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LINEAR ISOMETRIES BETWEEN SPACES OF
FUNCTIONS OF BOUNDED VARIATION

JESUS ARAUJO

Given two subsets X and Y of R each with at least two points, we describe the surjec-
tive linear isometries between the spaces of functions of bounded variation BV(X) and
BV{Y): namely, if T : BV(X) -)• BV(Y) is such an isometry, then there exist a e C,
|a| = 1, and a monotonic bijective map h : Y -> X such that {Tf)(y) = af{h(y)) for
every / g BV(X) and every y EY.

Let X be an arbitrary subset of the real line with at least two points. Given a
complex valued function / on X we denote by V(f\ X) the variation of / on X, that is,
the least upper bound of the set

| ! N, xo,xu---,xneX, x0

If V(f;X) < +oo, then / is said to be a function of bounded variation. We denote by
BV(X) the set of all functions of bounded variation on X. It is straightforward to see that
BV(X) becomes a Banach space if we endow it with the norm ||/ | | := \\f\\gg + V(f; X),
f 6 BV(X), where \\-\\gg stands for the sup norm.

In this paper we give a complete description of the surjective linear isometries be-
tween spaces of functions of bounded variation. The techniques used to do this are not
based on extreme points or related techniques used to prove similar results in the study
of isometries between some other spaces of functions (see for instance [3] or [1]). We
use only straightforward concepts, always taking into account that the functions we deal
with are not continuous in general. Related results are given for instance in [2, 4] and
[5], where the authors study the isometries between spaces of absolutely continuous func-
tions, endowed with a similar norm. However, in these papers the fact that the functions
are absolutely continuous is fundamental to carrying out their proofs, and no similar
approach can be taken in our context.

In the sequel, given a subset A of C, we denote by cl A its closure in C. Also, for
/ € BV(X), we denote by C(f) the set of numbers a € C such that |a| = | | / | | and
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336 J. Araujo [2]

a € c\f{X). For / e BV(X), c{f) will be the cozero set of / , that is, the set of all
x e X such that f(x) ^ 0. On the other hand, given an interval / c 1 (/ / R, 0), we
say that / e 3<_ (respectively / e 3_») if it is not bounded below (respectively if it is not
bounded above). Finally T : BV(X) -»• BV(Y) will be a surjective linear isometry.

We begin with a straightforward lemma.

LEMMA 1 . Given / e BV(X), there exists aeC, \a\ = 1, such that \\af + 1|| =

11/11 + 1-
LEMMA 2 . Tl is a constant function.

P R O O F : Suppose that / € BV(Y). By Lemma 1, taking into account that T is an
isometry, we have that there exists a G C, |a| = 1, such that \\af + Tl\\ = \\f\\ +1. With
this we have

As a consequence we deduce that \\af + T l ^ = H/H ,̂ + HTlH^ and

V(af + Tl; F) = V(f; Y) + V(T1; y).

In particular this implies that for yo G Y such that (—oo, j/o] and [j/o, +oo) have at least
two points, we have

v(af+Tl;Yn(-oo,yo])=v(f;Yn(-oo,y0])+v(Tl;Yn(-oo,yo}),

and

Next we fix j/o as above and define the functions

5 :

and

Let fyo := ^ 0 - g*a. We are going to apply the above results. Taking into account that
/„„ = Tl on Y n (-co, j/o]. we have

(a + l )Tl ;yn(-oo, W ) ] )=2V(r i ;yn(-oo > yo]) ,

which clearly implies
a = l ,
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whenever V(T1;Y n ( -00,yo] \ ^ 0. As for the other equality, it is clear that

V(afyo + r i ; Y n [y0, +00)) is equal to

V(2a(Tl){yo)ZYniy0,+00) - a£Yn[y0i+oo)Tl +Tl;Yn [y0, +00)),

that is,
V(afvo + Tl; Y n [y0, +00)) - V((l - a)Tl; Y n [</„, +00)),

which implies

V((l-a)Tl;yn[i to,+oo))=2V(Tl;yn[»b,+oo)).

As a consequence we deduce that a = —1 whenever V(T\; Fn[t/o, +00) J ^ 0. Since this is
impossible, we conclude that either V(T1; yn(-oo, T/0]) = 0 or V(Tl; Yn[y0, +00)) = 0,
which means that there exist I € U<_ and a0, A) € C such that Tl = aofrm + A>£yn(R-/)•
Note that the same result also holds if Y has just two points.

On the other hand, we can prove that \ao\ = \Po\- Otherwise, we suppose for
instance that |/?0| < |ao|, and take 70 € C, 70 ̂  0, such that |/?0| + |7o| < |c*o|- If we
define /0 := 7o^yn(R-/)> as we have seen above, there exists a G C, \a\ = 1 such that
||a/0 + T l l ^ = ll/olloo + IITll^. This implies that \ao\ = |7o| + |ao|, which is not possible.
A similar contradiction comes if we assume |ao| < |/?o|- Consequently |ao| = |/?o|-

Next, note first that we can assume without loss of generality that Qo may be taken
to be real and positive. We show that if a0 / f30, then a0 = -f30- For, take /1 :=
OOZYM ~ A>£yn(R-/)- lt i s c l e a r t h a t if a e C satisfies ||o/i + T l ^ = Wf^ + \\T1\\,,,
then a = 1 or a = - 1 . We assume that a — 1, a similar argument being valid also
for a = - 1 . Consequently we have V(fx + Tl; Y) = V(/r, Y) + V(T1; Y), which means
|2QO| = |a0 + /?o| + |c*o-A)|- This clearly means that /?0 is a real number, since a0

is. Also |/?o| = |io|, which implies that ao = — fio- Finally taking into account that
1 = ||T1|| = |ao| + |2"o| we obtain that ot0 = 1/3.

Now take f2 := (l/3)^yn/ + (l/3)i^yn(R-/)- We have that there exists a € C, \a\ - 1,
such that \\af2 + TlW^ = H^H^ + HTl^ = 2/3. This implies that a = 1 or a = i.
Suppose first that a - 1. For this a, we should also have V(af2 + Tl; Y) - V[f2; Y) +
V(T1;Y), which implies that, making the necessary calculations, \/lO/3 = -y/2/3 + 2/3,
and this is absurd. A similar argument proves that a cannot be equal to i.

We arrive at the conclusion that a0 = 0O, this is, Tl is a constant function. D

According to Lemma 2, we are going to assume without loss of generality that Tl = 1
in the rest of the paper.

LEMMA 3 . Suppose that a € C{f), f € BV{X). Then there exists r > 0 such
that ra 6 C{Tf).

PROOF: Without loss of generality, we assume that a = 1. It is easy to see that
| | /+ 1|| = 11/11 + 1, and consequently ||T/ + 1|| = ||T/|| + 1. Since V{Tf + l;Y) =
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V(Tf; Y), we have that \\Tf + 111^ = HT/H^ + 1. It is easy to see that this implies that
there exists r > 0 such that r G C{Tf). D

LEMMA 4 . Suppose that £A G BV(X) for some Ac X. Then HT^H^ ^ 1.

PROOF: By Lemma 3, there exists r > 0 such that r G C(T£A). Take /0 :=
which clearly satisfies

As Ty/Si = \/Zi and T is an isometry, we have that

1 = llT/oll - \\TU\\

Clearly if r < 1, then (r + I)2 < r2 + 3, this is, 1 < \/r2 + 3 - r, and the above
inequality does not hold. Consequently we deduce that r ^ 1. D

LEMMA 5 . Let I be an interval. Then there exists an interval J such that T£xm =

frnj- Also if I G 3«_ U J U , then J € 3<_ U DU.

PROOF: We prove some claims leading to the result.

CLAIM 1. Let / e 3<_ u 3_* be such that X n / / X , 8 . Then 1 e C(T^xn/) and

0 G cl(TOen/)(}0- A l s o - i f a € (T£Xni)(Y), then a € R a n d O < a < l .
According to Lemmas 3 and 4, C(T£xn/) contains a real number r, r ^ 1. Also

/o : = Zxni-1/2 satisfies 1/2, - 1 / 2 G C(/o), and by Lemma 3, there exist sus2 G C(Tf0)
with Si > 0 and s2 < 0. Since Tl = 1, we have that si := r — 1/2. Also it is clear that
there exists r' G cl {T£Xm){Y) such that s2 = r' - 1/2. It is clear that r' G K, and taking
into account that r ^ 1 and that r — 1/2 = \r' - 1/2|, we deduce that r' ^ 0. On the
other hand, since T is an isometry, we have that ||Orn/|| = 2 = ||Tfxn/|| ^ r + (r — r').
This implies clearly that r = 1 and r' = 0.

Finally suppose that a belongs to (T(XnI)(Y). If a ^ [0,1], then V(T£xnr,Y) ^
|a| + |a - 1| > 1, which implies that ||T^xn/|| > 2. Since T is an isometry, this is not
possible, and we conclude that a is a real number between 0 and 1.

CLAIM 2. Let / be an interval. Then 1 G C(T£xnI). Also if a G {T£xnI)(Y), then

a € [ -1 ,1 ] .
The result is given by Claim 1 if / G 3<_ U 3_>. Otherwise we take J G 3«_ such that

jnl — 0 and JUl G 3<_. It is apparent that £xn/ = Zxn(jui) -Zxnj• Also, by Lemmas 3
and 4, there exists r ^ 1 contained in C(T£xn/)- This implies that there exist rt and
r2 in cl (T^xn(jur))(Y) a n d c l

 ( ^ A T I J ) ( ^ ) , respectively, such that r = r l - r2. Applying
Claim 1, we have that r i , r 2 G [0,1], which means that r = 1.
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The proof of the other part of the claim is easy.

C L A I M 3 . Let I e 3<_ U3_>. Then (T£xni){Y) C {0,1}.

Take a e (T^Xm)(Y). By Claim 1, we know that a € M and 0 ^ a < 1.

Now suppose that 0 < a < 1. We deduce that there exists j/i e Y such that

a := {T£xni){yi) ¥= 0 ,1 . Now it is clear that {a + i} = C(i£{yi] + T^Xm), and by

Lemma 3 there exists r > 0 such that r(a + i) belongs to C\iT~l^yi} + £xnn- It is

clear that r(a + i) can be written as 71+72, where 71 and 72 belong to cl (iT~l^{yiA(X)

and c l£xn / (^0 , respectively. Now 72 € {0,1}, and on the other hand we have that

71 = 71, where 7 € K, I7I ^ 1, by Claim 2. We show that this is impossible. First, if

72 = 0, then r(a + i) = ji is an imaginary number, which is clearly not true. Then we

deduce that 72 must be equai to i . But aiso in this case we have that r(a 4- i) = i + -yi,

which implies r > 1, since a € (0,1). On the other hand, the above equality also gives

that ri = ji, this is, 7 > 1. This contradiction yields that cl(T£xnj)(Y) C {0,1}, and

the claim is proved.

Now suppose that / € 3<_ U 3_>. By Claim 3 we deduce that there exists a subset

J of K such that T£,Xni = £ynj- Now show that J can be taken to be an interval. For

this, it is enough to prove that if 2/1,3/2 € Y C\ J satisfy yx < y2, then any y € Y such

that 2/1 < 2/ < 2/2 belongs to J. We note that if y $ J, \\£ynj\\ ^ 3, which is impossible

because | | ^ n j | | = HOcn/|| = 2. For a similar reason we deduce that J can be taken in

As for the case when / is an interval not in 3<_ U3_>, we can work as in the proof of

Claim 2. There exists K e3<- such that KnI = 0 and Kill € 3<_. Clearly we have that

fxn/ = €xn(Kui) — ZxnK- This means that there exist intervals L and V in J , _ U 3 - , with

T£xn(Kui) = frm and T£xnK = frnv- Then we have that T£xni = frnL-frnL1- Also by

Claim 2, 1 6 C{T£xnI). On the other hand, by Lemma 3, - 1 £ C(T£xn/)- This means

that T£xni(Y) = {0,1}, and as a consequence V C L, this is, T£Xni = £yn(z,-z/)- 0

LEMMA 6 . If both I, J belong to D<_ (respectively to 3_J, and satisfy I C J, then

c(nxm) C c(nXnj)-

PROOF: We shall proceed just in the case when / , J € 3<_, the other one being

similar. The result is trivial if / = J, so we suppose I ^ J. By Lemma 5 we have that

there exist K, L in 3<_ U 3_» such that T£Xm = frnn and T£xnj = &nL- Assuming that

K is not contained in L, and working as in the end of the proof of Lemma 5, we arrive

at a contradiction. Accordingly K C L, and we are done. D

LEMMA 7 . If1,3 are intervals satisfying I C J, then c(T£XnI) c c(T£Xnj)-

PROOF: We shall assume that / , J £ D«_ U DU. Take K,Le3+_ such that / n K =

0 = JnL and luK, JUL belong to 3<_. It is clear that IUK C JuL, and by Lemma 6
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c(T£xn{iuK)) C c(T^xn(juL))- Now we suppose that y0 G c(T£Xni)- Then we have that

1 = (TSxmKvo) = {nxn{iuK))(yo) - (T£xni<){yo),

which clearly implies that (T€xn(ruK))(ya) = 1 and (T£XnK)(yo) = 0, by Lemma 5. On
the other hand, it is easy to see that since I C J, then L C K and / U K c J U L.
This implies, by Lemma 6, that (Tf;xn(JiiL))(yo) = 1 and (T£ATIL)(2/O) = 0, that is,

xruHvo) = I- We conclude that c(T£xnI) C c(T^nj)-
The proof of the other cases is similar. D

C O R O L L A R Y 8 . L e t x 0 G X. Then t h e r e e x i s t s y o € Y such t h a t T £ { x o ] = £ { y o } .

PROOF: By Lemma 5, we have that there exists an interval J such that T£{xo] =
- Now take y0 G Y n J. It is clear that by Lemma 7 applied to T"1, c{T~l^yo)\ C

{XQ}- It follows from Lemmas 5 and 7 applied to T~l that 7n~1C{y0}
 = {̂io}> an<^ w e a r e

done. D

LEMMA 9 . Suppose that T£{lo} = f{!,o}, with x0 € X and yo€Y. If f e BV(X)
satisfies f(x0) = 0, then (Tf){y0) = 0.

PROOF: Suppose that (Tf)(y0) / 0. Then consider a 6 C such that \a\ = 2 \\f\\ and

such that there is no r > 0 satisfying ra = (Tf)(yo)+a. It is clear that C(f + a<£{i0}) =

{a}, and consequently, by Lemma 3, there exists r > 0 such that ra G C(T(f + a£{l0})Y

We obtain a contradiction with the fact that C(T(f + a£{xo))) = {(Tf)(y0) + a} , and

conclude that (Tf)(y0) = 0 . D

THEOREM 1 0 . There exists a monotonic bijective map h :Y —> X such that for
every f € BV(X) and for every y € Y,

(Tf){y)=f(h(y)).

PROOF: Take y eY. By Corollary 8 applied to T"1, there exists x e X such that
T£{x} = £{y}. This allows us to define a map h : Y —* X, by h(y) := x, where x is
obtained from y as above. Also, by Lemma 9, (Tf)(y) = 0 whenever f(h(y)j = 0. Now
fix y 6 Y, take g G BV(X), and let a := g(h(y))- It is clear that g = a+(g - a). Taking
into account that Tl = 1 and (g — a)(h(y)) = 0, we have that (Tg)(y) = g(h(y)Y

On the other hand it is clear that h is injective. It is also surjective, as we can see
by applying Corollary 8. We show finally that h is monotonic. First we take / G 3*-,
and let J G J,_ U 3_> such that T£Xni = fm/ (see Lemma 5): we claim that if J belongs
to J<_, then h is increasing, and that if J belongs to 3L+, then h is decreasing. For,
suppose that J G 3<_, and that yx < y2, J/i,J/2 G Y. It is clear that we have that either
(—00,2/1] C J or J C (—00, j/i]. In both cases, by Lemmas 5 and 7 applied to T"1, we
have that cfT-'^ynf-oo.t/i)) = XC\K, where /^ belongs to D<_. From the process above we
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deduce that ( T ^ n c - o o ^ ^ O / i ) ) = 1 and (T-^y n (_0 0 , y i ) ) ( / i ( j / 2 ) ) = 0, which clearly

implies /i(yi) < h(y2). Hence h is increasing. The case when J G 3_> yields in a similar

way that h is decreasing. D
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