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ABSTRACT 
Early detection and correction of defects are critical in additive manufacturing (AM) to avoid build 
failures. In this paper, we present a multisensor fusion-based digital twin for in-situ quality monitoring 
and defect correction in a robotic laser-directed energy deposition process. Multisensor fusion sources 
consist of an acoustic sensor, an infrared thermal camera, a coaxial vision camera, and a laser line 
scanner. The key novelty and contribution of this work are to develop a spatiotemporal data fusion 
method that synchronizes and registers the multisensor features within the part’s 3D volume. The fused 
dataset can be used to predict location-specific quality using machine learning. On-the-fly identification 
of regions requiring material addition or removal is feasible. Robot toolpath and auto-tuned process 
parameters are generated for defect correction. In contrast to traditional single-sensor-based monitoring, 
multisensor fusion allows for a more in-depth understanding of underlying process physics, such as pore 
formation and laser-material interactions. The proposed methods pave the way for self-adaptation AM 
with higher efficiency, less waste, and cleaner production. 
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1 INTRODUCTION 

Additive manufacturing (AM), also known as 3D printing, has shown remarkable potential in 

manufacturing geometrically complex products with improved mechanical performance, reduced 

weight, unique functionality, and shortened product design and development lifecycles (Moon et al., 

2014; Yao et al., 2015; Tan et al., 2021). In particular, AM-enabled on-demand production of critical 

components improves capabilities in mitigating risks associated with supply chain interruptions 

induced by global crises, such as the current long-term COVID-19 pandemic (Choong et al., 2020). 

However, maintaining high quality consistency, dimensional accuracy, and process repeatability 

remain a significant challenge, especially for large-format metal AM techniques such as laser direct 

energy deposition (LDED). To prevent build failures, defects such as porosity, cracking, and 

geometric distortions must be detected and corrected early during the process. 

Recently, significant effort has been made to Artificial Intelligence (AI)-assisted defect detection in 

AM (AbouelNour and Gupta, 2022). The state-of-the-art in-process sensing technologies (visual, 

acoustic, thermal, etc.) show promise in predicting specific types of defects (e.g., lack-of-fusion pores, 

balling, dilutions) or mechanical properties (e.g., tensile strength) for online monitoring of the laser 

AM process (Drissi-Daoudi et al., 2022). However, because most sensors could not adequately capture 

the complex melt pool metallurgical mechanism, no single sensing approach could predict defects and 

part quality holistically. Multisensor monitoring allows for a more in-depth understanding of 

complicated underlying physical phenomena that were previously unexplored. 

In this paper, we propose a framework for location-dependent quality prediction and self-adaptive 

defect correction in a robotic LDED process. The key novelty and contribution are to develop a novel 

multisensor fusion-based digital twin that spatiotemporally synchronizes and registers the multimodal 

features within the part's 3D volumetric domain. Multisensor fusion sources consist of an acoustic 

sensor, a shortwave infrared (SWIR) thermal camera, and a coaxial vision camera. Real-time robot 

tool-centre-point (TCP) positions are acquired from a robot controller. After fusing the multisensor 

features, the multimodal dataset can be used for location-specific quality prediction via machine 

learning. Multiple quality values (porosity, micro-harness, geometric deviations, etc.) at different 

locations within the part's volume can be predicted. Based on the 3D quality prediction outcomes, on-

the-fly identification of regions requiring material addition or removal is feasible. Decisions can be 

made on subtractive removal of defective regions or additive restoration of dimensional accuracy. For 

defect correction, the robot toolpath with auto-tuned process parameters can be automatically 

generated. 

In contrast to traditional single-sensor-based monitoring, multisensor fusion enables a more in-depth 

understanding of underlying physical events for in-situ defect prediction. The proposed multisensor 

fusion-based digital twin can improve monitoring reliability by overcoming the limitations of 

individual sensing sources. The proposed framework paves the way for self-adaptation AM in Cyber-

Physical Production Systems (CPPSs) with higher efficiency, less waste, and cleaner production. 

2 METHOD OVERVIEW 

2.1 Overview: multisensor in-situ quality monitoring and defect correction framework 

Figure 1 shows an overview of the proposed framework for multisensor in-situ quality monitoring and 

self-adaptive defect correction, which consists of five major steps: 

• An in-situ monitoring system with multisensor data sources has been developed. Sensor-captured 

process data in robotic LDED include coaxial melt pool images, temperature field, audio signals, 

and 3D point cloud of part surface. Details on multisensor setup are illustrated in Section 2.2.  

• Spatiotemporal data fusion is performed to synchronize and register the multisensor features in 

the part's volumetric domain, which is the key contribution of this work. It is the prerequisite for 

subsequent quality prediction and defect corrections. Details on the data fusion method is 

described in Section 3. 

• A machine learning (ML)-based approach is proposed to map the spatiotemporally fused datasets 

to the quality values within the entire volumetric domain. Surface inspection and interior quality 

inspection are conducted to measure the dimensional deviation, internal defects (porosities, 

cracking), microstructural features, and mechanical properties (microhardness) of the part. 
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• Once the ML models are trained, the models will be used to identify regions requiring material 

addition or removal in online quality prediction. Defect boundaries can be extracted 

automatically for subsequent self-adaptive defect correction. 

• Hybrid process sequences can be auto-tuned to adaptively improve the part quality. Robot 

toolpath for machining or LDED with adjusted parameters can be automatically generated and 

executed from the in-house developed software platform, which removes the defects and restores 

the dimensional accuracy to ensure successful AM production. 

 

Figure 1. The proposed framework for multisensor digital twin in robotic LDED AM for in-situ 
quality monitoring and self-adaptive defect correction. 

2.2 System setup 

Figure 2(a) depicts the dual-robot hybrid additive-subtractive manufacturing system from the 

Singapore Institute of Manufacturing Technology (SIMTech). The system consists of a robotic LDED 

cell and a robotic machining cell. For the LDED process, a coaxial powder-blown nozzle is carried by 

a 6-axis industrial robot, and the workpiece is held by a 2-axis positioner. A high-energy laser beam 

with a wavelength of 1070 nm melts powder material as they are deposited onto the substrate. As the 

nozzle moves in the feed direction, the molten material solidifies rapidly in the molten pool area. For 

the robotic machining process, the milling spindle or grinding wheel can be mounted on the end-

https://doi.org/10.1017/pds.2023.276 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2023.276


2758  ICED23 

effector of the industrial robot, which is used for the subtractive removal of defective parts. The high 

degree-of-freedom (DoF) dual-robot hybrid system enables flexible fabrication of extremely large 

workpieces. As shown in Figure 2(b) and Figure 3, various sensors are integrated into the robotic 

LDED for in-situ process monitoring: 

• An IR thermal camera is installed next to the laser nozzle to monitor the temperature field around 

the melt pool heat affected zones at a frequency of 120 Hz. Key temperature features such as 

peak temperature and temperature variances are extracted. 

• On the optical head was a coaxially mounted CCD camera with an acquisition frequency of 30 

Hz. The melt pool image can be acquired coaxially by the visible spectrum CCD camera through 

a set of reflecting lenses. An optical NIR band-pass filter was attached to the camera lens to 

isolate the melt pool from the surroundings. The CCD camera with a NIR optical filter was used 

to monitor the melt pool morphologies.  

• A low-cost microphone sensor is used for monitoring the laser-material interaction sound during 

the LDED process. The microphone has a frequency response range of 50 – 20000 Hz and was 

positioned near the powder feeding nozzle, and the sampling rate was set to 44100 Hz. The sound 

contains environmental noise, which can be reduced by an acoustic denoising approach (Chen, 

Yao and Moon, 2022).  

• Robot motion (TCP position, velocity, acceleration, etc.) is acquired by TCP/IP ethernet 

communication between the robot controller and the PC. The joint position is measured by the 

built-in servo encoder in the 6-axis KUKA robot at a frequency of 250 Hz.  

• On-machine measurement for in-process surface monitoring was achieved by using the laser line 

scanning technique (Chen, Yao, Xu, et al., 2020a, 2020b; Xu et al., 2022). A laser displacement 

sensor was installed on the robot end effector adjacent to the laser head to generate a 3D point 

cloud of the part surface, which can be used to inspect part surface conditions. 

All the sensing modalities are connected to a PC running the Ubuntu Linux Operating system with an 

in-house developed software platform using Robot Operating System (ROS). The details on the 

software architecture and proposed data acquisition methods will be shown in section 2.3. 

 

Figure 2. (a) Dual-robot hybrid additive-subtractive manufacturing system from SIMTech; (b) 
multisensor monitoring setup for robotic LDED. 
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Figure 3. The schematic diagram of multisensor monitoring setup for robotic LDED system. 

2.3 Software Architectures 

A multi-nodal software platform is developed in-house to implement the proposed framework. Figure 

4 illustrates the software architecture, which was built on top of the ROS melodic (Quigley et al., 

2009). As the raw data are retrieved, further data processing and feature extraction procedures, such as 

acoustic signal denoising, noise filtering, and visualisation are conducted simultaneously in separate 

nodes. Key sensor data features, such as acoustic spectral descriptors, melt pool morphologies (width, 

length, contour area, etc.), and temperature can be visualised in real-time.  

 

Figure 4. Software architecture for multimodal monitoring, transfer learning, online quality 
prediction and self-adaptive quality enhancement. 
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The in-situ acquired multisensor feature is utilised for multiple purposes in offline analysis, including: 

(1) spatiotemporal data fusion for location-specific quality prediction (which will be introduced in 

Section 3); and (2) temperature features collected from SWIR thermal camera with the low acquisition 

frequency can be predicted by the other two low-cost sensing techniques (e.g., acoustic data and 

coaxial vision data), which is our ongoing work. After offline training, the ML models can be 

deployed into the software pipeline for in-situ quality prediction without process interruption or 

manual assistance.  

The surface topography of the components in the intermediate layers is inspected in-process using 

laser line scanning, as described in our previous work (Xu et al., 2022). Raw point cloud data contains 

unwanted substrate surfaces and noise, which are filtered and removed (Chen, Yao, Xu, et al., 2020b). 

Over-built and under-built surface defects can be recognised and visualised on-the-fly from the 3D 

point cloud. The online quality prediction outcome is used for identifying regions for defect 

correction. A robotic toolpath is automatically generated for AM repair or SM removal of identified 

defects. Hybrid process auto-tuning, automatic toolpath generation and parameter tuning are future 

work, which will be briefly introduced in Section 4. 

3 MULTISENSOR DATA FUSION 

In this section, we introduce the multisensor feature extraction and spatiotemporal fusion technique for 

constructing a digital twin, which is the main contribution of this work. The proposed multisensor 

fusion-based digital twin set the foundation for location-specific quality prediction and defect 

correction. 

3.1 Multisensor monitoring and feature extraction 

Multiple features are extracted from each sensing modality to provide different perspectives of LDED 

process, which are illustrated below. 

3.1.1 Coaxial melt pool monitoring 

The melt pool geometric features can represent the melt pool heat transfer state and process stability. 

Variations in the melt pool geometry could indicate localised heat accumulation, potential build 

anomalies and defects (Chen, Yao, Chew, et al., 2020). We adopted a similar method as presented by 

Knaak et al. (2021) to extract melt pool morphological information using OpenCV (Bradski, 2000) 

with ROS. As shown in Figure 5, the raw melt pool image (Figure 5(a)) is binarized (Figure 5(b)), and 

the melt pool contour area is calculated as: 

𝑚00 =  ∑ ∑ 𝐼(𝑥, 𝑦)∆𝐴𝑦𝑥  (1) 

which is the 0th-order moment of melt pool pixels, and 𝐼(𝑥, 𝑦) represents pixel intensities. Based on 

the contour area, a convex hull can be extracted, as shown in Figure 5(f), which represents the smallest 

convex point set that contains the melt pool contour. The melt pool contour is fitted by an ellipse in a 

least square sense, where ellipse width and length denote melt pool width and length, respectively. The 

elliptical shape can be represented by the following equation: 

(𝑥 cos 𝑎+𝑦 sin 𝑎)2

𝑎2 +
(𝑥 sin 𝑎−𝑦 cos 𝑎)2

𝑏2 = 1 (2) 

where a and b represent the ellipse width and length. Melt pool central moments are defined as 

follows: 

𝜇𝑗𝑖 =  ∑ ∑ 𝐼(𝑥, 𝑦) · (𝑥 − 𝑥)𝑗 · (𝑦 − 𝑦)𝑗
𝑦𝑥  (3) 

where (𝑥, 𝑦) is the centre of gravity (COG) of melt pool pixels. The time-domain plots for melt pool 

moments, width, and length when printing a thin-wall structure are shown in Figures 5(g)-(h). The 

melt pool central moments are highly sensitive to process anomaly, as seen in Figure 5(g). When 

depositing in the defective regions, significant variations can be observed. Melt pool ellipse width and 

length increase over time, as shown in Figure 5(h). The poor heat conduction capability and localised 

heat accumulation cause the melt pool to become less stable over time as the printing process 

proceeds. A clear threshold of the melt pool transiting from the stable to the unstable zone can be seen 

on the melt pool central moment plot.  
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Figure 5. Coaxial melt pool feature extractions: (a)-(f) coaxial melt pool image processing for 
morphological feature extraction; (g) time-domain plot of melt pool moment of area when 

printing a thin-wall structure; (h) time-domain plot of melt pool width and length when 
printing a thin-wall structure. 

3.1.2 In-situ acoustic monitoring 

Deploying vision-based monitoring solutions is often time-consuming and expensive. Acoustic-based 

monitoring methods provide distinct advantages, such as adjustable sensor setup and lower hardware 

costs. Drissi-Daoudi et al. (2022) reported recent findings that demonstrated the significant potential 

of employing acoustic signals to distinguish different process regimes in the L-PBF process. The 

acoustic signal in the DED process, on the other hand, is often noisier, making it difficult to analyse 

the laser-material interaction sound directly. Recently, we presented an acoustic denoising technique 

that reduces the environmental noise from the raw acoustic signal (Chen, Yao and Moon, 2022). The 

denoised signal is used to extract features and perform data fusion analysis. Figure 6 depicts key 

acoustic signatures collected and plotted from DED experiments with different process parameters. 

 

Figure 6. Visualisation of acoustic features in time-domain and frequency-domain. 
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The maximum amplitude value of all samples in a frame is used to calculate the amplitude envelope 

(AE). The AE feature, as shown in Figure 6(a), can display how acoustic energy fluctuates over time 

and discriminate sound from different process regimes. The Fast Fourier Transform (FFT) plots also 

illustrate the distinguishable signal content across the frequency domain for different processes. Three 

spectral descriptors are plotted in Figure 6(c)-(e). The spectral centroid (SC) is the centre of gravity 

(COG) of the magnitude spectrum. The spectral bandwidth (SBW) determines the magnitude spectrum 

variation from the SC. The frequency point where less than 85 per cent of the total energy exists is 

measured by spectral roll-off (SR). All three spectral descriptors in Figure 6 clearly distinguish the 

processes, showing the viability of using acoustic signals for in-situ process monitoring. Apart from 

the spectral descriptors, Mel-frequency cepstrum coefficients (MFCCs) (Muda et al., 2010) are also 

extracted. The MFCCs takes the inverse Fourier transform of a logarithm of the spectrum of the signal, 

which can be expressed by the following equation: 

𝑪(𝒙(𝒕)) =  𝐹−1[log (𝐹[𝑥(𝑡)])] (4) 

where function 𝑪(𝒙(𝒕)) computes the cepstrum of a signal 𝑥(𝑡). 𝐹 represents the Fourier transform 

function, and 𝐹−1 is inverse Fourier transform. The number of MFCCs for each time frame is set to 

20, which equally divides the frequency bands into 20 segments. Spatiotemporal variations of MFCCs 

feature will be shown in section 3.2. 

3.1.3 Temperature field monitoring 

Thermal history and temperature field are also helpful in identifying potential process anomalies and 

predicting part quality. Before extracting the melt pool temperature feature, emissivity calibration is 

necessary for IR thermal cameras to ensure correct temperature readings. The emissivity value for the 

commercial C300 maraging steel is set to 0.3 for the liquid molten pool region and 0.5 for the rest of 

the head affected zone (HAZ). Figure 7(a) depicts the melt pool and HAZ after adaptively correcting 

the emissivity. Figure 7(b) shows thermal monitoring when fabricating a thin-wall structure. After 

extracting the region of interest (ROI), we extract the peak temperature, mean temperature, 

temperature variance and kurtosis as the melt pool temperature field features as shown in our recent 

work (Chen, Yao, Ng, et al., 2022). 

 

Figure 7. Extraction of molten pool and heat affected zone (HAZ) as the ROI. 

3.1.4 Surface monitoring 

The above-mentioned sensing modalities (acoustic, vision, thermal) provide real-time sensor data 

feedback, which is useful for online process anomaly detection. However, maintaining dimensional 

accuracy remains a challenge in the fabrication of large-format metallic parts. Surface defects such as 

over-built, under-built or geometric distortions need to be identified early in the AM process to avoid 

further deterioration of the part quality. In-process surface quality inspection with in-situ point cloud 

processing and adaptive dimension correction was developed in previous work (Chen, Yao, Xu, et al., 

2020b). During the process, a laser line scanner performs surface monitoring on a regular basis, as 

shown in Figure 8. The raw point cloud data with noise and unwanted surfaces is filtered and 

segmented before being fed into a hybrid ML algorithm to predict the occurrence of surface defects. 

Based on the extracted geometric deviation boundaries, a robot toolpath is generated with selected 

laser-on and -off segments to fill in the dent regions, ensuring the dimensional accuracy of the final as-

built products. 
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Figure 8. Rapid surface defect detection and in-process dimension correction. 

3.2 Spatiotemporal data fusion for location-dependent quality mapping 

After extracting features from the multisensor inputs, they are spatiotemporally fused for location-

dependent quality mapping. With the in-house developed ROS-based software platform, all the sensor 

data features are retrieved and collected simultaneously from the same initial time stamp. Figure 9 

depicts digital twins of the LDED process after the multisensor features are registered 

spatiotemporally with the robot position data. The interior quality of the part is examined under a 

microscope, which reveals large keyhole pores in the upper layers, cracks in the middle layers, and a 

defect-free zone in the lower layers. The multisensor feature values can be mapped with the defect 

locations. For example, abrupt increases in melt pool width in the middle layer are found to be linked 

to cracks, while larger melt pools in the top layers generally reflect keyhole porosity conditions. It may 

also be seen that different sensing modalities have different capabilities in detecting defects. The 

MFCCs feature from the acoustic signal, for example, misses the evident abnormal signal that 

corresponds to the cracking area, as can be seen in coaxial melt pool features. Nevertheless, all of the 

sensor features have followed a similar pattern, with the value increasing (e.g., melt pool geometric 

features, temperature value) or decreasing (MFCCs) with time, correlating to localised heat build-up. 

In future study, the spatiotemporally fused multimodal dataset will be used to train machine learning 

models that predict the defect occurrences at specific locations within the part volume.  

 

Figure 9. Multisensor spatiotemporal feature fusion as a digital twin for location-specific 
quality mapping 
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4 CONCLUSION AND FUTURE WORK 

In this paper, we introduced a multisensor fusion-based digital twin in LDED process. Multisensor 

features with different sampling frequencies were synchronized and spatiotemporally fused with the 

robot toolpath positions. The proposed multisensor fusion method provided the foundation for 

location-specific defect prediction and self-adaptive defect correction. In future work, machine 

learning models will be developed and trained to predict the defect occurrences such as keyhole 

porosity and cracking. Robotic machining and LDED toolpath will be automatically generated and 

executed from the in-house developed software platform, which removes the defects and restores the 

dimensional accuracy to ensure successful AM production. 
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