ON THE GENERATORS OF S-UNIT GROUPS IN ALGEBRAIC NUMBER FIELDS

B. Brindza

Given a finitely generated multiplicative subgroup U_{S} in a number field, we employ a simple argument from the geometry of numbers and an inequality on multiplicative dependence in number fields to obtain a minimal set of generators consisting of elements of relatively small height.

1. Introduction

Let K be an algebraic number of degree n over \mathbf{Q}, with discriminant D, regulator R and class number h. Let r denote the rank of its group of units.

Denote by S a finite set of absolute values of K including all its archimedean (infinite) values; let s be its cardinality. An element α of K is called an S-unit if $|\alpha|_{v}=1$ for every absolute value not in S. It is a well known generalisation of Dirichlet's unit theorem that the S-units of K form a finitely generated subgroup U_{S} of rank $s-1$ in K^{\times}.

It turns out that wide classes of diophantine problems can be reduced to additive relations on S-units. It is therefore of interest to find effective bounds for the generators of groups U_{S}. Of course, it is a simple matter to construct $s-1$ multiplicatively independent elements by using the prime ideals corresponding to the nonarchimedean values in S. That yields a subgroup of finite index in U_{S} (see, for example [3], Lemma 4). However, the best known bounds for the "size" of the representatives of the quotient group is exponential in n and R.

In this note we construct a set of generators $\pi_{1}, \ldots, \pi_{a-1}$ for the non-torsion subgroup of U_{S} (so that its quotient with U_{S} is just the cyclic group of roots of unity in K).

[^0]
2. The main result

As usual we denote by $h()$ the absolute logarithmic height

$$
h(\gamma)=\frac{1}{[K: Q]} \log \left(\prod_{v} \max \left(1,|\gamma|_{v}\right)\right)
$$

of elements of K (with the product running over the values v of K, so normalised that one has the product formula and that rational integers h have $h(h)=\log h$). Furthermore, let $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{t}$ be the prime ideals of K corresponding to the nonarchimedean (finite) values of S and set $P=\max _{j}\left(2\right.$, Norm $\left.\mathfrak{p}_{j}\right)$.

Theorem. There are S-units $\pi_{1}, \ldots, \pi_{s-1}$ satisfying

$$
h\left(\pi_{1}\right) \cdots h\left(\pi_{s}-1\right)<s!(c|D| \log P)^{s}
$$

where c is a field constant

$$
c=\left(6 n^{3} / \log n\right)^{n}
$$

so that each $\alpha \in U_{S}$ can be written as a product

$$
\alpha=\rho \pi_{1}^{k_{1}} \cdots \pi_{s-1}^{k_{s}-1}
$$

with ρ a root of unity and the rational integers $\boldsymbol{k}_{\boldsymbol{i}}$ satisfying

$$
\max _{1 \leqslant i \leqslant s-1}\left|k_{i}\right| \leqslant(s!)^{2} c^{2 s}(|D| \log P)^{2} h(\alpha)
$$

The proof relies on a simple argument from the geometry of numbers and a result of Loxton and van der Poorten [5] on multiplicative relations in number fields.

3. Preliminary results

A real-valued function f on $R^{\boldsymbol{m}}$ is said to be a convex distance function if it satisfies

$$
\begin{aligned}
& f(\mathbf{x}) \geqslant 0 \text { for all } \mathbf{x} \in \mathbf{R}^{m} \\
& f(\lambda \mathbf{x})=|\lambda| f(\mathbf{x}) \text { for all } \lambda \in \mathbf{R} \text { and } \mathbf{x} \in \mathbf{R}^{m} \\
& f(\mathbf{x}+\mathbf{y}) \leqslant f(\mathbf{x})+f(\mathbf{y}) \text { for all } \mathbf{x}, \mathbf{y} \in \mathbf{R}^{m}
\end{aligned}
$$

Lemma 1. Let L be a full lattice in \mathbf{R}^{m} and let f be a convex distance function on \mathbf{R}^{m}. Suppose $\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}$ are linearly independent elements of L. Then there is a basis $\left\{b_{1}, \ldots, b_{m}\right\}$ for L so that for $i=1, \ldots, m$

$$
f\left(\mathbf{b}_{i}\right) \leqslant \max \left(f\left(\mathbf{x}_{i}\right), \frac{1}{2}\left(f\left(\mathbf{x}_{1}\right)+\cdots+f\left(\mathbf{x}_{i}\right)\right)\right)
$$

Proof: See, for example, Lemma 8, p. 235 of Cassels [1].

Remark. Since we may assume, without loss of generality, that $f\left(\mathbf{x}_{1}\right) \leqslant \cdots \leqslant f\left(\mathbf{x}_{m}\right)$, we obtain for $i=1, \ldots, m$ that

$$
f\left(b_{i}\right) \leqslant \max \left(1, \frac{1}{2} i\right) f\left(\mathbf{x}_{i}\right)
$$

Denote by ω the number of roots of unity in K. If ϕ is Euler's totient function then $\phi(\omega) \mid[K: Q]$ and it follows that $\omega(K)<4 n \log \log 6 n$. Further let $\lambda(n)$ be a positive number with the property that $h(\alpha)<\lambda(n) / n$ and α have degree at most n; then α is zero or a root of unity. Then, from a result of Dobrowolski [2], it follows readily that we may choose $\lambda(n)$ as $\log n / 6 n^{3}$.

LEMMA 2. Let $\alpha_{1}, \ldots, \alpha_{k}$ be nonzero elements of K with the property that there are rational integers m_{1}, \ldots, m_{k} not all zero, so that

$$
\alpha_{1}^{m_{1}} \cdots \alpha_{k}^{m_{k}}=1
$$

Then there are rational integers q_{1}, \ldots, q_{k}, not all zero such that

$$
\alpha_{1}^{q_{1}} \cdots \alpha_{k}^{q_{k}}=1
$$

and

$$
\left|q_{1}\right| \leqslant(k-1)!\omega \prod_{j \neq l}\left(n h\left(\alpha_{j}\right) / \lambda(n)\right) \text { for } l=1, \ldots, k
$$

Proof: See Loxton and van der Poorten [5].

4. Proof of the theorem

Given $\alpha \in U_{S}$, denote by $\mathbf{v}(\alpha)$ the s-tuple $\left(\log |\alpha|_{v}\right)_{v \in S}$. This yields a correspondence between U_{S} and a full lattice in $R^{\boldsymbol{A - 1}}$, with just the roots of unity in K corresponding to the zero vector.

Now, for each $i=1, \ldots, i=t$ let $\boldsymbol{\vartheta}_{i}$ be the generator of the principal ideal $\mathfrak{p}_{\boldsymbol{i}}^{\boldsymbol{h}}$ satisfying

$$
\left.|\log | \operatorname{Norm} \vartheta_{i}\right|^{-1 / n}\left|\vartheta_{i}^{(j)}\right| \left\lvert\, \leq \frac{1}{2} c r R\right. \text { for } j=1, \ldots, j=n
$$

where the $\vartheta_{i}^{(j)}$ denote the field conjugates over Q of $\boldsymbol{\vartheta}_{i}$. Further, let $\left\{\varepsilon_{1}, \ldots, \varepsilon_{r}\right\}$ denote a multiplicatively independent set of (ordinary) units of K satisfying

$$
h\left(\varepsilon_{1}\right) \cdots h\left(\varepsilon_{r}\right) \leqslant n^{n} R
$$

For the propriety of the claims inherent in these definitions, see [4].

Given an s-tuple $\mathrm{x}=\left(x_{1}, \ldots, x_{s}\right)$ we set $f(\mathrm{x})=(1 / 2 n)\left(\left|x_{1}\right|+\cdots+\left|x_{s}\right|\right)$. Then f is a convex distance function and, for $\alpha \in S$, the product formula in K yields

$$
\begin{aligned}
f(v(\alpha)) & =\left.\frac{1}{2 n} \sum_{v \in S}|\log | \alpha\right|_{v} \left\lvert\,=\frac{1}{n} \sum_{v \in S} \max \left(0, \log |\alpha|_{v}\right)\right. \\
& =\frac{1}{2 n} \sum_{v} \max \left(0, \log |\alpha|_{v}\right)=h(\alpha) .
\end{aligned}
$$

The elements $\varepsilon_{1}, \ldots, \varepsilon_{r}, \vartheta_{1}, \ldots, \vartheta_{t}$ are multiplicatively independent, and $s-1=$ $r+t$, so their corresponding vectors are linearly independent. Then, by Lemma 1 , we see that there is a set $\left\{\pi_{1}, \ldots, \pi_{s-1}\right\}$ of generators of U_{S} with

$$
\begin{aligned}
h\left(\pi_{1}\right) \cdots h\left(\pi_{s-1}\right) & =f\left(\mathbf{v}\left(\pi_{1}\right)\right) \cdots f\left(\mathbf{v}\left(\pi_{s-1}\right)\right) \\
& \leqslant 2^{-(\cdot-1)}(s-1)!f\left(\mathbf{v}\left(\varepsilon_{1}\right)\right) \cdots f\left(\mathbf{v}\left(\varepsilon_{r}\right)\right) f\left(\mathbf{v}\left(\vartheta_{1}\right)\right) \cdots f\left(\mathbf{v}\left(\vartheta_{t}\right)\right) \\
& =2^{-(\cdot-1)}(s-1)!\left(\prod_{i=1}^{r} h\left(\varepsilon_{i}\right)\right)\left(\prod_{j=1}^{t} h\left(\vartheta_{j}\right)\right),
\end{aligned}
$$

which establishes the first part of the theorem.
But the relation
asserts that

$$
\begin{aligned}
\alpha & =\rho \pi_{1}^{k_{1}} \cdots \pi_{s-1}^{k_{\rho}-1} \\
1 & =\alpha^{-\omega} \pi_{1}^{u k_{1}} \cdots \pi_{-1}^{\omega k_{\rho}-1},
\end{aligned}
$$

so by Lemma 2 we have rational integers $q_{0}, q_{1}, \ldots, q_{s-1}$ not all zero, such that
and

$$
\begin{gathered}
1=\alpha^{90} \pi_{1}^{q_{1}} \cdots \pi_{-1}^{q_{s}-1} \\
\left|q_{i}\right| \leqslant(s-1)!\omega \mathrm{h}(\alpha) \prod_{j \neq i}\left(n \mathrm{~h}\left(\pi_{j}\right) / \lambda(n)\right) .
\end{gathered}
$$

Of course $q_{0} \neq 0$ since the π_{j} are multiplicatively independent.
Moreover, the equation

$$
1=\alpha^{-\omega q_{0}} \pi_{1}^{\omega k_{1} q_{0}} \cdots \pi_{-1}^{\omega k_{s}-1 q_{0}}=\alpha^{-\omega 9_{0}} \pi_{1}^{-\omega q_{1}} \cdots \pi_{2-1}^{-\omega q_{1}-1}
$$

yields
whence

$$
1=\pi_{1}^{\omega k_{1} q_{0}+\omega q_{1}} \cdots \pi_{s-1}^{\omega k_{0-1}-1 q_{0}+\omega q_{0-1}}
$$

$$
k_{1} q_{0}+q_{1}=\cdots=k_{s-1} q_{0}+q_{t-1}=0
$$

Hence $\left|k_{i}\right| \leq q_{i}$ for $i=1, \ldots, s-1$ which completes the proof.

5. Concluding remarks

The usual regulator argument (for example [6], p.103), already alluded to, does not yield an upper bound for the k_{j} because the elements $\pi_{1}, \ldots, \pi_{s-1}$ do not necessarily generate relatively prime ideals. Thus there does not seem to be an obvious way to use such \mathfrak{p}-adic relations as

$$
\operatorname{ord}_{\mathfrak{p}} \alpha=\sum_{i=1}^{s-1} \operatorname{ord}_{p} \pi_{i}
$$

References

[1] J.W.S. Cassels, An introduction to diophantine approximation: Cambridge Tracts in Mathematics and Mathematical Physics 45 (Cambridge University Press, Cambridge, 1965).
[2] E. Dobrowolski, 'On a question of Lehmer and the number of irreducible factors of a polynomial', Acta Arith. 34, 391-401.
[3] J.-H. Evertse and Györy, 'Thue-Mahler equations with a small number of solutions', J. für Math. 392 (1989), 1-21.
[4] K. Györy, 'On the solutions of linear diophantine equations in algebraic integers of bounded norm', Ann. Univ. Sci. Budapest, Eötvös Sect. Math. 22/23, 225-233.
[5] J.H. Loxton and A.J. van der Poorten, 'Multiplicative dependence in number fields', Acta Arith. 42 (1983), 291-302.
[6] T.N. Shorey and R. Tijdeman, Exponential diophantine equations: Cambridge Tracts in Mathematics 87 (Cambridge University Press, Cambridge, 1986).

Mathematics Institute
Kossuth Lájos University
H - 4010 Debrecen Pf. 12
Hungary

[^0]: Received 16 May 1990
 Work supported by an Australian Research Council National Research Fellowship held at Macquarie University

