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In this paper, we train turbulence models based on convolutional neural networks.
These learned turbulence models improve under-resolved low-resolution solutions to
the incompressible Navier–Stokes equations at simulation time. Our study involves
the development of a differentiable numerical solver that supports the propagation of
optimisation gradients through multiple solver steps. The significance of this property
is demonstrated by the superior stability and accuracy of those models that unroll more
solver steps during training. Furthermore, we introduce loss terms based on turbulence
physics that further improve the model accuracy. This approach is applied to three
two-dimensional turbulence flow scenarios, a homogeneous decaying turbulence case,
a temporally evolving mixing layer and a spatially evolving mixing layer. Our models
achieve significant improvements of long-term a posteriori statistics when compared
with no-model simulations, without requiring these statistics to be directly included
in the learning targets. At inference time, our proposed method also gains substantial
performance improvements over similarly accurate, purely numerical methods.
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1. Introduction

Obtaining accurate numerical solutions to turbulent fluid flows remains a challenging task,
and is subject to active research efforts in fluid dynamics (Argyropoulos & Markatos
2015) and adjacent fields including climate research (Aizinger et al. 2015) and the
medical sciences (Bozzi et al. 2021). Direct numerical simulation (DNS), which attempts
to fully resolve the vast scale of turbulent motion, is prohibitively expensive in many
flow scenarios and is thus often adverted by using turbulence models. For instance,
Reynolds-averaged Navier–Stokes (RANS) modelling has successfully been deployed to
complex flow problems such as aircraft shape design and optimisation of turbo-machinery
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(Argyropoulos & Markatos 2015). However, the temporally averaged solutions from
RANS simulations lack concrete information about instantaneous vortex movements in the
flow. Thus, large eddy simulation (LES) constitutes another common choice for turbulence
modelling, providing a time-sensitive perspective to the turbulent flows (Pope 2004). The
computational expense of LES is nevertheless still substantial, and their applicability
remains restricted (Choi & Moin 2012; Slotnick et al. 2014; Yang 2015).

The persistent challenges of traditional approaches motivate the use of machine
learning, in particular deep learning, for turbulence modelling (Duraisamy, Iaccarino &
Xiao 2019). The reduced complexity of steady-state RANS made these set-ups a promising
target for early efforts of machine learning-based turbulence. As a result, substantial
progress has been made towards data-driven prediction of RANS flow fields, vastly
outperforming pure numerical solvers in the process (Ling, Kurzawski & Templeton 2016;
Bhatnagar et al. 2019; Thuerey et al. 2020).

Contrasting data-driven RANS modelling, further studies were motivated by the
additional challenges of predicting transient turbulence. Some of these target performance
gains over numerical models by moving the temporal advancement to a reduced-order
embedding, where Koopman-based approaches have been an effective choice for
constructing these latent spaces (Lusch, Kutz & Brunton 2018; Eivazi et al. 2021). In
the domain of deep learning-based fluid mechanics, these studies are also among the first
to explore the effects of recurrent application of neural networks on training. A related
approach by Li et al. (2020) moved the learned temporal integrator to Fourier space, with
successful applications to a range of problems, including Navier–Stokes flow. An extensive
comparison of different turbulence prediction architectures is provided by Stachenfeld
et al. (2021), and includes applications to multiple flow scenarios.

While turbulence prediction aims to remove the numerical solver at inference time,
other concepts in machine learning turbulence try to integrate a learned model in the
solver. In the following, we will refer to approaches characterised by this integration of
neural networks into numerical solvers as hybrid methods. Some of these efforts target
the data-driven development of LES models. An early work showcased the capability of
neural networks to reproduce the turbulent viscosity coefficient (Sarghini, De Felice &
Santini 2003). Furthermore, Maulik et al. (2019) proposed a supervised machine learning
method to infer the subgrid scale (SGS) stress tensor from the flow field, and achieved
promising results on the two-dimensional decaying turbulence test cases. Herein, the
a priori evaluations served as a learning target and could be accurately reproduced,
however, a posteriori evaluations were not always in direct agreement. Beck, Flad &
Munz (2019) trained a data-driven closure model based on a convolutional neural network
(CNN) and demonstrated good accuracy at predicting the closure on a three-dimensional
homogeneous turbulence case, albeit stating that using their trained model in LES is not
yet possible. Related prediction capabilities with trade-offs in terms of model stability of a
similar supervised approach were reported by Cheng et al. (2019). Xie et al. (2019) utilised
a similar approach on compressible flows, later expanding their method to multi-scale
filtering (Xie et al. 2020). Park & Choi (2021) studied possible formulations for the input
to the neural network and evaluated their results on a turbulent channel flow.

Beyond the supervised learning methods covered so far, Novati, de Laroussilhe &
Koumoutsakos (2021) proposed a multi-agent reinforcement learning approach, where the
LES viscosity coefficient was inferred by local agents distributed in the numerical domain.
Their hybrid solver achieved good results when applied to a forward simulation. These
previous studies on machine learning-based turbulence models lead to two fundamental
observations. Firstly, sufficiently large networks parameterise a wide range of highly
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nonlinear functions. Their parameters, i.e. network weights, can be trained to identify and
differentiate turbulent structures and draw modelling conclusions from these structures,
which yields high accuracy towards a priori statistics. Secondly, the feedback from
supervised training formulations cannot express the long-term effects of these modelling
decisions, and thus cannot provide information about the temporal stability of a model.
While reinforcement learning provides long temporal evolutions, its explorative nature
makes this method computationally expensive. To exploit the benefits of data-driven
training such as supervised models, and simultaneously provide training feedback over
long time horizons, a deeper integration of neural network models in numerical solvers is
necessary.

Further research achieved this deep integration by training networks through
differentiable solvers and adjoint optimisation for partial differential equations. Such
works initially focused on learning-based control tasks (de Avila Belbute-Peres et al.
2018; Holl, Thuerey & Koltun 2020). By combining differentiable solvers with neural
network models, optimisation gradients can propagate through solver steps and network
evaluations (Thuerey et al. 2021). This allows for targeting of loss formulations that require
a temporal evolution of the underlying partial differential equation. These techniques were
shown to overcome the stability issues of supervised methods, and thus provided a basis
for hybrid methods in unsteady simulations. By integrating CNNs into the numerical
solver, Um et al. (2020) found models to improve with increased time horizons seen
during training, which resulted in a stable learned correction function that was capable
of efficiently improving numerical solutions to various partial differential equations.
Similarly, Kochkov et al. (2021) found differentiable solver architectures to be beneficial
for training turbulence models. While this work estimates substantial performance gains
over traditional techniques for first-order time integration schemes, we will evaluate a
different solver that is second order in time, putting more emphasis on an evaluation with
appropriate metrics from fluid mechanics.

In another related approach, Sirignano, MacArt & Freund (2020) proposed a learned
correction motivated by turbulence predictions in LES of isotropic turbulence, and later
expanded on this by studying similar models in planar jets (MacArt, Sirignano & Freund
2021). Here, a posteriori statistics served as a training target, and the authors also
compared the performance of models trained on temporally averaged and instantaneous
data. However, the study did not investigate the temporal effects of hybrid solvers and
their training methodologies in more detail.

In this paper, we seek to develop further understanding of turbulence modelling with
hybrid approaches. In an effort to bridge the gap between the previously mentioned
papers, we want to address a series of open questions. Firstly, no previous adjoint-based
learning approach has been evaluated on a range of turbulent flow scenarios. While this
has been done for other, purely predictive learning tasks (Li et al. 2020; Stachenfeld et al.
2021), we will demonstrate the applicability of adjoint-based training of hybrid methods
in multiple different scenarios. Secondly, there is little information on the choice of loss
functions for turbulence models in specific flow scenarios. Previous studies have focused
on matching ground truth data. Their optimisation procedures did not emphasise specific
fluid dynamical features that might be particularly important in the light of long-term
model accuracy and stability. Thirdly, previous works on adjoint optimisation have not
studied in detail how the number of unrolled steps seen during training affects the neural
network models’ a posteriori behaviour. While previous work on flow prediction reported
good results when using multiple prediction steps during training (Lusch et al. 2018; Eivazi
et al. 2021), we want to explore how this approach behaves with learned turbulence models
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in hybrid solvers. In order to provide insights into these questions, we utilise a CNN to
train a corrective forcing term through a differentiable solver, which allows an end-to-end
training that is flexible towards the number of unrolled steps, loss formulations and training
targets. We then show that the same network architecture can achieve good accuracy with
respect to a posteriori metrics of three different flow scenarios. In our method, we relax
the timestep requirements usually found in unsteady turbulence modelling, such as LES,
by downscaling our simulations such that a constant Courant–Friedrichs–Lewy (CFL)
ratio is maintained. By implication, a learned model is trained to (i) take the classical
sub-grid-scale closure into account, (ii) approximate temporal effects and (iii) correct
for discretisation errors. It is worth noting that a network trained for these three targets
combines their treatment into one output, with the result that these treatments cannot be
separated at a network-output level. Instead, our a posteriori evaluations show that neural
network models can learn to account for all three of these elements.

The turbulence models are trained and evaluated on three different, two-dimensional
flow cases: the isotropic decaying turbulence, a temporally developing mixing layer as well
as the spatially developing mixing layer. We show that, in all cases, training a turbulence
model through an increasing number of unrolled solver steps enhances the model accuracy
and thus demonstrate the benefits of a differentiable solver. Unless stated otherwise, all of
the evaluations in the coming sections were performed on out-of-sample data and show
the improved generalising capabilities of models trained with the proposed unrollment
strategy.

Our unrollment study extends to 60 simulation steps during training. The long solver
unrollments involve recurrent network applications, which can lead to training instabilities
caused by exploding and diminishing gradients. We introduce a custom gradient stopping
technique that splits the gradient calculations into non-overlapping subranges, for which
the gradients are evaluated individually. This techniques keeps the long-term information
from all unrolled steps, but stops the propagation of gradients through a large number of
steps and thus avoids the training instabilities.

Furthermore, our results indicate that accurate models with respect to a posteriori
turbulence statistics are achieved without directly using them as training targets.
Nonetheless, a newly designed loss formulation inspired by a posteriori evaluations and
flow physics is shown to yield further improvements. Finally, we provide a performance
analysis of our models that measures speed ups of up to 14 with respect to comparably
accurate solutions from traditional solvers.

The remainder of this paper is organised as follows. In § 2, we give an overview of
our methodology and the solver–network interaction. A description and evaluation of
experiments with the isotropic decaying turbulence case is found in § 3, which is followed
by similar studies regarding the temporally developing mixing layer and the spatially
developing mixing layer in §§ 4 and 5, respectively. Section 6 studies the effect our method
of splitting back-propagated gradients into subranges. A comparison of computational
costs at inference time can be found in § 7, while § 8 contains concluding thoughts.

2. Learning turbulence models

In this paper, we study neural networks for turbulence modelling in incompressible fluids.
These flows are governed by the Navier–Stokes equations

∂u
∂t
+ u · ∇u = −∇p+ 1

Re
∇2u+ f ,

∇ · u = 0,

⎫⎬⎭ (2.1)
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where u = [u v]T, p and Re are the velocity field, pressure field and Reynolds number
respectively. The term f = [ fx fy]T represents an external force on the fluid. In the context
of turbulent flows, an accurate solution to these equations entails either resolving and
numerically simulating all turbulent scales, or modelling the turbulence physics through
an approximative model.

Our aim is to develop a method that enhances fluid simulations by means of a machine
learning model. In particular, we aim to improve the handling of fine temporal and spatial
turbulence scales that are potentially under-resolved, such that the influence of these scales
on the larger resolved motions needs to be modelled. The function that approximates these
effects is solely based on low-resolution data and is herein parameterised by a CNN.
The network is then trained to correct a low-resolution numerical solution during the
simulation, such that the results coincide with a downsampled high-resolution dataset.
Within this hybrid approach, the turbulence model directly interacts with the numerical
solver at training and at inference time. To achieve this objective, we utilise differentiable
solvers, i.e. solvers which provide derivatives with respect to their output state. Such
solvers can be seen as part of the differentiable programming methodology in deep
learning, which is equivalent to employing the adjoint method from classical optimisation
(Giles et al. 2003) in the context of neural networks. The differentiability of the solver
enables the propagation of optimisation gradients through multiple solver steps and neural
network evaluations.

2.1. Differentiable PISO solver
Our differentiable solver is based on the semi-implicit pressure-implicit with splitting of
operators (PISO) scheme introduced by Issa (1986), which has been used for a wide range
of flow scenarios (Kim & Benson 1992; Barton 1998). Each second-order time integration
step is split into an implicit predictor step solving the discretised momentum equation,
followed by two corrector steps that ensure the incompressibility of the numerical solution
to the velocity field. The Navier–Stokes equations are discretised using the finite-volume
method, while all cell fluxes are computed to second-order accuracy.

The solver is implemented on the basis of TensorFlow (TF) (Abadi 2016), which
facilitates parallel execution of linear algebra operations on the graphics processing unit
(GPU), as well as the differentiability of said operations. Additional functions exceeding
the scope of TF are written as custom operations and implemented using compute unified
device architecture (CUDA) programming. This approach allows us to seamlessly integrate
initially unsupported features such as sparse matrix operations in the TF graph. More
details about the solver can be found in Appendix A, where the solver equations are listed
in Appendix A.1, implementation details in Appendix A.2 and a verification is conducted
in Appendix A.3. Figure 1 gives a brief overview of the solver procedure.

In the following, we will denote a PISO solver step S as

(un+1, pn+1) = S(un, pn, f n), (2.2)

where un, pn and f n represent discretised velocity, pressure and forcing fields at time tn.

2.2. Neural network architecture
Turbulence physics strongly depends on the local neighbourhood. Thus, the network has to
infer the influence of unresolved scales for each discrete location based on the surrounding
flow fields. This physical relation can be represented by discrete convolutions, where each
output value is computed based solely on the surrounding computational cells as well
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Figure 1. Solver procedure of the PISO scheme and its interaction with the convolutional neural network;
data at time tn are taken from the DNS dataset and processed by the downsampling operation q that yields
downsampled representations of the input fields, before entering the differentiable solver; the solver unrollment
performs m steps, each of which is corrected by the CNN, and is equivalent to τ high-resolution steps; the
optimisation loss takes all resulting (intermediate) timesteps.

as a convolutional weighting kernel. This formulation introduces a restricted receptive
field for the convolution and ensures the local dependence of its output (Luo et al. 2016).
Chaining multiple of these operations results in a deep CNN, which has been successfully
used in many applications ranging from computer vision and image recognition (Albawi,
Mohammed & Al-Zawi 2017) to fluid mechanics and turbulence research (Beck et al. 2019;
Lapeyre et al. 2019; Guastoni et al. 2021).

We use a fully convolutional network with 7 convolutional layers and leaky rectified
linear unit (ReLU) activations, containing ∼ 82× 103 trainable parameters. As illustrated
in figure 1, our CNN takes the discretised velocity and pressure gradient fields as input.
This formulation contains full information of the field variable states, and enables the
modelling of both temporal and spatial effects of turbulence, as well as correction of
numerical inaccuracies. However, any principles of the modelled physics, such as Galilean
invariance in the case of SGS closure, must be learnt by the network itself. The choice
of network inputs is by no means trivial, but shall not be further studied in this paper.
Refer to Choi & Moin (2012); Xie et al. (2019, 2020) and MacArt et al. (2021) for
in-depth analyses. The output of our networks is conditioned on its weights θ , and can
be interpreted as a corrective force f CNN(ũn, ∇p̃n|θ) : R

Ñx×Ñy×4 −→ R
Ñx×Ñy×2 to the

under-resolved simulation of the Navier–Stokes equations (2.1) with domain size Ñx × Ñy.
This force directly enters the computational chain at PISO’s implicit predictor step. As a
consequence, the continuity equation is still satisfied at the end of a solver step, even if the
simulation is manipulated by the network forcing. For a detailed description of the network
structure, including CNN kernel sizes, initialisations and padding, refer to Appendix B.

2.3. Unrolling timesteps for training
Our method combines the numerical solver introduced in § 2.1 with the modelling
capabilities of CNNs as outlined in § 2.2. As also illustrated in figure 1, the resulting
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data-driven training algorithm works based on a dataset (u(tn), p(tn)) consisting of
high-resolution (Nx × Ny) velocity fields u(tn) ∈ R

Nx×Ny×2 and corresponding pressure
fields p(tn) ∈ R

Nx×Ny for the discrete time tn. In order to use these DNS data for training
under-resolved simulations on different grid resolutions, we define a downsampling
procedure q(u, p) : R

Nx×Ny×3 −→ R
Ñx×Ñy×3 , that takes samples from the dataset and

outputs the data (ũn, p̃n) at a lower target resolution (Ñx × Ñy) via bilinear interpolation.
This interpolation provides a simple method of acquiring data at the shifted cell locations
of different discretisations. It can be seen as a repeated linear interpolation to take care of
two spatial dimensions. The resampling of DNS data is used to generate input and target
frames of an optimisation step. For the sake of simplicity, we will denote a downsampled
member of the dataset consisting of velocities and pressure as q̃n = q(u(tn), p(tn)).
Similarly, we will write f̃ n = f CNN(ũn, ∇p̃n|θ). Note that the network operates solely on
low-resolution data and introduces a corrective forcing to the low-resolution simulation,
with the goal of reproducing the behaviour of a DNS. We formulate the training objective
as

min
θ

(L(q̃n+τ ,Sτ (q̃n, f̃ n))), (2.3)

for a loss function L that satisfies L(x, y) −→ 0 for x ≈ y. By this formulation, the network
takes a downsampled DNS snapshot and should output a forcing which makes the flow
fields after a low-resolution solver step closely resemble the next downsampled frame. The
temporal increment τ between these subsequent frames is set to match the timesteps in the
low-resolution solver S , which in turn are tuned to maintain Courant numbers identical to
the DNS.

Um et al. (2020) showed that similar training tasks benefit from unrolling multiple
temporal integration steps in the optimisation loop. The optimisation can then account
for longer-term effects of the network output on the temporal evolution of the solution,
increasing accuracy and stability in the process. We utilise the same technique and find it
to be critical for the long-term stability of turbulence models. Our notation from equations
(2.2) and (2.3) is extended to generalise the formulation towards multiple subsequent
snapshots. When training a model through m unrolled steps, the optimisation objective
becomes

min
θ

( m∑
s=0

L(q̃n+sτ ,Ss
τ (q̃n, f̃ n))

)
, (2.4)

where Ss denotes the successive execution of s solver steps including network updates,
starting with the initial fields qi. By this formulation the optimisation works towards
matching not only the final, but also all intermediate frames. Refer to Appendix A.1
for a detailed explanation of this approach, including equations for optimisation and loss
differentiation.

2.4. Loss functions
As introduced in (2.3), the training of deep CNNs is an optimisation of its parameters. The
loss function L serves as the optimisation objective and thus has to assess the quality of
the network output. Since our approach targets the reproduction of DNS-like behaviour on
a coarse gird, the chosen loss function should consequently aim to minimise the distance
between the state of a modelled coarse simulation and the DNS. In this context, a natural
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choice is the L2 loss on the sth unrolled solver step

L2 =
√

(ũs − q(usτ )) · (ũs − q(usτ )), (2.5)

since this formulation drives the optimisation towards resembling a desired outcome.
Therefore, the L2 loss trains the network to directly reproduce the downsampled
high-resolution fields, and the perfect reproduction from an ideal model gives L2 = 0.
Since the differentiable solver allows us to unroll multiple simulation frames, we apply
this loss formulation across a medium-term time horizon and thus also optimise towards
multi-step effects. By repeatedly taking frames from a large DNS dataset in a stochastic
sampling process, a range of downsampled instances are fed to the training procedure.
While the DNS dataset captures all turbulence statistics, they are typically lost in an
individual training iteration. This is due to the fact that training mini-batches do not
generally include sufficient samples to represent converged statistics, and no specific
method is used to satisfy this criterion. This means that data in one training iteration solely
carry instantaneous information. Only the repeated stochastic sampling from the dataset
lets the network recover awareness of the underlying turbulence statistics. The repeated
matching of instantaneous DNS behaviour thus encodes the turbulence statistics in the
training procedure. While the L2 loss described in (2.5) has its global minimum when the
DNS behaviour is perfectly reproduced, in practice, we find that it can neglect the time
evolution of certain fine scale, low amplitude features of the solutions. This property of
the L2 loss is not unique to turbulence modelling and has previously been observed in
machine learning in other scientific fields such as computer vision (Yu et al. 2018). To
alleviate these shortcomings, we include additional loss formulations, which alter the loss
landscape to avoid these local minima.

We define a spectral energy loss LE, designed to improve the accuracy of the learned
model on fine spatial scales. It is formulated as the log-spectral distance of the spectral
kinetic energies at the sth step

LE =

√√√√∫
k

log

(
Ẽs(k)
Eq

sτ (k)

)2

dk, (2.6)

where Ẽs(k) denotes the spectral kinetic energy of the low-resolution velocity field at
wavenumber k, and Eq

sτ represents the same quantity for the downsampled DNS data.
In practice, this loss formulation seeks to equalise the kinetic energy in the velocity field
for each discrete wavenumber. The log rescaling of the two respective spectra regularises
the relative influence of different spatial scales. This energy loss elevates the relative
importance of fine scale features.

Our final aim is to train a model that can be applied to a standalone forward simulation.
The result of a neural network-modelled low-resolution simulation step should therefore
transfer all essential turbulence information, such that the same model can once again be
applied in the subsequent step. The premises of modelling the unresolved behaviour are
found in the conservation equation for the implicitly filtered low-resolution kinetic energy
in tensor notation

∂Ẽf

∂t
+ ũi

∂Ẽf

∂xi
+ ∂

∂xj
ũi

[
δijp̃+ τ r

ij −
2

Re
S̃ij

]
= −εf − Pr, (2.7)

where Ẽf denotes the kinetic energy of the filtered velocity field, τ r
ij represents the SGS

stress tensor, S̃ij = 1
2 (∂ ũi/∂xj + ∂ ũj/∂xi) is the resolved rate of strain and εf and Pr
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are sink and source terms for the filtered kinetic energy. These terms are defined as
εf = (2/Re)S̃ijS̃ij and Pr = −τ r

ijS̃ij. The viscous sink εf represents the dissipation of
kinetic energy due to molecular viscous stresses at grid-resolved scales. In hybrid methods,
this viscous dissipation at grid level εf is fully captured by the numerical solver. On the
contrary, the source term Pr representing the energy transfer from resolved scales to
residual motions cannot be computed, because the SGS stresses τ r

ij are unknown. One
part of the modelling objective is to estimate these unresolved stresses and the interaction
of filtered and SGS motions. Since the energy transfer between these scales Pr depends
on the filtered rate of strain S̃ij, special emphasis is required to accurately reproduce the
filtered rate of strain tensor. This motivates the following rate of strain loss at the sth
unrolled solver step

LS =
∑
i,j

|S̃ij,s − Sq
ij,sτ |, (2.8)

where Sq
ij,s denotes the rate of strain of the downsampled high-resolution velocity field.

This loss term ensures that the output of a hybrid solver step carries the information
necessary to infer an accurate forcing in the subsequent step.

While our models primarily focus on influences of small-scale motions on the
large-scale resolved quantities, we now draw attention to the largest scale, the mean flow.
To account for the mean flow at training time, an additional loss contribution is constructed
to match the multi-step statistics and written as

LMS = ‖〈us〉ms=0 − 〈ũsτ 〉ms=0‖1, (2.9)

where 〈〉ms=0 denotes an averaging over the m unrolled training steps with iterator s.
This notation resembles Reynolds averaging, albeit being focused on the shorter time
horizon unrolled during training. Matching the averaged quantities is essential to achieving
long-term accuracy of the modelled simulations for statistically steady simulations, but
lacks physical meaning in transient cases. Therefore, this loss contribution is solely applied
to statistically steady simulations. In this case, the rolling average 〈〉ms=0 approaches the
steady mean flow for increasing values of m.

Our combined turbulence loss formulation as used in the network optimisations
additively combines the aforementioned terms as

LT = λ2L2 + λELE + λSLS + λMSLMS, (2.10)

where λ denotes the respective loss factor. Their exact values are mentioned in the flow
scenario specific chapters. Note that these loss terms, similar to the temporal unrolling, do
not influence the architecture or computational performance of the trained neural network
at inference time. They only exist at training time to guide the network to an improved
state with respect to its trainable parameters. In the following main sections of this paper,
we use three different turbulence scenarios to study effects of the number of unrolled
steps and the whole turbulence loss LT . An ablation on the individual components of
LT is provided in Appendix F. We start with employing the training strategy on isotropic
decaying turbulence.

3. Two-dimensional isotropic decaying turbulence

Isotropic decaying turbulence in two dimensions provides an idealised flow scenario
(Lilly 1971), and is frequently used for evaluating model performance (San 2014;
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Maulik et al. 2019; Kochkov et al. 2021). It is characterised by a large number of vortices
that merge at the large spatial scales whilst the small scales decay in intensity over time. We
use this flow configuration to explore and evaluate the relevant parameters, most notably
the number of unrolled simulation steps as well as the effects of loss formulations.

In order to generate training data, we ran a simulation on a square domain with
periodic boundaries in both spatial directions. The initial velocity and pressure fields
were generated using the initialisation procedure by San & Staples (2012). The Reynolds
numbers are calculated as Re = (êl̂)/ν, with the kinetic energy ê = (〈uiui〉)1/2 and
the integral length scale l̂ = û/ω̂ and ω̂ = (〈ωiωi〉)1/2. The Reynolds number of this
initialisation was Re = 126. The simulation was run for a duration of T = 104	tDNS =
100t̂, where the integral time scale is calculated as t̂ = 1/ω̂ at the initial state. During the
simulation, the backscatter effect transfers turbulence energy to the larger scales, which
increases the Reynolds number (Kraichnan 1967; Chasnov 1997). In our dataset, the final
Reynolds number was Re = 296. Note that despite this change in Reynolds number, the
turbulence kinetic energy is still decreasing and the flow velocities will decay to zero.

Our aim is to estimate the effects of small-scale turbulent features on a coarser grid
based on fully resolved simulation data. Consequently, the dataset should consist of
a fully resolved DNS and satisfy the resolution requirements. In this case the square
domain (Lx, Ly) = (2π, 2π) was discretised by (Nx, Ny) = (1024, 1024) grid cells and the
simulation evolved with a timestep satisfying CFL = 0.3.

We trained a series of models on downsampled data, where spatial and temporal
resolutions were decreased by a factor of 8, resulting in an effective simulation size
reduction of 83 = 512. Our best performing model was trained through 30 unrolled
simulation steps. This is equivalent to 1.96t̂ for the initial simulation state. Due to the
decaying nature of this test case, the integral time scale increases over the course of the
simulation, while the number of unrolled timesteps is kept constant. As a consequence,
the longest unrollments of 30 steps cover a temporal horizon similar to the integral time
scale. All our simulation set-ups will study unrollment horizons ranging up to the relevant
integral time scale, and best results are achieved when the unrollment approaches the
integral time scale. For training the present set-up, the loss factors from equation (2.10)
were chosen as (λ2, λE, λS, λMS) = (10, 5× 10−2, 1× 10−5, 0).

To evaluate the influence of the choice of loss function and the number of unrolled
steps, several alternative models were evaluated. Additionally, we trained a model with a
traditional supervised approach. In this setting, the differentiable solver is not used, and the
training is performed purely on the basis of the training dataset. In this case, the corrective
forcing is added after a solver step is computed. The optimisation becomes

min
θ

(L(qn+τ , f CNN(Sτ (qn))). (3.1)

The equations for the supervised training approach are detailed in Appendix A.1.
Furthermore, a LES with the standard Smagorinsky model was included in the
comparison. A parameter study targeting the Smagorinsky coefficient revealed that a value
of Cs = 0.008 handles the physical behaviour of our set-up best. See Appendix D for
details. An overview of all models and their parameters is given in table 1.

After training, a forward simulation was run for comparison with a test dataset. For the
test data, an entirely different, randomly generated initialisation was used, resulting in a
velocity field different from the simulation used for training. The test simulations were
advanced for 1000	t = 80t̂.

Note that the temporal advancement of the forward simulations greatly surpasses the
unrolled training horizon, which leads to instabilities with the supervised and 1-step
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Name Loss Steps t̂ MSE at t1 MSE at t2

NoModel — — — 2.78× 10−3 0.057
LES — — — 2.69× 10−3 0.051
NNsup,T LT 1 0.07 1.52× 10−3 0.369
NN1,T LT 1 0.07 1.65× 10−3 0.046
NN10 L2 10 0.66 4.23× 10−4 0.018
NN10,T LT 10 0.66 4.25× 10−4 0.022
NN30,T LT 30 1.98 4.09× 10−4 0.021

Table 1. Training details for models trained on the isotropic turbulence case, wtih NN representing various
versions of our neural network models; mean squared error (MSE) evaluated at t1 = 64	t ≈ 5t̂ and t2 =
512	t ≈ 40t̂.

model, and ultimately to the divergence of their simulations. Consequently, we conclude
that more unrolled steps are critical for the applicability of the learned models and do not
include the 1-step model in further evaluations. While an unrollment of multiple steps also
improves the accuracy of supervised models, these models nevertheless fall short of their
differentiable counterparts, as seen in a deeper study in Appendix E.

We provide visual comparisons of vorticity snapshots in figure 2, where our method’s
improvements become apparent. The network-modelled simulations produce a highly
accurate evolution of vorticity centres, and comparable performance cannot be achieved
without a model for the same resolution. We also investigate the resolved turbulence
kinetic energy spectra in figure 3. Whilst the no-model simulation overshoots the
DNS energy at its smallest resolved scales, the learned model simulations perform
better and match the desired target spectrum. Figure 4 shows temporal evolutions of
the domain-wide-resolved turbulence energy and the domain-wide-resolved turbulence
dissipation rate. The turbulence energy is evaluated according to E(t) = ∫ u′i(t)u

′
i(t) dΩ ,

where u′i is the turbulent fluctuation. We calculate the turbulence dissipation as ε(t) =∫ 〈μ(∂u′i∂u′i/∂xj∂xj)〉 dΩ . Simulations with our CNN models strongly agree with the
downsampled DNS.

All remaining learned models stay in close proximity to the desired high-resolution
evolutions, whereas the LES-modelled and no-model simulations significantly deviate
from the target. Overall, the neural network models trained with more unrolled steps
outperformed others, while the turbulence loss formulation LT also had a positive effect.

In particular, the backscatter effect is crucial for simulations of decaying turbulence
(Kraichnan 1967; Smith, Chasnov & Waleffe 1996). The CNN adequately dampens the
finest scales, as seen in the high wavenumber section of the energy spectrum (figure 3),
it also successfully boosts larger scale motions. In contrast, the no-model simulation
lacks dampening at the finest scales and cannot reproduce the backscatter effect on the
larger ones. On the other hand, the dissipative nature of the Smagorinsky model used in
the LES leads to under-sized spectral energies across all scales. Especially the spectral
energies of no-model and LES around wavenumber k = 10 show large deviations form
the ground truth, while the CNN model accurately reproduces its behaviour. These large
turbulent scales are the most relevant to the resolved turbulence energy and dissipation
statistics, which is reflected in figure 4. Herein, the neural network models maintain the
best approximations, and high numbers of unrolled steps show the best performance at long
simulation horizons. The higher total energy of the neural network modelled simulations
can be attributed to the work done by the network forcing, which is visualised together
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Figure 2. Vorticity visualisations of DNS, no-model, LES, and learned model simulations at
t = (350, 700)	t on the test dataset, zoomed-in version below.
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Figure 3. Resolved turbulence kinetic energy spectra of the downsampled DNS, no-model, LES and learned
model simulations; the learned 30-step model matches the energy distribution of downsampled DNS data; the
vertical line represents the Nyquist wavenumber of the low-resolution grid.
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Figure 4. Comparison of DNS, no-model, LES and learned model simulations with respect to resolved
turbulence kinetic energy over time (a); and turbulence dissipation rate over time (b).
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Figure 5. NN-model work on the flow field, work by the LES model and the estimated SGS energies from
LES.

with the SGS stress tensor work from the LES simulation as well as its SGS energy
in figure 5. This analysis reveals that the neural networks do more work on the system
as the LES model does, which explains the higher and more accurate turbulence energy in
figure 4 and the spectral energy behaviour at large scales in figure 3.

4. Temporally developing planar mixing layers

Next, we apply our method to the simulation of two-dimensional planar mixing layers.
Due to their relevance to applications such as chemical mixing and combustion, mixing
layers have been the focus of theoretical and numerical studies in the fluid-mechanics
community. These studies have brought forth a large set and good understanding of a
posteriori evaluations, like the Reynolds-averaged turbulent statistics or the vorticity and
momentum thickness. Herein, we use these evaluations to assess the accuracy of our
learned models with respect to metrics that are not directly part of the learning targets.

Temporally evolving planar mixing layers are the simplest numerical representation
of a process driven by the Kelvin–Helmholtz instability in the shear layer. They are
sufficiently defined by the Reynolds number, domain sizes, boundary conditions and an
initial condition. Aside from the shear layer represented by a tanh-profile, the initial flow
fields feature an oscillatory disturbance that triggers the instability, leading to the roll up of
the shear layer. This has been investigated by theoretical studies involving linear stability
analysis (Michalke 1964) and numerical simulation (Rogers & Moser 1994). Our set-up
is based on the work by Michalke (1964), who studied the stability of the shear layer
and proposed initialisations that lead to shear layer roll up. As initial condition, we add
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Set-up a ωΨ

Train 1 6.0 0.7
2 3.3 1.5

Test 3 9.0 0.3

Table 2. Perturbation details for initial conditions of temporal mixing layer training and test datasets.

randomised modes to the mean profile, resulting in the streamfunction

Ψ (x, y) = y+ 1
2 ln(1+ e−4y)+ a((αy)2 + 1) e−(αy)2

cos(ωΨ x), (4.1)

where a is the amplitude of the perturbation, α parameterises the decay of the perturbation
in y-direction and ωΨ represents the perturbation frequency. The initial flow field can then
be calculated by

u(x, y) = ∂Ψ

∂y
, v(x, y) = −∂Ψ

∂x
. (4.2a,b)

At the initial state this results in a velocity step 	U = U2 − U1 = 1 and a vorticity
thickness of δω = 	U/(∂U/∂y|max) = 1, where velocities marked as U represent
mean-stream quantities. Thus, U2 and U1 are the fast and slow mean velocities of
the shear layer. The computational domain of size (Lx, Ly) = (40π, 20π) is discretised
by (Nx, Ny) = (1024, 512) grid cells for the high-resolution dataset generation. The
streamwise boundaries are periodic, while the spanwise boundaries in the y-direction are
set to a free-slip boundary, where ∂u/∂y|Ωy = 0, v|Ωy = 0 and p|Ωy = 0. The Reynolds
number based on the unperturbed mean profile and the vorticity thickness is calculated to
be Re = 	Uδω/ν = 250 for all randomised initialisations. The simulations are run for
T = 420 = 12 000	tDNS. Our dataset consists of three simulations based on different
initialisations. Their perturbation details are found in table 2. Two of these simulations
were used as training datasets, while all of our evaluation is performed on the remaining
one as the extrapolation test dataset.

Following the approach in § 3, the model training uses a 8× downscaling in space and
time. The loss composition was set to (λ2, λE, λS, λMS) = (100, 2, 5× 10−2, 0). We
used the same CNN architecture as introduced earlier, although due to the difference in
boundary conditions a different padding procedure was chosen (see Appendix B). To
illustrate the impact of the turbulence loss LT and an unrolling of 60 numerical steps,
we compare with several variants with reduced loss formulations and fewer unrolling
steps. The maximum number of 60 unrolled steps corresponds to 16tδθ integral time scales
computed on the momentum thickness as tδθ = δθ/	U. With the shear layer growing, the
momentum thickness increases 7-fold, which decreases the number of integral time scales
to 2 for 60 steps of unrollment. Table 3 shows details of the model parameterisations.
To avoid instabilities in the gradient calculation that could ultimately lead to unstable
training, we split the back-propagation into subranges for the 60-step model. This method
stabilises an otherwise unstable training of the 60-step model, and a split into 30-step
long back-propagation subranges performs best. Such a model is added to the present
evaluations as NN60,LT . Detailed results regarding the back-propagation subranges are
discussed in § 6.

The trained models were compared with a downsampled DNS and a no-model
simulation, all sharing the same starting frame from the test dataset. This test dataset
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Name Loss Steps tδθ MSE at te

NoModel — — — 1.25× 10−3

NN10 L2 10 2.7 3.19× 10−4

NN10,LT LT 10 2.7 3.31× 10−5

NN30,LT LT 30 8.1 2.26× 10−5

NN60,LT LT 60 16.1 1.93× 10−5

Table 3. Model details for unrollment study; MSE with respect to DNS from test data at te = 512	t.
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Figure 6. Vorticity visualisations of DNS, no-model and learned model simulations at
t = (256, 640, 1024)	t on the test dataset.

changes the initial condition, where different perturbation frequencies and amplitudes
result in a variation in vortex roll-up and vortex merging behaviour of the mixing layer.
The resulting numerical solutions were compared at three different evolution times t =
[256 640 1024]	t. Figure 6 shows the vorticity heat map of the solutions. Qualitatively, the
simulations corrected by the CNN exhibit close visual proximity to the DNS by boosting
peaks in vorticity where applicable, and additionally achieve a dampening of spurious
oscillations.

These observations are matched by corresponding statistical evaluations. The statistics
are obtained by averaging the simulation snapshots along their streamwise axis and the
resulting turbulence fluctuations were processed for each evaluation time. Figure 7 shows
that all LT -models closely approximate the DNS reference with respect to their distribution
of resolved turbulence kinetic energy and Reynolds stresses along the cross-section, while
the no-model simulation clearly deviates. Note that the mixing process causes a transfer of
momentum from fast to slow moving sections through the effects of turbulent fluctuations.
The shear layer growth is thus dominated by turbulent diffusion. Consequently, accurate
estimates of the turbulent fluctuations are necessary for the correct evolution of the
mixing layer. These fluctuations are most visible in the Reynolds stresses u′v′, and an
accurate estimation is an indicator for well-modelled turbulent momentum diffusion. The
evaluations also reveal that unrolling more timesteps during training gains additional
performance improvements. These effects are most visible when comparing the 10-step
and 60-step model in a long temporal evolution, as seen in the Reynolds stresses in
figure 7. The evaluation of resolved turbulence kinetic energies shows that the models
correct for the numerical dissipation of turbulent fluctuations, while, in contrast, there is an
underestimation of kinetic energy in the no-model simulation. While longer unrollments
generally yield better accuracy, it is also clear that 30 steps come close to saturating
the model performance in this particular flow scenario. With the integral time scales
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Figure 7. Comparison of DNS, no-model and learned model simulations with respect to resolved turbulence
kinetic energy (a) and Reynolds stresses (b).

mentioned earlier, it becomes clear that 30 simulation steps capture one integral time scale
of the final simulation phase, i.e. the phase of the decaying simulation that exhibits the
longest time scales. One can conclude that an unrollment of one time scale is largely
sufficient, and further improvements of unrolling 2 time scales with 60 steps are only
minor.

The resolved turbulence kinetic energy spectra are evaluated to assess the spatial scales
at which the corrective models are most active. The spectral analysis at the centreline
is visualised in figure 8, whilst the kinetic energy obtained from fluctuations across the
cross-section with respect to streamwise averages is shown in figure 9. These plots allow
two main observations: firstly, the deviation of kinetic energy mostly originates from
medium-sized spatial scales, which are dissipated by the no-model simulation but are
accurately reconstructed by the neural network trained with LT . This effect is connected
to the dampening of vorticity peaks in the snapshots in figure 6. Secondly, the fine-scale
spectral energy of the no-model simulation has an amplitude similar to the DNS over
long temporal horizons (figure 9). This can be attributed to numerical oscillations rather
than physical behaviour. These numerical oscillations, as also seen in the snapshots in
figure 6, exist for the no-model simulation but are missing in the LT -modelled simulations.
Training a model without the additional loss terms in LT from (2.10), i.e. only with the
L2 from (2.5), yields a model that is inaccurate and results in unphysical oscillations. It
does not reproduce the vorticity centres, and is also unstable over long temporal horizons.
Herein, non-physical oscillations are introduced, which also show up in the cross-sectional
spectral energies and vorticity visualisations. We thus conclude that best performance can
be achieved with a network trained with LT , which learns to dampen numerical oscillations
and reproduces physical fluctuations across all spatial scales.

It is worth noting that our method is capable of enhancing an under-resolved simulation
across a wide range of turbulent motions. The vortex size in the validation simulation
ranges from 7δω0 at the starting frame to 60δω0 after evolving for 1200	t. This timespan
encompasses two vortex merging events, both of which cannot be accurately reproduced
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Figure 8. Centreline kinetic energy spectra for the downsampled DNS, no-model and learned model
simulations.
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Figure 10. Momentum thickness of DNS, no-model and learned model simulations, evaluated based on the
streamwise averages.

with a no-model, or a L2-model simulation, but are captured by the LT -trained network
models. This is shown in the comparison of the momentum thicknesses over time in
figure 10. The reproduction of turbulence statistics (figure 7) yields, in the long term, an
accurate turbulent diffusion of momentum and mixing layer growth for the models trained
with LT . On the contrary, the L2 model fails to reproduce the vortex cores and deviates
with respect to the momentum thickness for long temporal horizons.

5. Spatially developing planar mixing layers

In contrast to the temporally developing mixing layers investigated in § 4, the spatially
developing counterpart features a fixed view on a statistically steady flow field, which
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ε1/Ū K1 Ω1 ε2/Ū K2 Ω2

Train 0.075 0.4π 0.22 0.025 0.3π 0.11
0.060 0.4π 0.22 0.040 0.3π 0.11
0.050 0.4π 0.22 0.050 0.3π 0.11
0.040 0.4π 0.22 0.060 0.3π 0.11
0.025 0.4π 0.22 0.075 0.3π 0.11

Test 0.082 0.4π 0.22 0.018 0.3π 0.11

Table 4. Perturbation details for the inlet condition of training and test datasets.

introduces a new set of challenges to the learning task. While the main difficulty in
previous transient simulations was the modelling of an evolving range of turbulent
scales, the statistically steady nature of the spatially developing mixing layer requires a
reproduction of the turbulent statistics in its own statistically steady state. This in turn
necessitates long-term accuracy and stability.

Spatially mixing layers develop from an instability in the shear layer. This instability is
driven by a disturbance at the inlet, whose characteristics have great effect on the mixing
layer growth (Ho & Huang 1982). In a simulation environment, these disturbances are
realised by a Dirichlet inlet boundary condition, where temporally varying perturbations
are added to a steady mean flow profile. As proposed by Ko, Lucor & Sagaut (2008), a
suitable inlet condition including perturbations can be written as

uin( y, t) = 1+ 	U
2

tanh(2y)+
Nd∑

d=1

εd(1− tanh2( y/2)) cos(Kdy) sin(Ωdt), (5.1)

where the number of perturbation modes Nd = 2 holds for our simulations. Furthermore,
we used inviscid wall conditions for the two y-normal spanwise boundaries, and the
outflow boundary was realised by a simple Neumann condition with a stabilising upstream
sponge layer. For all simulations, we set the characteristic velocity ratio 	U = 1 and the
vorticity thickness to δω = 1. The vorticity-thickness Reynolds number is set to Reδω =
	Uδω/ν = 500. To generate the DNS dataset, this set-up was discretised by a uniform
grid with (Nx, Ny) = (2048, 512) resolving the domain of size (Lx, Ly) = (256, 64). The
timesteps were chosen such that CFL= 0.3 and the temporal evolution was run for 7
periods of the slowest perturbation mode i = 2 to reach a statistically steady state, before
subsequent frames were entered into the dataset. A further 28 periods of the slowest
perturbation mode were simulated to generate 32 000 samples of the statistically steady
state. The training dataset consists of 5 such simulations with different perturbations, as
summarised in table 4. A downsampling ratio of 8× in space and time was again chosen for
the learning set-up. The input to the network was set to include only the main simulation
frame without the sponge layer region.

Our best performing model applied the turbulence loss LT , with the loss factors set
to (λ2, λE, λS, λMS) = (50, 0.5, 2, 0.5), and an unrollment of 60 solver steps. The
timespan covered by these 60 solver steps is comparable to a full period of the slowest
perturbation mode. Using the roll-up frequency of the spatial mixing layer as the basis for
the time scale tfω = 1/fω, 60 solver steps unroll 0.85tfω . As we detail in the following, our
test metrics show that this approach of unrolling roughly one integral time scale yields the
best results.
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First, we evaluate the influence of unrollment in this test case. Once again, we show
comparisons with additional set-ups, the parametric details of which can be found in
table 5. Similar to the temporal mixing layer, the 60 step model was trained using a
gradient stopping technique. A 30-step back-propagation subrange performed best again by
maintaining long-term information while avoiding instabilities in the gradient calculation.
This model is described as NN60,LT in this section. Details regarding the method are
explained in § 6. The table shows that the simulation with the 60-step neural network
outperforms the no-model baseline by an order of magnitude. For these evaluations, we
assessed the model capabilities by running a CNN-corrected forward simulation. This
simulation was initialised with a downsampled frame from the DNS test dataset in its fully
developed state. This test dataset is generated with different inflow conditions, where the
inlet forcing lies outside of the training range, making these evaluations an out-of-sample
generalisation test. The variation in inlet forcing affects the location and intensity of the
mixing layer roll-up and vortex merging. The simulation was run for 5000	t, or 36 periods
of the slowest perturbation mode in order to obtain data from a statistically stable state.
Despite this time frame being orders of magnitude longer than what is seen by the models
at training time, the 60-step model retains a stable simulation that closely matches the
behaviour of the DNS reference. Interestingly, this longer unrollment, of the order of one
integral time scale, is crucial to arrive at a stable model. The models trained with shorter
unrollment exhibit various degrees of spurious oscillations, especially the 10-step model.
These oscillations most likely originate from slight deviations in turbulent structures (e.g.
vortex roll-up) inferred by the network. Since short unrollment models have never seen any
further development of these self-exited structures, applying said models eventually causes
even stronger unphysical oscillations downstream. As before, we omit purely data-driven
models trained with pre-computed simulation states. These produce undesirable solutions
within a few timesteps of simulating the test cases. The vorticity visualisations after half
a period of the slowest perturbation mode (70	t) and after four periods or one flow
through time (600	t) are shown in figures 11(a) and 11(b), and compared with DNS
and the no-model simulation. The early evaluation in figure 11(a) reveals a severe loss
of detail in the no-model simulation, even after a short time horizon. Over this timespan,
the learned model achieves a close visual reproduction. Additionally, the later vorticity
heat map in figure 11(b) shows a delayed roll-up in the no-model simulation, whereas the
learned model maintains the roll-up location and shows improved accuracy. This behaviour
is clarified by the Reynolds-averaged properties of the simulations, for which resolved
Reynolds stresses and turbulence kinetic energies were calculated on the basis of the
respective statistically steady simulations. As shown in figure 12, the no-model statistics
severely deviate from the targeted DNS. In contrast, the corrective forcing inferred by
the trained models approximates these statistics more accurately. The delayed roll-up of
the no-model simulation and the improvement of the modelled ones is connected to the
Reynolds stresses. The Reynolds stresses indicate turbulent diffusion of momentum, and
figure 12 shows that the CNN learned to encourage turbulent fluctuations at the start of
the mixing layer. The fluctuations trigger the shear layer instability and feed the roll-up,
with decisive implications for the downstream development of the mixing layer. Especially
the long unrollment of 60 steps benefits the model performance. Evaluations at locations
downstream of the initial roll-up see the accuracy of 10 and 30 step models deteriorate in
direct comparison with the 60-step model.

These observations regarding the Reynolds stresses extend to the resolved turbulence
kinetic energies (figure 12), where the same turbulent fluctuations yield an accurate
reproduction of the DNS. The learned models are not limited to a specific spatial scale,

949 A25-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

73
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.738


B. List, L.-W. Chen and N. Thuerey

DNS

NoModel

NN30LT

NN60LT

NN10LT

t = 70∆t
DNS

NoModel

NN30LT

NN60LT

NN10LT

t = 600∆t

–32
–16

16
32

0

0 32 2562241921601289664

y

x
0 32 2562241921601289664

x

–32
–16

16
32

0y

–32
–16

16
32

0y

–32
–16

16
32

0y

–32
–16

16
32

0y

–32–1.0

–0.8

–0.6

–0.4

–0.2

0

–0.8

–0.6

–0.4

–0.2

0

–16

16
32

0y

–32
–16

16
32

0y

–32
–16

16
32

0y

–32
–16

16
32

0y

–32
–16

16
32

0y

V
o
rticity

 ω
(b)(a)

Figure 11. Vorticity heat maps of the spatial mixing layer simulations at (a) t = 70	t, and (b) t = 600	t, on
the test dataset.
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Figure 12. Comparison of downsampled DNS, no-model and learned model simulations with respect to
Reynolds-averaged resolved turbulence kinetic energy (a) and Reynolds stresses (b).

but precisely match the DNS on all turbulent scales when comparing the centreline kinetic
energy spectra in figure 13.

The evaluations of vorticity and momentum thickness in figures 14(a) and 14(b)
capture a delayed mixing layer development. Especially early stages of the mixing layer
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Name Loss Steps tfω MSE at te

NoModel — — — 2.03× 10−2

NN10,LT LT 10 0.14 5.22× 10−3

NN30,LT LT 30 0.42 3.66× 10−3

NN60,LT LT 60 0.85 2.98× 10−3

Table 5. Model details for unrollment study; MSE with respect to DNS from test data at te = 1000	t.

DNS

NoModel

NN60LT

NN30LT

NN10LT

10010–1
10–5

10–4

10–3

10–2

10–1

E(k)

k
Figure 13. Centreline kinetic energy spectra for downsampled DNS, no-model and learned model

simulations.

immediately after the first roll-up are modelled inaccurately. While all models show this
behaviour, the delay in terms of momentum thickness is more pronounced for the long
unrollment 60-step model. On the contrary, the roll-up inaccuracy results in a noticeable
offset in the vorticity thickness around x/δω0 = 100 for all models, but the 60-step model
performs best further downstream by recovering the DNS behaviour. This recovery is
lacking in the 10- and 30-step models, causing the evaluation of Reynolds stresses at
x = 192	x (figure 12) to exhibit large discrepancies between DNS and learned model
simulation for these models, with the notable exception of the 60-step model. Note,
however, that, despite not being capable of exactly reproducing the entire mixing layer
up to the finest detail, the learned models still greatly outperform a no-model simulation.
Momentum thickness evaluations show beneficial results for the models trained with
shorter unrollments. Due to the definition of momentum thickness as an integral quantity
over the shear direction, an increase in this quantity is caused by strong deviations from
the initial step profile of the mixing layer. While the integral values for the momentum
thickness of the 10- and 30-step models are close to the DNS, the underlying turbulence
fluctuations causing these values are not accurate compared with the DNS, which can be
seen in turbulence kinetic energy and Reynolds stress evaluations in figure 12. Considering
these results jointly, we draw the conclusion that the 60-step model yields the best
performance.

Additionally, the evaluations show the benefits of training through multiple unrolled
steps. The 10-step model develops instabilities after 500	t, which is equivalent to one
flow-through time. From this time on, the learned model only sees self-exited instabilities
in the mixing layer. This constitutes an extrapolation with respect to the temporal
unrollment, as well as with respect to the inlet perturbation due to the use of a test dataset.
This in turn can cause spurious oscillations and thus a deterioration of solution quality.
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Figure 14. Vorticity and momentum thickness of the downsampled DNS, no-model and learned model
simulations.

The 30-step model shows this behaviour to a lesser extent and generates a stable,
statistically steady progression of the mixing layer for this case of temporal extrapolation.
Even better behaviour is only achieved by the 60-step model. It practically eliminates the
instabilities seen in other models.

While previous evaluations showcased the stability improvements gained by training
through multiple solver steps, another benefit of this approach relates to the temporal
fluctuations in DNS training data. As visualised in figure 15, only some of the interactions
between CNN and these temporal oscillations are covered in a training iteration.
Consequently, the training loop imposes a high-pass cutoff on the observed frequencies
that directly depends on the number of unrolled solver steps. To extract the temporal
features that our models learned from the training dataset, we calculate the power spectral
density of the velocity fields at sampling point (x, y) = (160, 0) on training data. The
sampling timespan for the learned models starts after one flow-through time and stops
after the next four flow-through times passed. The resulting power spectral densities are
compared with a long-term evaluation of the DNS data, and a relative error between
the spectra is computed. The results are shown in figure 15 and support the following
observations. Firstly, all learned models can capture the discrete nature of the dominant
frequencies quite well. In particular, the 60-step model shows good approximation to
the DNS evaluation. In contrast, the no-model does not match the DNS characteristics.
Secondly, the relative error of the power spectra generated by the 60-step model is
substantially lower for all but the highest frequencies. Since the 30- and 10-step models
only saw the interaction with fine scales during their training, these models perform worse
at the lower frequencies, which results in higher relative errors for the relatively low vortex
roll-up and vortex merging frequencies. These features operate at of the order of one
integral time scale and are better resolved by 60 unrolled steps.

6. Gradient back-propagation

Our evaluations on temporally and spatially developing mixing layers show significant
performance gain by longer unrollment times, with the best accuracy given by a 60-step
model. However, long unrollments can cause stability problems. Repeated applications
of neural networks are known to be problematic during training, where exploding or
diminishing gradients can significantly deteriorate the quality of gradients (Pascanu,
Mikolov & Bengio 2013). To avoid this, we utilise a custom version of the gradient
stopping technique: instead of discarding gradients generated by some (earlier) simulation
steps, we split the gradient back-propagation into individually evaluated subranges.
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Figure 15. Power spectral density (PSD) of velocity fluctuations over time at sampling point (x, y) =
(192	x, 0) based on the training dataset for DNS, no-model and learned model simulations at top; bottom
figure displays the relative error of the power densities over frequencies, accumulated for both velocity
components; frequencies to the right of a dotted vertical line are fully enclosed in a training iteration; vertical
lines correspond to (60, 30, 10) unrolled steps from left to right.

In other words, the training still exposes long temporal unrollments and preserves the
gradient influence of all steps, but does not propagate gradients back to the first application
of the network model. We use 60-step models to study model accuracy with respect to the
length of these back-propagation subranges on a range of 10, 20, 30 and 60 backward steps.
We will use the notation NNm–g with two numbers m and g, where m describes the number
of unrolled forward steps, and g represents the length of the subranges for which gradients
are calculated individually. In practice, this means that gradients of a 60-20 model are only
back-propagated through 3 non-overlapping sections of 20 steps each. The 60-60 model
recovers the standard differentiable training procedure used for previous models.

This procedure was applied to temporally and spatially developing mixing layers. Details
of the trained models are found in tables 6 and 7. Note that the training of the NN60–60,LT
was not stable for the temporal mixing layer case, which we attribute to unstable gradients
in the optimisation. In contrast, the subrange gradient models are stable during training.
Additional evaluations of Reynolds stresses and turbulence kinetic energy for the temporal
mixing layer indicate no performance differences between these models, as shown in
figure 16. We thus conclude that the method of subrange back-propagation makes the
training of the 60-step model possible, but also that the model performance on the temporal
mixing layer was already saturated by the 30-step model, as previously mentioned in § 4.
The NN60–30,LT model was used in the evaluation in § 4.

The spatial mixing layer models are evaluated on vorticity snapshots in figure 17,
turbulence kinetic energy and Reynolds stresses in figure 18, as well as vorticity and
momentum thickness in figures 19. These results indicate that there is a optimal number of
consecutive back-propagation steps of around 20 to 30, where the optimisation gradients
contain long-term information while still maintaining a good quality that is unaffected
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Figure 16. Comparison of DNS, no-model and 60-step model simulations with respect to resolved turbulence
kinetic energy (a), and Reynolds stresses (b).

Name Loss Steps Grad MSE at te

NoModel — — — 1.25× 10−3

NN60–10,LT LT 60 10 2.36× 10−5

NN60–20,LT LT 60 20 2.19× 10−5

NN60–30,LT LT 60 30 1.93× 10−5

NN60–60,LT LT 60 60 —

Table 6. Temporal mixing layer; model details for 60-X models; MSE with respect to DNS from test data at
te = 512	t; training of NN60–60,LT is unstable.

Name Loss Steps Grad MSE at te

NoModel — — — 2.03× 10−2

NN60–10,LT LT 60 10 2.44× 10−3

NN60–20,LT LT 60 20 2.73× 10−3

NN60–30,LT LT 60 30 2.98× 10−3

NN60–60,LT LT 60 60 1.19× 10−2

Table 7. Spatial mixing layer; model details for 60-X models; MSE with respect to DNS from test data at
te = 1000	t.

by risks of recurrent evaluation. The NN60–20,LT and NN60–30,LT models achieve best
performance on all metrics except for the momentum thickness. We attribute the larger
values of momentum thickness to some spurious oscillations exhibited by the NN60–10,LT

and NN60–60,LT models. The NN60–30,LT model was used in earlier unrollment evaluations
in § 5.
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Figure 17. Vorticity comparison of 60-step models on spatial mixing layer simulations at t = 700	t on the
test dataset.
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Figure 20. Selected evaluations of the 120-step model with vorticity snapshots in (a), Reynolds stresses in
(b) and vorticity thickness in (c).

Another potential problem could be caused by training towards matching frames
separated by long timespans. Turbulent flows could potentially loose correlation to the
reference data over long temporal horizons, which would render this learning approach
driven by simulated DNS data inapplicable. The unrollment times in this paper are,
however, far from reaching an uncorrelated state. As shown in the previous evaluations,
the 60-step models perform better than their 30-step counterparts, indicating that there
is additional information provided by unrolling 60 steps. This shows that the unrolled
temporal horizons are far from exhibiting flow decorrelation. Further experiments with
even longer unrollments on the spatial mixing layer revealed that no improvement is
achieved beyond 60 steps in this case. Figure 20 depicts selected evaluations of a 120-step
model, which lack improvements over the 60-step counterpart. While the 120-step model
gains accuracy in early upstream cross-sections, the mixing layer shift downstream of the
first roll-up is worse in direct comparison.

We also investigated yet longer horizons (180 and 240 steps), but these runs saw a
reduced accuracy with respect to some of the evaluations. One explanation is that the
flow field is uncorrelated to the DNS data for these long horizons, leading to a diffused
learning signal. If the loss was computed on late, uncorrelated frames, we would expect
generated gradients to resemble random noise. While earlier frames would still provide
valuable information, the random noise from these later frames could prevent the learning
of precise corrections. In addition, the longer runs used the same set of hyperparameters
as determined for the shorter unrollments, the long horizon runs could also profit from a
broader hyperparameter search.

In this section, we have identified gradient instabilities as the main problem when
unrolling long temporal horizons. We have introduced a gradient splitting technique that
stabilised the training procedure. This is done by splitting the gradient calculation into
non-overlapping subranges. For the studied set-ups and 60-step models, a split into two
subranges of 30 steps each performed best. One can conclude that longer unrollments pay
off in terms of modelling accuracy up to a certain saturation point. In our simulations
this saturation point lies at approximately 60 steps, which coincides with the integral time
scales of the respective scenarios. Unrolling beyond that saturation point is possible, but
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Name Resolution Time until te No. 	t Time per 	t MSE Training

IDT DNS 1024× 1024 14497.7s 8000 1.812± 0.432s 0 —
NN 128× 128 71.2s 1000 0.071± 0.015s 1.96× 10−2 61 h

NoModel 128× 128 65.5s 1000 0.066± 0.066s 5.45× 10−2 —
— 256× 256 240.6s 2000 0.120± 0.027s 1.07× 10−2 —
— 512× 512 1348.8s 4000 0.337± 0.049s 1.03× 10−3 —

TML DNS 1024× 512 12467.8s 8000 1.559± 0.764s 0 —
NN 128× 64 155.6s 1000 0.156± 0.049s 1.66× 10−5 78 h

NoModel 128× 64 144.5s 1000 0.145± 0.052s 1.23× 10−3 —
— 256× 128 593.5s 2000 0.297± 0.148s 2.30× 10−4 —
— 340× 170 1054.0s 2656 0.395± 0.216s 1.07× 10−4 —
— 512× 256 2154.9s 4000 0.539± 0.259s 2.51× 10−5 —

SML DNS 2048× 512 81925.3s 8000 10.242± 1.144s 0 —
NN 256× 64 1813.6s 1000 1.815± 0.254s 2.20× 10−3 240 h

NoModel 256× 64 1815.4s 1000 1.817± 0.450s 2.03× 10−2 —
— 512× 128 3971.3s 2000 1.987± 0.348s 6.22× 10−3 —
— 768× 192 6719.23s 2667 2.240± 0.273s 7.57× 10−4 —
— 1024× 256 12071.5s 4000 3.019± 0.245s 3.13× 10−4 —

Table 8. Computational performance comparison over te = 1000	t for the used flow scenarios, isotropic
decaying turbulence (IDT), temporal mixing layer (TML) and spatial mixing layer (SML); MSE values are
evaluated on the velocity field at 500	t; training time on one GPU.

leads to increased computational effort and may require special treatment, such as a further
tuning of the hyperparameters.

7. Computational performance

The development of turbulence models is ultimately motivated by a reduced computational
cost, which facilitates numerical simulations in flow scenarios where a DNS is
prohibitively expensive. Preceding sections have outlined the corrective capabilities of our
learned models. We now seek to put these improvements into perspective by studying the
computational cost of our learned models at the inference time. For all of our performance
evaluations, an Intel Xeon E5-1650 CPU and a Nvidia GTX 1080Ti GPU are used. We
use the computational set-ups from our model evaluation runs on test data in the isotropic
turbulence, TML and SML cases in §§ 3, 4 and 5, respectively.

Exactly as before, an 8× scaling factor is deployed on both the spatial resolution and
timestep size. We then run the simulations until the time te = 1000	t is reached, while
recording the required computational time for each timestep. The results are summarised
in table 8, where the total simulation time as well as per-timestep values are listed. We also
assess the computational cost of a no-model simulation that matches the performance of
our models.

The resulting data show that the neural network incurs only a negligible cost of
approximately 10 % in comparison with no-model simulations at the same resolution. The
learned models clearly outperform the no-model variants in terms of MSEs, and incur only
a fraction of the computational cost required for the DNS variants.

In addition, we provide the temporal evolution of the MSE evaluated on resolved
turbulence kinetic energies for all three scenarios in figure 21. From this evaluation,
we conclude that our method consistently outperforms simulations with a 2× higher
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i,
 ũ
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Figure 21. Similarity evolutions over time measured by the MSE on resolved turbulence kinetic energy for
randomised turbulence simulations (a), TML simulations (b) and SML simulations (c).

resolution in spatial and temporal dimensions. Additionally, we found our learned models
to often be on-par with 4× higher resolved simulations, e.g. in the first half of the temporal
mixing layer case. On the basis of the clock times from table 8, this corresponds to a
speed up of 3.3 over 2× isotropic turbulence simulations. For the mixing layer cases, the
hybrid model on average resembles the performance of 3× reference simulations, which
corresponds to a speed-up of 7.0 for the temporal and 3.7 for the spatial mixing layer. For
the former, our model even closely matches the performance of a 4× simulation for several
hundred timesteps, which represents a speed up of 14.4.

While other works have reported even larger performance improvements (Kochkov
et al. 2021), we believe that our measurements are representative of real-world
scenarios with higher-order solvers. Asymptotically, we also expect even larger payoffs
for the high-resolution, three-dimensional simulations that are prevalent in real-world
applications.

Naturally, the training of each neural network requires a substantial one-time cost. In
our case, the network took 3 to 10 days of training, depending on the individual problem
set-up. The required GPU hours for the best-performing models are listed in table 8. The
longer unrolled temporal horizons and larger domain increase the required training time for
the spatial mixing layer. For the three used set-ups, these training times are equivalent to
[120, 118, 22] DNS solves of full length as used in the dataset calculation. However, under
the assumption that the learned turbulence model can be employed by multiple users in
a larger number of simulations to produce new outputs, this cost will quickly amortise.
Especially the most complex spatial mixing layer case shows a favourable relation of
training cost to simulation speed up. Additionally, a successful application of this approach
to three-dimensional turbulence would make training cheaper in relation to DNS and speed
ups larger, due to the scaling through an additional spatial dimension. It is worth noting
that our comparisons are based on GPU solvers, and performance is likely to vary on
CPU or mixed solvers, where parts of the computation are CPU-based and communication
overheads could deteriorate gains.

8. Conclusion

In this paper, we studied adjoint training methods for hybrid solvers that integrate neural
networks in a numerical solver. We targeted the modelling of the finest turbulent scales
when these cannot be resolved by the simulation grid. The differentiable nature of our
implementation of the PISO solver allows us to train the network through multiple
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unrolled steps. We deem this feature crucial, since we found strong dependence of
the model performance and long-term stability on the number of unrolled steps. Our
results indicate that covering one integral time scale yields the best performance. Shorter
unrollments generally suffer from accuracy and stability issues, while for longer ones
the model accuracy saturates and training becomes less efficient. We showcased the
application of our method to three different flow scenarios, the two-dimensional isotropic
decaying turbulence, the temporally developing mixing layer and the spatially developing
mixing layer, whilst keeping the network architecture identical. The optimisation of
network parameters yielded good results when optimising towards the L2-loss, but could
be substantially improved through our formulation of the turbulence loss LT .

When run in inference mode, the simulation based on the learned models trained with
our method remained stable for long periods and allowed us to run simulations vastly
surpassing the initial training horizon. Our models proved to be in very good agreement
with the DNS test datasets when compared on the basis of a posteriori statistics. These
agreements were obtained despite the fact that the evaluation metrics were not a target of
the training optimisation, and that the test datasets constitute an extrapolation from training
data. Furthermore, our hybrid approach achieved good results on a wide range of scales,
with the Reynolds number varying from Re = 126 to Re = 296 in the isotropic turbulence
case, and the vortex sizes ranging from 7δω0 to 60δω0 in the TML. Similarly, our approach
yielded a learned model simulation that remained accurate and stable in a statistically
steady test case of the SML. These SML models were trained with a range of perturbation
parameters and demonstrated good extrapolation accuracy towards this quantity. In our test
cases, the learned model simulation accurately reproduced the turbulence kinetic energy
in its spectral distribution as well as its temporal evolution. Furthermore, the learned
models captured the turbulent fluctuations, which led to a precise modelling of vortex
roll-up and merging events. Our results also demonstrate the importance of unrolling
simulator steps during training in achieving high accuracy and stability. Such models are
effectively trained by our approach of optimising all subranges of a multi-step training loop
divided by gradient stopping. This approach differs from the common practice in machine
learning, where gradients of early evaluations of the neural network are usually discarded
or re-scaled when gradient clipping is applied (Pascanu et al. 2013). Our learned models
provide a significant increase in computational performance, where speed ups in terms of
computation time of a factor of up to 14 are observed. The additional resources required
for model inference are minor and can be justified with the gains in the solution accuracy.

Use of the turbulence loss and large unrollment numbers is motivated by physical and
numerical considerations. As introduced in § 2, the components of the turbulence loss
are derived from fundamental equations in turbulence theory. As described above, our
experiments deem the solver unrollment imperative for training a long-term stable model.
On a theoretical level, these principles apply to both two- and three-dimensional flows,
which is why we believe that our findings are also of interest to the development of learned
turbulence models for three-dimensional flows.

In its current form, our method has several limitations, such as the initial one time
cost to train the neural network turbulence model. Also, our tests have focused on
regular, Cartesian grids. However, more flexible convolutions (Ummenhofer et al. 2019;
Sanchez-Gonzalez et al. 2020) could be employed to use the presented method on more
flexible mesh structures with irregular discretisations. Moreover, even regular CNNs
can be extended to take regular, non-uniform and stretched meshes into account (Chen
& Thuerey 2021). For instance, this is highly important for wall-bounded flows and
fluid–structure interactions. Similarly, further interesting extensions could work towards
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a differentiable solver that directly trains towards a posteriori statistics, or study the
modelling capabilities of different network architectures with respect to the modelled
turbulent scales.

To summarise, the improvements in accuracy and runtime of our approach render the
proposed combination of neural network and numerical solver suitable for a variety of
settings. As ground truth data are not restricted to originate from the same solver, they
could stem from different numerical schemes such as higher-order spectral methods or
even experiments. Furthermore, the learned models offer significant savings when a large
quantity of turbulent simulations is required. This is especially important for inverse
problems such as flow optimisation tasks. Due to the super-linear scaling of existing
solvers, our method also could potentially provide even greater performance benefits when
applied to three-dimensional flow fields.
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Appendix A. The PISO solver details

The governing Navier–Stokes equations (2.1) were solved with a finite-volume approach,
which naturally supports the staggered discretisation such that the velocity vector fields
are stored at the cell faces, whereas the scalar pressure field is stored at the cell centres.
All fluxes were computed to second-order accuracy using a central difference scheme.

A.1. Governing equations
The numerical solver follows the method introduced by Issa (1986). Our differentiable
hybrid method includes a corrective network forcing f CNN in the predictor step. In
contrast, the supervised models cannot take advantage of any differentiable solver
operations during training. The corrective forcing from a network trained with the
supervised approach f sup

CNN must thus be applied after a complete solver step. With the
discrete velocity and pressure fields (un, pn) at time tn, the equations of the PISO solver
for both cases read as

Mu∗n = un −∇pn[+f CNN(un, ∇pn|θ)], (A1)

∇ · (A−1∇p∗n) = ∇ · u∗n, (A2)
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u∗∗n = u∗n − A−1∇p∗n, (A3)

∇ · (A−1∇p∗∗n ) = ∇ · (Hu∗∗n ), (A4)

u∗∗∗n = u∗∗n + A−1(H(u∗∗n − u∗n)−∇p∗∗n ), (A5)

pn+1 = pn + p∗ + p∗∗, (A6)

ui+1 = u∗∗∗n [+f sup
CNN(u∗∗∗n , ∇pn+1|θ sup)], (A7)

where the corrective forcings f CNN and f sup
CNN are never applied at the same time, but

share this set of equations for brevity. The matrix M represents the discretised advection,
diffusion and temporal integration, and matrix A contains the diagonal entries of M such
that M = A+ H . The network weights are represented by θ .

The optimisation loss is applied to the output of a solver step. Using the downsampling
(ũn, p̃n) = q(un, pn) = q̃n as introduced in § 2, we can abbreviate a solver step by q̃n+1 =
Sτ (q̃n, f̃ CNN,n) in the case of the differentiable model, and by q̃n+1 = Sτ (q̃n)+ f̃ sup

CNN,n
in the case of the supervised model. The parameter τ describes the temporal increment
of a solver step as 	t = τ	tDNS. At this stage, it becomes obvious that optimising
minθ [L(q̃n+τ ,Sτ (q̃n, f CNN,n))] with the differentiable model, as introduced in (2.3),
requires the computation of

∂L
∂θ
= ∂L

∂ q̃n+1

∂ q̃n+1

∂f CNN

∂f CNN

∂θ
, (A8)

which in turn requires the differentiation of a solver step. In contrast, optimising a
supervised model with minθ [L(un+τ ,Sτ (ũn, p̃n)+ f sup

CNN(Sτ (ũn, p̃n)))] has to compute

∂L
∂θ sup =

∂L
∂f sup

CNN

∂f sup
CNN

∂θ sup , (A9)

which can be achieved without a differentiable solver.
When n solver steps are unrolled during training of differentiable models, this yields the

optimisation procedure as introduced in (2.4)

min
θ

( m∑
s=0

L(q̃n+sτ ,Ss
τ (q̃n, f̃ n))

)
. (A10)

During back-propagation, the gradients based on the losses at all (intermediate) steps are
calculated and propagated through all previously unrolled forward steps, accumulating
gradients with respect to all network forces on the way back. For a loss on an (intermediate)
solver step Ls = L(q̃n+sτ ,Ss

τ (q̃n, f̃ n)), the following gradient calculation arises:

∂Ls

∂θ
=

s∑
B=1

[
∂Ls

∂ q̃n+s

(B+1∏
b=s

∂ q̃n+b

∂ q̃n+b−1

)
∂ q̃n+B

∂f B−1
CNN

∂f B−1
CNN
∂θ

]
, (A11)

where f B
CNN denotes the network forcing in the Bth step. As explained in § 6, we use a

custom gradient splitting technique that splits the back-propagation into subranges. The
gradients are only back-propagated within a subrange, and set to zero when they cross a
subrange boundary. When using gradient subranges of length r, the gradient calculation
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L(u1, ũ1)
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2
)

∂θ

∂L(u
3
, ũ
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Figure 22. Visualisation of gradient back-propagation, comparing differentiable and supervised set-ups;
displayed is a 3-step set-up; the loss gradients from the last step are propagated through all previous steps
and towards all previous network outputs; if the back-propagation is split into subranges, the gradients of the
simulation state are set to zero, visualised by ‘\’.

gives

∂Ls

∂θ
=

s∑
B=�s\r∗r

[
∂Ls

∂ q̃n+s

(B+1∏
b=s

∂ q̃n+b

∂ q̃n+b−1

)
∂ q̃n+B

∂f B−1
CNN

∂f B−1
CNN
∂θ

]
, (A12)

where �s\r denotes the integer division of s by r. This formulation can be easily
implemented by setting the gradient of the simulation state to zero at the subrange
boundaries, as visualised in figure 22.

Supervised models train on the optimisation

min
θ

( m∑
s=0

L(q̃n+sτ , [Sτ (q̃n)+ f̃ sup
CNN,n]s)

)
, (A13)

where the expression in [· · · ]s denotes the recurrent application of a solver step with
a supervised model. We abbreviate for simplicity Lsup,s = L(q̃i+sτ , [Sτ (q̃i)+ f̃ sup

CNN,i]
s).

The gradients of these losses are only calculated within the locality of an (intermediate)
solution and are thus a trivial extension of (A9)

∂Lsup,s

∂θ sup =
∂Lsup,s

∂f sup,s
CNN

∂f sup,s
CNN

∂θ sup . (A14)

The training unrollment and its gradient back-propagation for differentiable hybrid as well
as supervised models are visualised in figure 22.

A.2. Implementation
The presented method was implemented using the tensor operation library TensorFlow
(Abadi 2016). This framework supports the GPU-based execution of various linear
algebra operations, however, it does not support sparse matrix data at the time of this
project. Consequently, a series of custom operations surrounding the linear solves for
advection–diffusion and pressure in the PISO scheme were added to facilitate an efficient
GPU-based execution of the solver. The back-propagation gradients of the custom linear
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solves Ax = b were linearised around their respective matrices and thus read as ATb̂ = x̂,
where x̂ and b̂ represent the incoming and outgoing back-propagation gradients of the
linear solve operation. This yields a solver that can flexibly change the number of steps
unrolled during training (only limited by GPU memory and computation time), and
account for any loss functions or network architectures. Access to our code is provided
through the following GitHub page: https://github.com/tum-pbs/differentiable-piso

A.3. Solver verification
Our implementation is verified on two standardised simulations. Firstly, we study the
grid convergence properties on the two-dimensional Taylor–Green vortex decay. This
flow scenario is simulated on a periodic, square domain of size (Lx, Ly) = (2π, 2π) and
initialised with the analytical solution

û(x, y, t) = − cos(x) sin( y) exp
(−2t

Re

)
,

v̂(x, y, t) = sin(x) cos( y) exp
(−2t

Re

)
,

p̂(x, y, t) = −cos(2x)+ cos(2y)
4

exp
(−4t

Re

)
,

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(A15)

where the Reynolds number is set to Re = 10. The grid resolution is varied as Nx = Ny =
[8, 16, 32, 64, 128]. The governing equations (2.1) are integrated until t = 2 is reached,
while a small timestep of 	t = 10−3 is chosen for all resolutions. Figure 23 depicts the
normalised error of the numerical solution u = (u, v)T with respect to the analytical
solution from (A15), computed as L2 = (

∑
i,j (ui,j − ûi,j)

2 + (vi,j − v̂i,j)
2)/NxNy. This

demonstrates second-order convergence of our implementation. Secondly, we verify the
solver on numerical benchmark data for a lid-driven cavity flow. This case consists
of a fluid domain of size (Lx, Ly) = (1, 1) with no-slip wall boundaries enforcing
u( y = 0) = 0, v(x = 0) = 0, v(x = 1) = 0 and u( y = 1) = 1 for the lid. Our simulations
are performed at two different Reynolds numbers. For Re = 100, the steady state is
approximated by running the simulation until t = 10 on a (Nx, Ny) = 128, 128 grid. We
verify our solver by comparing the velocities at the domain-centre cross-sections with
the benchmark solutions reported by Ghia, Ghia & Shin (1982). The results are shown
in figure 24(a). Similarly, the evaluations for simulations at Re = 1000 on 128× 128 and
256× 256 grids are shown in figure 24(b). Both cases show good agreement with the
benchmark data for sufficiently high resolutions.

Appendix B. Convolutional neural network

Our turbulence models are parameterised by a CNN, and thus formed by the kernel
weights in each convolutional layer. Our set-up utilises seven layers with kernel sizes
[7, 5, 5, 3, 3, 1, 1] and leaky ReLU activation functions. The input to the network
consists of the velocity and pressure gradient vector fields, yielding four channels in total.
The layers then operate on [8, 8, 16, 32, 32, 32] channels respectively and output a
forcing vector field with two channels. Consequently, the network consist of ∼82× 103

trainable weights contained in the kernels.
The structure of this network resembles an encoder network, where the larger kernel size

in the first layers increases the receptive field of the convolution. The potential complexity

949 A25-33

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

73
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://github.com/tum-pbs/differentiable-piso
https://doi.org/10.1017/jfm.2022.738


B. List, L.-W. Chen and N. Thuerey

10–2

10–3

10–4

10–1

1st order conv.

2nd order conv.

Diff. PISO L2

�x

L 2
 (
u,

 û
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Figure 23. Grid convergence study, the numerical error on the Taylor–Green vortex with respect to analytical
data converges with second order.
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Figure 24. Lid-driven cavity verification case, figures show the domain-centre velocities for Re = 100 in (a),
and Re = 1000 in (b), in comparison with numerical benchmark data by Ghia et al. (1982).

of the function parameterised by the network is largely dependent on the channel widths
and layer count. We have found the described architecture to work well for turbulence
modelling, without overfitting to training data, as larger models are more likely to do.

949 A25-34

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

73
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.738


Learned turbulence modelling with differentiable solvers

By the nature of the discrete convolution operation, the output size shrinks with each
layer. At periodic boundaries this can be counteracted by padding the input with real data.
At other boundaries, where no periodicity is enforced, no padding procedure is used on
the input to avoid feeding unphysical data. In these cases, the output of the CNN does not
coincide with the grid dimensions and is accordingly padded with zeros. Prior to training,
the weights were initialised using the Glorot Normal initialisation.

Appendix C. Training procedure

Our method trains neural networks to model the effect of turbulent motion. These effects
are implicitly learnt from high-resolution DNS simulations by reproducing their behaviour.
Our training procedure uses the commonly chosen Adam optimiser (Kingma & Ba 2015).
During one optimisation step o, Adam takes the loss gradient as specified in Appendix A.2
and applies a weight update according to

go ← ∂L�
∂θo−1

mo ← β1mo−1 + (1− β1)go
vo ← β2vo−1 + (1− β2)g2

o
m̂o ← mo/(1− βo

1 )

v̂o ← vo/(1− βo
2 )

θo ← θo − α m̂o√
v̂o+ε

,

where mo and vo are exponential moving averages approximating the mean and variance
of the gradient. To account for the initialisation error in these approximates, the corrected
variables m̂o and v̂o are introduced; see the original publication for further details. We
set the bias corrections to the standard values β1 = 0.9, β2 = 0.999. The networks were
trained with a learning rate of 1× 10−5 and a learning-rate decay factor of 0.4. We found
that the training procedure was stable for learning rates in the neighbourhood of that value,
however, no extensive hyper-parameter tuning was performed. On the contrary, we found
the unrollment number s (see (2.4)) to have great effect on the training procedure. Newly
initialised models can cause the accumulation of erroneous structures and subsequently
solver divergence in long unroll times. To mitigate this effect, the models trained on
more than 10 steps were initialised with a pre-trained network from a 10-step model. The
parameter optimisations were run until no further significant decrease in loss values is
observed.

Appendix D. Large eddy simulation with the Smagorinsky model

A series of tests were conducted to select an appropriate value for the Smagorinsky
coefficient used in the IDT simulation in § 3. We ran simulations with our usual
downscaling of 8× in space and time and coefficients from Cs = [0.17, 0.08, 0.02, 0.008,

0.002]. The velocity MSEs of these simulations with respect to the DNS test data after
100	t were evaluated to [12.21, 6.824, 4.320, 4.256, 4.364]× 10−3. Based on that
analysis, Cs = 0.008 was chosen for further consideration. This value is relatively low
in comparison with other common choices, such as the default coefficient of Cs = 0.17 for
three-dimensional turbulence (Pope 2000). Since two-dimensional isotropic turbulence is
largely dependent on the backscatter effect that transfers energy from small to large scales,
lower Cs are applicable (Smith et al. 1996). With the strictly dissipative behaviour of the
Smagorinsky model, larger Cs leads to an overly powerful dampening of fine-scale motions
that quickly decreases the turbulence kinetic energy. While backscatter is important to
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Figure 25. Comparison of DNS, no-model and learned model simulations trained with the adjoint-based
method and with a supervised method on IDT; evaluation with respect to vorticity (a) and resolved turbulence
kinetic energy spectra (b).

many flow scenarios (Biferale, Musacchio & Toschi 2012), especially three-dimensional
turbulence scenarios may rather have significant forward diffusion, which would be more
favourable towards dissipative models like the Smagorinsky model (Kraichnan 1967).
Nevertheless, this showcases an inherent benefit of learned turbulence models, where no
scenario-dependent modelling assumptions are necessary.

Appendix E. Supervised models

A core point of the experiments in the main section is the temporal unrollment during
training, and substantial accuracy improvement of the differentiable models is achieved
by this procedure. As illustrated in Appendix A.1, the temporal unrollment has less severe
effects on the optimisation equations of supervised models. Despite this, considerable
accuracy improvements are achieved by exposing the supervised training to multiple steps.
Nevertheless, models trained with a differentiable approach outperform these improved
supervised models, when all other parameters are kept constant, as revealed by our
experiments on supervised models. For this, we trained 10-step supervised models for the
IDT and temporal mixing layer cases. Figures 25 and 26 depict evaluations on the spectral
energy for isotropic turbulence, Reynolds stresses and turbulence kinetic energy for the
temporal mixing layer, as well as vorticity visualisations for both. For the isotropic case,
the supervised model comes remarkably close to the differentiable counterpart, and only
shows slight over-estimation of fine-scale energies. For more complex flow like TMLs, it
is clearer that differentiable models outperform supervised ones.

Appendix F. Loss ablation

To test the effects of the loss terms introduced in § 2, we perform an ablation study on the
loss term. A series of 10-step models are trained with identical initialisation, data shuffling
and learning rate, but variations in loss composure. These tests are conducted on all three
flow scenarios. The loss factors λ are identical to the ones used in the main sections, where
the values are set to yield similar loss contributions for each loss term. An exception is
λ2, which was chosen to give a 10× larger contribution in order to steer an initialised
network into reproducing DNS structures. We then perform evaluations based on our
out-of-sample test datasets. The results are summarised in table 9. Our evaluations include
three metrics. The first is an instantaneous MSE on the velocity field. Secondly, we assess
the performance with respect to the turbulence kinetic energy by using an instantaneous
MSE for isotropic turbulence, an MSE on spatially averaged energy for the TML and the
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Figure 26. Comparison of DNS, no-model and learned model simulations trained with the adjoint-based
method and with a supervised method on TMLs; evaluation with respect to vorticity (a), resolved Reynolds
stresses (b) and resolved turbulence kinetic energy (c).

MSE on temporally averaged data for the SML. Lastly, we assess the energy distribution
over spectral wavelengths, which is based on a two-dimensional evaluation for isotropic
turbulence, a cross-section analysis for the TML and a centreline analysis for the SML.
Additionally, two temporal snapshots were considered, a short 64	t distance and a longer
one, which was set to 1000	t for all set-ups except for the SML, where stability concerns
limited the horizon to 500	t.

The results indicate that the baseline L2 loss only performs well on short temporal
horizons, while its performance deteriorates over longer evaluations. The tests on decaying
turbulence and TMLs generally show best results with a combination of L2, LE and LS
over longer temporal horizons. The only exception is the spectral energy analysis in the
TML, where an addition of LMS outperforms this combination by a small margin. Due
to the fact that this margin is minor compared with the improvements of the L2,LE,LS
combination on the long horizons, we conclude that including the temporal averaging
loss is not beneficial in the flow scenarios that are not statistically steady. In contrast, the
evaluations of the SML reveals that incremental additions of the turbulence loss terms LE,
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LS and LMS yield better performance for each addition. Thus, we conclude that using all
loss terms is beneficial in this case.
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