) of zero digits after the first ε digits. Our claim is
equivalent (by arithmetic) to the assertion that

(x+ 1)(d′ + 1) > r − ε+ 1. (5.8.1)

To see (5.8.1), call a digit position which is not zero for one of λ or µ an exceptional position.
Thus, every digit position past the first ε positions is either one of the (at most) d′ exceptional
digits, or occurs in a common string in λ and µ of at most x zero digits, either right after
an exceptional position, or right before the first exceptional position (after the ε− 1 position).
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So, after the first ε− 1 positions, there are at most d′ + 1 strings of common zero digits, each of
length at most x. Hence, (d′ + 1)x+ d′ > r − ε. That is, (d′ + 1)(x+ 1) > r − ε+ 1. This proves
the inequality (5.8.1) and, thus, the claim.

Also, x> (r − ε+ 1)/(d′ + 1)− 1 > f0 + e0 + g0 since, by hypothesis, r > r0 = (d′ + 1)(f0 +
e0 + g + 1) + ε− 1.

We can take Frobenius twists L(λ)[s] and L(µ)[s], with s a nonnegative integer, so that, up
to the rth digit, the last e0 + f0 + g digits of λ◦ := λ[s]q and µ◦ := µ[s]q are zero. In particular,
λ◦ and µ◦ both belong to X+

r−e0−f0−g. We are going to use for e= e(λ, µ) in part (b) the integer
s+ e0. We have

ExtnG(q)(L(µ◦), L(λ◦))∼= Hn(G(q), L(µ◦)∗ ⊗ L(λ◦)),

and, by Lemma 2.1 again, the composition factors of M = L(µ◦)∗ ⊗ L(λ◦) are in X+
r−e0−f0−g+g =

X+
r−e0−f0 . Let L(ν) be a composition factor of M . Then at least the last e0 + f0 digits of ν are

zero. Now, using Lemma 5.7, the weights of M satisfy the hypotheses of Theorem 5.5, and, thus,
we have Hn(G(q), M)∼= Hn(G,M [e]) for all n6m. The same isomorphism holds if q is replaced
by any larger power of p, so Hn(G,M [e0])∼= Hn

gen(G,M [e0]).
Observe that L(λ[e]q ) = L(λ◦)[e0], with a similar equation using µ. From the definition of M

above,

Hn(G,M [e0])∼= ExtnG(L(λ◦)[e0], L(µ◦)[e0])∼= ExtnG(L(λ[e]q ), L(µ[e]q )), ∀n, 0 6 n6m,

and similar isomorphisms hold for G(q)-cohomology and ExtnG(q)-groups. We now have most
of the isomorphisms needed in part (b), with the remaining ones obtained from group
automorphisms on G(q).

This completes the proof. 2

Remark 5.9. The result [BNP06, Theorem 5.6] shows that when m= 1, r > 3, pr > h, then, with
e= [(r − 1)/2], we have Ext1G(q)(L(λ), L(µ))∼= Ext1G(L(λ)[e]q , L(µ)[e]q ) = Ext1G(L(λ[e]q ), L(µ[e]q )).

It is tempting to think, as suggested in [Ste12a, Question 3.8], that one might have similar
behavior for higher values of m for some integer e> 0 under reasonable conditions. Unfortunately,
for p sufficiently large, this is never true.

In [Ste12b, Theorem 1] the third author gives an example, for any integer s> 1, of a module Ls
for SL2 over F̄p with p > 2 with the property that the dimension of Ext2G(Ls, Ls) = s. Specifically,
Ls is the module L(1)⊗ L(1)[1] ⊗ · · · ⊗ L(1)[s]. So Lr−1 is q = pr-restricted; it is self-dual, since
this is true for all simple SL2-modules; it also has the property that L[e]q

r−1 = Lr−1 for any e ∈ N,
i.e., all its q-shifts are isomorphic. Note that as L(2) is isomorphic to the adjoint module for
p > 2, we have dim H2(G(q), L(2)[i]) > 1 for any i> 0. Set D = dim Ext2G(q)(Lr−1, Lr−1). We
show D > dim Ext2G(Lr−1, Lr−1) = r − 1.

We have

D = dim Ext2G(q)(k, Lr−1 ⊗ Lr−1)

= dim H2(G(q), Lr−1 ⊗ Lr−1)

= dim H2(G(q), (L(1)⊗ L(1))⊗ (L(1)⊗ L(1))[1] ⊗ · · · ⊗ (L(1)⊗ L(1))[r−1])

= dim H2(G(q), (L(2)⊕ L(0))⊗ (L(2)⊕ L(0))[1] ⊗ · · · ⊗ (L(2)⊕ L(0))[r−1])

> dim H2(G(q), L(2)⊕ L(2)[1] ⊕ · · · ⊕ L(2)[r−1])
> r > r − 1,

as required.
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Indeed, [Ste12b, Remark 1.2] gives a recipe for cooking up such examples for simple algebraic
groups having any root system: one simply requires p large compared to h.

Essentially the problem as found above can be described by saying that Ext2G(Lr−1, Lr−1) is
not rationally stable. One does indeed have dim Ext2G(L[1]

r−1, L
[1]
r−1) =D.

Motivated by the above example, we ask the following question, a modification of [Ste12a,
Question 3.8].

Question 5.10. Let e0 = e0(Φ, m) := ctm. Does there exist a constant r0 = r0(Φ, m), such that
for all r > r0, the following holds?

For q = pr, if λ, µ ∈X+
r , then there exists a nonnegative integer e= e(λ, µ) such that

ExtnG(q)(L(λ), L(µ))∼= ExtnG(q)(L(λ)[e], L(µ)[e])∼= ExtnG(q)(L(λ[e]q ), L(µ[e]q ))

∼= ExtnG,gen(L(λ[e]q ), L(µ[e]q ))∼= ExtnG(L(λ[e]q )[e0], L(µ[e]q )[e0])

for n6m.

Remark 5.11. We make the simple observation that in the theorems above one needs the weights
λ and µ to be pr-restricted; hence, these weights determine simple modules for G(q). For
instance, with the notation of the previous remark, again with G= SL2 and p > 2, we have
H0(G, L2n−1) = 0, but

H0(G(p), L2n−1)∼= H0(G(p), (L(2)⊕ L(0))⊗n) 6= 0,

for any positive integer n, with a similar phenomenon occurring for larger values of q. So even
the 0-degree cohomology of G will not agree with that of G(q) on general simple G-modules.

Using results of [BNP01], we draw the following striking corollary from the main result of this
section (and paper). Let Wp =W n pZΦ be the affine Weyl group and W̃p =W n pZX be the
extended affine Weyl group for G. Both groups act on X by the ‘dot’ action: w · λ= w(λ+ ρ)− ρ.

Theorem 5.12. For a given nonnegative integer m and irreducible root system Φ, there is, for
all but finitely many prime powers q = pr, an isomorphism

Hm(G(q), L(µ))∼= Hm(G, L(µ′)), µ ∈X+
r , (5.12.1)

for some constructively given dominant weight µ′. If r is sufficiently large, we can take µ′ ∈X+
r

to be a q-shift of µ. If p is sufficiently large, and if µ is W̃p-conjugate to 0, then we can take
µ′ = µ.

In particular, there is a bound C = C(Φ, m) such that dim Hm(G(q), L(µ)) 6 C for all values
of q and q-restricted weights µ.

Proof. We first prove the assertions in the first paragraph. It suffices to treat the case m> 0.
If r is sufficiently large, then (5.12.1) holds by Theorem 5.8 for some q-shift µ′ ∈X+

r of µ. On
the other hand, suppose that p> (4m+ 1)(h− 1). We can assume that µ is p-regular; otherwise
[BNP01, Corollary 7.4] tells us that Hm(G(q), L(µ))∼= Hm(G, L(µ)) = 0, and there is nothing to
prove.

Suppose µ= u · ν for some ν ∈X+
r satisfying (ν, α∨0 ) 6 2m(h− 1), and some u ∈ W̃p. Then

[BNP01, Theorem 7.5] states that

Hm(G(q), L(µ))∼= Hm(G, L(u · 0 + prν)),
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so that (5.12.1) holds in this case. (Because of the size of p, if µ ∈ W̃p · 0, then µ= 0.) If µ does
not have the form µ= u · ν as above, set µ′ = µ. The first paragraph of the proof of [BNP01,
Theorem 7.5] shows that Hm(G(q), L(µ)) = 0. Also, Hm(G, L(µ′)) = Hm(G, L(µ)) = 0, by the
linkage principle, since µ is not Wp-linked to 0.

It remains to prove the statement in the second paragraph. We have just established that
there is a number q0 such that for all prime powers q = pr > q0, for any µ ∈X+

r , there exists
a µ′ ∈X+ such that Hm(G(q), L(µ))∼= Hm(G, L(µ′)). By [PS11, Theorem 7.1], the numbers
dim Hm(G, L(µ′)) are bounded by a constant c= c(Φ, m) depending only on m and Φ. Let
c′ = max{dim Hm(G(q), L(µ))}, the maximum taken over all prime powers q = pr < q0 and
weights µ ∈X+

r ; clearly c′ is finite. Then dim Hm(G(q), L(µ)) 6 max{c′, c}. 2

The explicit bounds exist for r to be sufficiently large; see Theorem 5.8. The explicit bound
on p in the proof can be improved using Theorem 6.2(c). The constructive dependence of µ′ on
µ merely involves the combinatorics of weights and roots.

We can give the following corollary, addressed more thoroughly in § 6 below; see
Theorem 6.2(c) and Theorem 6.5.

Corollary 5.13. If p is sufficiently large, depending on Φ and the nonnegative integer m,
every weight of the form pτ , τ ∈X+, is m-generic at q, where q is any power of p for which pτ
is q-restricted. In addition, if µ ∈X+ is q-restricted, and has a zero digit in its p-adic expansion
µ= µ0 + pµ1 + · · ·+ pr−1µr−1 (pr = q), then µ is shifted m-generic at q. Moreover, in the first
case,

Hm(G(q), L(pτ))∼= Hm(G(q), L(τ))∼= Hm
gen(G, L(τ))∼= Hm

gen(G, L(pτ)),

and, in the second case, if µr−e = 0, for 0< 0 6 r, then we may take µ′ = µ[e]q with

Hm(G(q), L(µ′))∼= Hm(G(q), L(µ))∼= Hm
gen(G, L(µ))∼= Hm

gen(G, L(µ′)).

Proof. For the first part, observe that pτ is W̃p-conjugate to 0. So the first part follows from
Theorem 5.12. For the second part, simply observe that if µ has a zero digit (among its first r
digits), there is some q-shift µ′ of µ with µ′ = pτ for some dominant τ . 2

6. Large prime results

In this section, we give some ‘large prime’ results. Much work has been done on this topic;
see [BNP01, BNP02], as well as earlier papers [And84, FP83].

The following result for p> 3h− 3 is given in [BNP02, Corollary 2.4].

Theorem 6.1. Assume p> h and let λ, µ ∈X+
r .

(a) Suppose Ext1G(L(λ), L(µ)) 6= 0. Then λ and µ differ in at most two digits, which must be
adjacent.

(b) Let q = pr. If Ext1G(q)(L(λ), L(µ)) 6= 0, then λ and µ differ in at most two digits, which
must be either adjacent, or the first and the last digits.

Proof. For part (a), we just need to apply Remark 5.3 since 2 + [logp(h− 1)] = 2 in this case.
Part (b) follows from part (a) and [BNP06, Theorem 5.6]. (Note that both part (a) and part (b)
are trivial unless r > 3.) 2

The following result combines q-shifting with the themes of [BNP01, Theorems. 7.5, 7.6].
There is some overlap with the latter theorem, which is an analogue for G(q) and all m of
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Andersen’s well-known m= 1 formula for Ext1G (see [And84, Theorem 5.6]). However, we make
no assumption, unlike [BNP01, Theorem 7.6], that µ is sufficiently far from the walls of its
alcoves. For the m= 1 case and r > 3, [BNP02, Theorem 5.6] gives a much sharper formula,
as noted in Remark 5.9. See the discussion above Theorem 6.5 for the precise definition of a
simultaneous q-shift which is used in part (b).

Theorem 6.2. (a) Assume that p> 6m+ 7h− 9. Then for q = pr (any r), and λ, µ ∈X+
r ,

ExtmG(q)(L(λ), L(µ))∼=
⊕
ν

ExtmG (L(λ)⊗ L(ν), L(µ)⊗ L(ν)[r]), (6.2.1)

where ν ∈X+ runs over the dominant weights in the closure of the lowest p-alcove.

(b) Assume that p > 12m+ 13h− 16, and λ, µ ∈X+
r with λ having a zero digit. Then λ, µ can

be replaced, maintaining the dimension of the left-hand side of (6.2.1), by suitable simultaneous
q-shifts λ′, µ′ so that the sum on the right-hand side of (6.2.1) collapses to a single summand,

ExtmG(q)(L(λ), L(µ))∼= ExtmG(q)(L(λ′), L(µ′))∼= ExtmG (L(λ′)⊗ L(ν), L(µ′)⊗ L(ν∗)[r]) (6.2.2)

for some (constructively determined) ν in the lowest p-alcove. Also, λ′ can be chosen to be any
q-shift whose first digit is zero (possibly with different weights ν for different choices of λ′). In
addition, L(λ′)⊗ L(ν) and L(µ′)⊗ L(ν∗)[r] are irreducible in this case.

(c) Moreover, again with p > 12m+ 13h− 16 as in part (b), assume that λ, µ ∈X+
r have a

common 0 digit (among the first r digits, with q = pr). Then simultaneous q-shifts λ′, µ′ may be
chosen so that

ExtmG(q)(L(λ), L(µ))∼= ExtmG(q)(L(λ′), L(µ′))∼= ExtmG,gen(L(λ′), L(µ′))∼= ExtmG (L(λ′), L(µ′)).
(6.2.3)

These isomorphisms all hold, for any simultaneous q-shifts λ′, µ′ of λ, µ for which λ′, µ′ both
have a zero first digit.

Proof. We first prove part (a). Let p> 6m+ 7h− 9. Put b := 6m+ 6h− 8. Then if ∇(ν)⊗
∇(ν∗)[r] is a section in Gr,b, we have

(ν + ρ, α∨0 ) 6 b+ (ρ, α∨0 ) = b+ h− 1 = 6m+ 7h− 9 6 p. (6.2.4)

Therefore, Gr,b is completely reducible as a rational G-module with summands L(ν)⊗ L(ν∗)[r],
in which ν ∈X+ is in the closure of the lowest p-alcove. (For larger p, ν is actually in the interior
of the lowest p-alcove. In particular, this applies to parts (b) and (c) of the theorem. Of course,
∇(ν) = L(ν) for ν in the closure of the lowest p-alcove.) For p > 6m+ 7h− 9, there are dominant
weights ν in the closure of the lowest p-alcove which do not satisfy (ν, α∨0 ) 6 b. For such ν, (4.4.2)
gives that ExtmG (L(λ), L(µ)⊗ L(ν)⊗ L(ν∗)[r]) = 0. Thus, part (a) follows.

To prove part (b), assume that p > 12m+ 13h− 16 = 2b+ h. Choose e with 0 6 e < r, so
that λ′ := λ[e]q has its first digit equal to zero. Put µ′ := µ[e]q . Then the left-hand isomorphism
in (6.2.2) holds. In addition, the isomorphism (6.2.1) holds.

There is an expression like (6.2.1) with λ, µ replaced by λ′, µ′. If one of the terms indexed
by ν on the right-hand side of (6.2.1) (for λ′, µ′) is nonzero, then µ′ is W̃p-conjugate to ν.
To see this, first note that λ′ = pλ† for some λ† ∈X+, so that L(λ′)⊗ L(ν) is irreducible by
the Steinberg tensor product theorem. Similarly, L(µ)⊗ L(ν∗)[r] is irreducible since µ ∈X+

r . If
ExtmG (L(λ′)⊗ L(ν), L(µ′)⊗ L(ν∗)[r]) 6= 0, then ν + pλ† is Wp-conjugate to µ′ + prν∗. Therefore,
ν and µ′ are W̃p-conjugate. Now it is only necessary to show that any two dominant weights that
are b-small and W̃p-conjugate are equal. Briefly, suppose that ν, ν ′ are W̃p-dot conjugate dominant
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weights in the lowest p-alcove. Write ν ′ = w · ν + pτ , for w ∈W , τ ∈X. If τ = 0, then ν = ν ′

because both weights are dominant. Hence, τ 6= 0. Thus, for any α ∈Π,

|(pτ, α∨)|= |(ν ′ − w · ν, α∨)|6 |(ν ′ + ρ, α∨)|+ |(w(ν + ρ), α∨)|6 2b+ h

by the first part of (6.2.4). But 2b+ h < p, so |(τ, α∨)|< 1. It follows that τ = 0, an evident
contradiction. This completes the proof of part (b).9 (Apart from the use of q-shifts and different
numerical bounds, the argument in this paragraph parallels that of [BNP01, Theorem 7.5].)

Finally, to prove part (c), we continue the proof of part (b), taking µ′ to also have a zero
first digit. Put µ′ = pµ†, for some µ† ∈X+. So µ′, and thus ν above, must be W̃p-conjugate
to 0. Therefore ν = 0, giving all the isomorphisms in (6.2.3) except the ones involving ExtmG,gen.
We observe that the W̃p-conjugacy of ν to 0 still holds passing from r to r + e0 for any
integer e0 > 0. Thus, ExtmG(q)(L(λ′), L(µ′))∼= ExtmG (L(λ′), L(µ′)) and ExtmG(pr+e0 )(L(λ′), L(µ′))∼=
ExtmG (L(λ′), L(µ′)), so

ExtmG (L(λ′), L(µ′))∼= ExtmG,gen(L(λ′), L(µ′)).

This proves part (c). 2

Remarks 6.3. (a) In the situation of Theorem 6.2(b), suppose it is λ itself that has first
digit 0, and put λ′ = λ and µ′ = µ. Assume that ExtmG (L(λ), L(µ)) 6= 0. Then the conclusion of
Theorem 6.2(c) holds. To see this, note that the nonvanishing implies λ and µ are Wp-conjugate,
and thus W̃p-conjugate. Now, we can use the proofs of Theorem 6.2(b) and (c).

(b) The requirements in Theorem 6.2(b) and (c) on the existence of a simultaneous zero
cannot be dropped. An example is provided in Remark 5.9.

(c) The sum on the right-hand side of (6.2.1) always involves a bounded number of summands,
independent of p, namely, those in which (ν, α∨0 ) 6 6m+ 6h− 8.

Taking ν = 0 in (6.2.1) yields the following result.

Corollary 6.4. If p> 6m+ 7h− 9, then restriction ExtmG (L(λ), L(µ))→ ExtmG(q)(L(λ), L(µ))
is an injection for every λ, µ ∈X+

r .

Suppose that λ and µ are q-restricted weights. Let us call a pair (λ′, µ′) a q-shift of (λ, µ)
if it is obtained by a simultaneous q-shift λ′ = λ[e]q , µ′ = µ[e]q . Also, we say the pair (λ, µ) of
q-restricted weights is m-generic at q if

ExtmG(q)(L(λ), L(µ))∼= ExtmG (L(λ), L(µ)).

Similarly, we say the pair (λ, µ) is shifted m-generic if (λ′, µ′) is m-generic at q for a q-shift
(λ′, µ′) of (λ, µ). Theorem 6.2(c) asserts that for p large, pairs (λ, µ) are shifted m-generic at q.
We improve this in the case that a zero digit occurs as the last digit. At the same time, we
give an improvement, in the large prime case, to the limiting procedure of [CPSvdK77] in the
result below. Theorem 6.2(a) is already implicit in [CPSvdK77] with a different bound, but
Theorem 6.2(b) and (c) are new and at least theoretically interesting, since they give the best
possible value for the increase required in q to obtain stability; see the examples in Remark 6.6
which follows.

9 Conceptually, the lowest p-alcove C := {λ ∈ R⊗X | 0 6 (λ+ ρ, α∨0 )< p} is the union of closed simplices conjugate

under the finite subgroup N of W̃p stabilizing C. The group N acts transitively and regularly on the interiors of
these simplices. With our assumptions on the sizes of the various (ν, α∨0 ), the relevant dominant ν all belong to
the interior of the ‘lowest’ simplex, the one containing 0.

1783

https://doi.org/10.1112/S0010437X13007331 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X13007331


B. J. Parshall, L. L. Scott and D. I. Stewart

Theorem 6.5. Assume that p > 12m+ 13h− 16, and let λ, µ ∈X+
r . Let q = pr.

(a) The map

ExtmG (L(λ)[1], L(µ)[1])→ ExtmG (L(λ)[e], L(µ)[e])
is an isomorphism for every e> 1. In particular,

ExtmG,gen(L(λ), L(µ))∼= ExtmG (L(λ)[1], L(µ)[1]).

(b) Put q′ = pr+1. Then the q′-shifts λ′ = λ[1]q′ , and µ′ = µ[1]q′ satisfy

ExtmG(q′)(L(λ), L(µ))∼= ExtmG(q′)(L(λ′), L(µ′))∼= ExtmG,gen(L(λ′), L(µ′))∼= ExtmG (L(λ′), L(µ′)).

In addition, for any s> 1, the map

ExtmG(pr+s)(L(λ′), L(µ′))→ ExtmG(q′)(L(λ′), L(µ′))

is an isomorphism as is

ExtmG(pr+s)(L(λ), L(µ))→ ExtmG(q′)(L(λ), L(µ)).

In particular, the pair (λ, µ) is always m-generic at q′ = pr+1.
(c) Let M, N be finite-dimensional rational G-modules whose composition factors are all

pr-restricted. Then, if s> 1, the natural restriction map

ExtnG,gen(M, N)→ ExtnG(pr+s)(M, N)

is an isomorphism for n6m and an injection for n=m+ 1.

Proof. We begin by remarking that part (c) follows from parts (a) and (b): note that Corollary 6.4
applies with m replaced by m+ 1, checking the required condition on p. Applied to (pλ, pµ) and
assuming part (a), Corollary 6.4 gives an injection

Extm+1
G,gen(L(pλ), L(pµ))→ Extm+1

G(q′)(L(pλ), L(pµ)).

It follows that there is a corresponding injection with (pλ, pµ) replaced by (λ, µ). Now part (c)
follows from this latter injection and the last isomorphism in part (b), valid also with m replaced
by any smaller integer. (This is a well-known five-lemma argument needing only the injectivity
for the degree m+ 1-maps.)

So it remains to prove parts (a) and (b). The first display in part (b) follows from
Theorem 6.2(c). We get a similar string of isomorphisms with q′ replaced by pr+s. Note that
λ[1]pr+s = λ[1]q′ = λ′, with a similar equation for µ′. (We use here the fact that λ, µ are q-
restricted.) Now consider the following commutative diagram, where the vertical maps are
restriction maps.

ExtmG(pr+s)(L(λ), L(µ)) ∼ //

��

ExtmG(pr+s)(L(λ′), L(µ′)) ∼ //

��

ExtmG,gen(L(λ), L(µ))

ExtmG(q′)(L(λ), L(µ)) ∼ // ExtmG(q′)(L(λ′), L(µ′)) ∼ // ExtmG,gen(L(λ), L(µ))

It follows easily that two vertical maps (on the left) are isomorphisms, as required. This proves
part (b).

To prove part (a), note that dim ExtmG (L(λ)[1], L(µ)[1]) = dim ExtmG,gen(L(λ′), L(µ′)) (by the
first isomorphism in part (b)), which equals dim ExtmG,gen(L(λ), L(µ)) by definition. However,
the map

ExtmG (L(λ)[1], L(µ)[1])→ ExtmG,gen(L(λ), L(µ))
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is injective by [CPS83]. So, by dimension considerations, it must be an isomorphism. Part (a)
follows easily. 2

Remark 6.6. For an example of a pair (λ, µ) of q-restricted weights that is not m-generic or
shifted m-generic at q with m= 2, see Remark 5.9. Even when p is large, there are examples for
fixed Φ (of type A1) and fixed m (=2) for arbitrarily large r. Of course, these examples have no
zero digits in common.

Appendix A. Large prime generic cohomology

In this brief appendix, we consider the large prime generic cohomology results of [FP86, § 3] from
the point of view of Theorem 6.5 and the other results of this paper.

Suppose q = p is prime and let µ ∈X+
1 . Assume p > 12m+ 13h− 16 = 2b+ h, as in

Theorem 6.2(b). Taking λ= 0, we thus get

Hm(G(p), L(µ))∼= ExtmG (L(ν), L(µ)⊗ L(ν∗)[1]), (A.1)

for some b-small ν ∈X+.
Necessarily µ+ pν∗ lies in the Jantzen region. If µ+ pν∗ 6∈Wp · ν, then (A.1) vanishes.

Otherwise, take p larger, if necessary, so that the Lusztig character formula holds for G. Then the
dimension of (A.1) equals the coefficient of a Kazhdan–Lusztig polynomial, since L(ν)∼= ∆(ν);
see [CPS93, § 3]. (As noted in [BNP01, Theorem 7.5] and its proof, which also give the
above isomorphism for large p, the right-hand side can be converted to a cohomology group
of an irreducible module via a translation taking ν to 0. Thus, the relevant Kazhdan–Lusztig
polynomial has the form Pw0,w0w, where l(w0w) = l(w0) + l(w), w ∈Wp.) The Lusztig character
formula is known to hold when p� h [AJS94], and is conjectured to be true for p> h.

In [FP86, Proposition 3.2], it was observed that Hm(G(p), L(µ))∼= Hm
gen(G, L(µ)) if p is

sufficiently large, depending on the highest weight µ and the integer m. More precisely, in this
case, taking µ to lie in the closure of the lowest p-alcove, [FP86, Theorem 3.3, Corollary 3.4]
gives a dimension formula, valid when p is large:

dim Hm(G(p), L(µ)) =

0 m odd,∑
w∈W

det(w)pm/2(w · µ) m even. (A.2)

Here p is the Kostant partition function. It is interesting to rederive this result in our present
context, and compare it with (A.1).

In addition to assuming that p > 2b+ h, also assume that p> (µ, α∨0 ) + h− 1. (The last
condition just says µ lies in the closure of the lowest p-alcove, so that L(µ)∼=∇(µ).)
Theorem 6.5(a) shows that Hm

gen(G, L(µ))∼= Hm(G, L(µ)[1])∼= Hm(G,∇(µ)[1]). A formula for the
dimension of the latter module is derived in [CPS09, Proposition 4.2], which is precisely that
given in the right-hand side of (A.2).

Under the same conditions on p as in the previous paragraph, but perhaps enlarging p
further, we claim there is an identification of Hm

gen(G, L(µ)) with Hm(G(pr), L(µ)), for all positive
integers r. For r > 2, this claim follows from Theorem 6.5(c). For the case r = 1, we also require
µ to be b-small, a condition on p when µ is fixed.

Return now to (A.1) in the case of a b-small µ ∈X+. By the argument for Theorem 6.2(b),
there is no other b-small dominant weight W̃p-conjugate of µ. Thus, we can assume ν = µ. Next,
Hm

gen(G, L(µ))∼= Hm(G, L(µ)[1]) by Theorem 6.5(a). If this generic cohomology is nonzero, then
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µ belongs to the root lattice. If translation to the principal block is applied to L(µ)⊗ L(µ∗)[1],
using [CPS09, Lemma 3.1], we obtain an irreducible module L(τ)⊗ L(µ∗)[1] with τ in lowest
p-alcove, and with highest weight also in Wp · 0. Therefore, τ = 0. Clearly, translation to the
principal block takes L(µ) to L(0). Thus,

Hm(G(p), L(µ))∼= ExtmG (L(µ), L(µ)⊗ L(µ∗)[1])
∼= ExtmG (L(0), L(µ∗)[1])
∼= Hm(G, L(µ∗)[1])
∼= Hm(G, L(µ)[1])
∼= Hm

gen(G, L(µ))

in this case. If Hm
gen(G, L(µ)) = 0, we claim that Hm(G(p), L(µ)) = 0 also. Otherwise,

ExtmG (L(µ), L(µ)⊗ L(µ∗)[1]) 6= 0.

Thus, µ and µ+ pµ∗ belong to the same Wp-orbit, forcing µ∗ to belong to the root lattice, again
giving (by translation arguments) Hm(G(p), L(µ)) = Hm

gen(G, L(µ)) = 0, which is a contradiction.
This completes the proof of the claimed identification.

Finally, observe the answer we obtained for dim Hm(G(p), L(µ)), for our rederivation of (A.2),
is, when µ is b-small and lies in the root lattice, a Kazhdan–Lusztig polynomial coefficient. (The
dimension is independent of p and has the form dim ExtmG (∆(0), L(pµ)) with pµ in the Jantzen
region.) In this case, the Kazhdan–Lusztig polynomial coefficient that gives the right-hand side
of (A.1) is associated to ExtmG (∆(0), L(pµ∗)), which is the same coefficient. (Apply a graph
automorphism.) When pµ is not in the root lattice, µ+ pµ∗ is not in Wp · µ, and so the right-hand
side of (A.1) is zero, as is dim ExtmG (∆(0), L(pµ)). Consequently, the combinatorial determination
of (A.1) is, for b-small µ, the same as that for (A.2), if Kazhdan–Lusztig polynomial coefficients
are used in both cases.

However, the determination of the dimension of (A.1) as a Kazhdan–Lusztig polynomial
coefficient or zero applies for all restricted µ, if p� 0, not just for those that are b-small or lie in
the closure of the bottom p-alcove. Thus, in some sense, the discussion above may be viewed as
giving a generalization of the determination in [FP86] of Hm(G(p), L(µ)) for p sufficiently large,
depending on m and µ.
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