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Abstract. We study the Friedrichs extensions of unbounded cyclic subnormals.
The main result of the present paper is the identification of the Friedrichs extensions of
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the main result obtained in [5]. Such characterizations lead to abstract Galerkin
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1. Preliminaries. The present paper is a sequel to [2], [5], and continues the study
of unbounded cyclic subnormals in the same spirit. The main result of the paper is
the identification of the Friedrichs extensions of certain cyclic subnormals with their
closures. As a corollary, we obtain a generalization of the main result of [5]. All the
results in this paper rely heavily on the ideas developed in [5] and [2]. Also, in the
present investigations, the notion of the minimal normal extension of spectral type
([9]) turns out to be an essential ingredient.

The paper is organized as follows. In Section 2, we give a sufficient condition for
unbounded subnormals to admit Friedrichs extensions, and characterize the Friedrichs
extensions of certain cyclic subnormals. In Section 3, we discuss several applications
of Theorem 2.3. These are the Galerkin approximation in the functional model space,
existence and uniqueness of the Hilbert space valued solutions of a generalized wave
equation, and an H∞-functional calculus for certain cyclic subnormals. In the last
section, we obtain generalizations of some results obtained in [5]. In the present section,
we fix the notation, and record a few requisites pertaining to unbounded subnormals
and sectorial forms.

1.1. Unbounded subnormals. For a subset A of the complex plane C, let A∗,
int(A), A and Ac respectively denote the conjugate, the interior, the closure and the
complement of A in C. We use R to denote the real line, and Rez and Imz respectively
denote the real and imaginary parts of a complex number z. Let H be a complex
infinite-dimensional separable Hilbert space with the inner product 〈·, ·〉H and the
corresponding norm ‖·‖H. If S is a densely defined linear operator in H with domain
D(S), then we use σ (S), σp(S), σap(S) to respectively denote the spectrum, the point
spectrum and the approximate point spectrum of S. It may be recalled that σp(S) is
the set of eigenvalues of S, that σap(S) is the set of those λ in C for which S − λ is not
bounded below, and that σ (S) is the complement of the set of those λ in C for which
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(T − λ)−1 exists as a bounded linear operator on H. For a normal operator N in H,
σ (N) = σap(N). For a non-negative measure µ on the complex plane C, we will use
supp(µ) to denote the support of µ.

A densely defined linear operator S in H with domain D(S) is said to be cyclic if
there is a vector f0 ∈ D∞(S) ≡ ∩∞

n=0D(Sn) (referred to as a cyclic vector of S) such that
D(S) is the linear span lin{Snf0 : n ≥ 0} of the set {Snf0 : n ≥ 0}.

If S is a densely defined linear operator in H with domain D(S), then S is said to be
subnormal if there exist a Hilbert space K containing H and a densely defined normal
operator N in K with domain D(N) such that D(S) ⊂ D(N) and Sf = Nf, f ∈ D(S).

If a linear operator S in H is subnormal then its normal extension N in K is
said to be minimal of spectral type if the only closed subspace of K reducing N and
containing H is K itself. Given a normal extension N of S, one can always guarantee
a minimal normal extension of spectral type (refer to Section 2 of [9]). Let S in H be
subnormal with a normal extension N inK. LetHs[N] ≡ the closure of lin {E(σ )f : f ∈
H, σ is a Borel subset of C}, where E(·) denotes the spectral measure of N. Since
Hs[N] reduces N, one can define a linear operator Ns in Hs[N] by Nsf ≡ Nf for
every f ∈ D(Ns) ≡ D(N) ∩ Hs[N]. It then follows from [9, Proposition 1] that Ns is a
minimal normal extension of S of spectral type. We will refer to Ns as the minimal
normal extension of S of spectral type associated with the normal extension N.

Suppose S is a cyclic operator in H with f0 being a cyclic vector of S. As established
in [8, Proposition 3], S is subnormal if and only if there exists a non-negative measure
µ on the complex plane C (referred to as the representing measure of S) such that

〈Smf0, Snf0〉H = ∫
C zmzndµ(z) for all m, n ≥ 0. (0)

If S is a cyclic subnormal operator in H so that (0) is satisfied, then S is unitarily
equivalent to Mz,µ in Hµ, where Hµ is the L2(µ)-closure of the vector space C[z] of
complex polynomials in z and where Mz,µ is the operator of multiplication by z with
domain C[z] (refer to [9, Theorem 5]); the triple (Mz,µ, C[z],Hµ) will be referred to as a
functional model of the cyclic subnormal operator S. If S is a cyclic subnormal with the
cyclic vector f0 and with a minimal normal extension N of spectral type then it follows
from [9, Theorem 5] that the triple (Mz,µN , C[z]|σ (N),HµN ) is a functional model of S,

where the positive Borel measure µN(·) supported on σ (N) is given by 〈E(·)f0, f0〉 for
the spectral measure E(·) of N.

If S is a densely defined closable operator in H, then we use S to denote the closure
of S in H. It is known that every subnormal operator is closable (refer to [8]). Let S be
a densely defined cyclic subnormal operator in H with the cyclic vector f0. It follows
from [9, Proposition 6] that, for any point λ ∈ σp(S∗)∗, there exists a unique vector
hλ in H such that p(λ) = 〈p(S)f0, hλ〉H for every complex polynomial p. One can then
define a function kS on C by setting kS(λ) equal to ‖hλ‖2 if λ ∈ σp(S∗)∗, and equal to
∞ otherwise. If int(σp(S∗)) is non-empty and if one defines

γ (S) = {λ ∈ C : kS is finite and continuous in a neighbourhood of λ}, (1)

then it follows from [9, Theorem 7] that γ (S) is an open subset of int(σp(S∗)∗) and
that int(σp(S∗)∗) \ γ (S) is a nowhere dense subset of C; further, as pointed out in Foot-
note 9 following [9, Theorem 9], σ (S) \ σap(S) ⊂ γ (S).

Given a Hilbert space H and a cyclic operator S in H with a cyclic vector f0

of S, one can come up with a sequence r = {rn}n≥0 of complex polynomials such
that e = {en}n≥0 with en = rn(S)f0 is an orthonormal basis for H and such that
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lin{en : n ≥ 0} = lin{Snf0 : n ≥ 0} (refer to [9]). As observed in the proof of [9,
Proposition 6], the polynomials rn so obtained form a Hamel basis for C[z], the vector
space of complex polynomials in z. If ωr is the set {z ∈ C :

∑∞
n=0 |rn(z)|2 < ∞}, then

we define Kr(·, ·) on ωr × ωr by Kr(z, w) = ∑∞
n=0 rn(z)rn(w) (z, w ∈ ωr). Since Kr is a

positive definite kernel on ωr, we can associate with Kr a reproducing kernel Hilbert
space Hr as described in [1]. The following theorem is [9, Theorem 6].

THEOREM 1.1. Suppose H, S, r, e, ωr and Hr are as described in the preceding
paragraph. If the point spectrum σp(S∗) of S∗ is non-empty, then the following statements
are true:

(a) Pr, the set of restrictions of members of C[z] to ωr, is dense in Hr,
(b) the operator Mz of multiplication by z defined on Pr is cyclic with the cyclic vector

the constant polynomial 1,
(c) there is a unique partial isometry W : H → Hr with its initial space being the

closure of lin{∑∞
n=0 rn(λ)en : λ ∈ σp(S∗)∗} and its final space being Hr and such

that WS = MzW, and
(d) ωr = σp(S∗)∗ = σp(M∗

z )∗.

Suppose that, for a cyclic operator S inH having non-empty point spectrum σp(S∗),
W in (c) of Theorem 1.1 turns out to be a unitary of H onto Hr; in this case the triple
(Mz,Pr,Hr) will be referred to as an analytic model of the cyclic operator S. Define
Mmax

z in Hr by (Mmax
z f )(z) = z f (z) (z ∈ ωr) where f ∈ D(Mmax

z ) = {f ∈ Hr : z f ∈ Hr}.
Using the reproducing property of Hr, it can be easily seen that Mmax

z is a closed linear
operator in Hr.

1.2. Sectorial forms. Let H be a complex infinite-dimensional separable Hilbert
space with the inner product 〈·, ·〉H and the corresponding norm ‖·‖H. Let � be a dense
subspace of H such that � itself is a Hilbert space with the inner product 〈·, ·〉� and
the corresponding norm ‖·‖�. Let there exist a positive number M1 satisfying

‖x‖H ≤ M1‖x‖� for all x ∈ �. (2)

Let also F : � × � → C be a sesquilinear form and assume that there exist positive
numbers M2, M3 and a real number a such that

|F(x, y)| ≤ M2‖x‖�‖y‖� for all x, y ∈ �, (3)

Re F(x, x) ≥ M3‖x‖2
� + a‖x‖2

H for all x ∈ �. (4)

Such F are referred to as sectorial sesquilinear forms. Corresponding to any such
F we can define a linear operator A in H as follows: x ∈ D(A) if and only if x ∈ � and
there exists z in H such that F(x, y) = 〈z, y〉H for all y in �; we set Ax = z. The linear
operator A so defined is referred to as the operator associated with F and it clearly
satisfies F(x, y) = 〈Ax, y〉H for all x ∈ D(A) and for all y in �. For the basic properties
of the operator A associated with a sectorial sesquilinear form F , the reader is referred
to [7, Chapter 2]. In particular, it follows from [7, Theorem 2.8.2] that A is a closed
densely defined operator in H and that σ (A) is contained in the “truncated cone”

� = {
ζ ∈ C : Re ζ ≥ a + M3/M2

1 and |Im ζ | ≤ M2(Re ζ − a)/M3
}
. (5)

The following result is Theorem 2.12.1 of [7].
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THEOREM 1.2. Suppose S is a densely defined linear operator in a complex Hilbert
space H such that, for some r ∈ R and M ∈ (0,∞),

|Im〈Sx, x〉H| ≤ M Re〈Sx − rx, x〉H for all x ∈ D(S). (6)

Then there exist a subspace � of H, an inner product 〈·, ·〉� on � with the
corresponding norm ‖ · ‖�, and a sectorial sesquilinear formF on � such that the following
assertions hold:

(a) D(S) is a dense subspace of � (in the ‖ · ‖� norm).
(b) 〈x, y〉� = (1/2)(〈Sx, y〉H + 〈x, Sy〉H) + (1 − r)〈x, y〉H for all x, y ∈ D(S).
(c) F(x, y) = 〈Sx, y〉H for all x, y ∈ D(S).

The linear operator A associated with the sectorial sesquilinear formF of Theorem
1.2 is clearly an extension of the operator S and is called the Friedrichs extension of S.
Referring to the proof of [7, Theorem 2.12.1] one finds that the constants M1, M2, M3

and a corresponding to F as in (2), (3), (4) are given by M1 = 1, M2 = M + 1 +
|r − 1|, M3 = 1 and a = r − 1; in particular (refer to (5)),

σ (A) ⊂ {ζ ∈ C : Re ζ ≥ r and |Im ζ | ≤ (M + 1 + |r − 1|)(Re ζ − r + 1)}. (7)

REMARK 1.3. Let S be as in the statement of Theorem 1.2. Suppose there exist
a densely defined linear operator T in H′ and a unitary U from H onto H′ such
that US = TU. Let y be in D(T). Since U is onto, y = Ux for some x ∈ H. Hence
〈Ty, y〉H′ = 〈TUx, Ux〉H′ = 〈USx, Ux〉H′ = 〈Sx, x〉H. Since S satisfies (6), so does T.

Thus the Friedrichs extension of T is guaranteed. Moreover, the Friedrichs extension
of T satisfies (7).

2. The Friedrichs extensions of cyclic subnormals. In this section, we identify the
Friedrichs extensions of certain cyclic subnormals with their closures (Theorem 2.3).
We begin with the following proposition, which guarantees the Friedrichs extensions
of subnormal operators with normal spectra contained in certain cones.

PROPOSITION 2.1. Let S in H be subnormal with a normal extension N. If
σ (N) is contained in the cone �r,M = {z ∈ C : |Imz| ≤ M(Rez − r)} where r ∈ R and
M ∈ (0,∞), then there exist a subspace � of H, an inner product 〈·, ·〉� on � with the
corresponding norm ‖ · ‖�, and a sectorial sesquilinear form F on �, so that assertions
(a), (b), (c) of Theorem 1.2 hold true. If in addition S admits a functional model
(Mz,µ, C[z],Hµ) then (a), (b), and (c) can be made explicit in the following way:

(a) D(Mz,µ) is a dense subspace of � (in the ‖ · ‖� norm).
(b) 〈f, g〉� = ∫

(Rez − r + 1)f (z)g(z)dµ(z) for all f, g ∈ D(Mz,µ).
(c) F(f, g) = ∫

zf (z)g(z)dµ(z) for all f, g ∈ D(Mz,µ).

Proof. The condition (6) in the statement of Theorem 1.2 can be checked using the
Spectral Theorem for unbounded normal operators. To check that let E(·) denote the
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spectral measure of N. Since σ (N) is contained in the cone

�r,M = {z ∈ C : |Imz| ≤ M(Rez − r)},

one has

|Im〈Sx, x〉H| = |Im〈Nx, x〉K|

=
∣∣∣∣Im

∫
σ (N)

zd〈E(z)x, x〉K
∣∣∣∣

≤
∫

σ (N)
|Imz|d〈E(z)x, x〉K

≤
∫

σ (N)
M(Rez − r)d〈E(z)x, x〉K

= M Re〈Nx − rx, x〉K.

Thus |Im〈Sx, x〉H| ≤ M Re〈Sx − rx, x〉H for all x ∈ D(S). Now one may appeal
to Theorem 1.2 to derive the first part. The remaining part can be easily deduced
using (0). �

Let S and F be as in the preceding proposition. The linear operator A associated
with the sectorial sesquilinear form F is the Friedrichs extension of S.

LEMMA 2.2. Let S in H be cyclic with the cyclic vector f0, and subnormal with
a normal extension N. Let Ns be the minimal normal extension of S of spectral type
associated with N. Let Hr denote the half-plane {µ ∈ C : Reµ < r} for some real r, and
let ω be the unbounded connected component of σ (N)c in C that contains Hr. Suppose
that S admits an analytic model and that σ (N) ⊂ Hc

r . If {∑k
n=0

(−m)nSnf0

n! }k≥0 converges in
H for every integer m ≥ 1 then the following statements are true.

(1) σ (S) is contained in ωc.

(2) If in addition σ (N)c is connected, then σ (S) = σ (Ns).

Proof. Assume the hypotheses. Assume also that {∑k
n=0

(−m)nSnf0

n! }k≥0 converges
in H for every integer m ≥ 1. The proof here is an adaption of the argument of [5,
Lemma 1]. Suppose σ (S) is not contained in ωc, where ω is the unbounded connected
component of σ (N)c that contains Hr. From the proof of [9, Theorem 2] (refer to [5,
Remark 1]) one has either ω ∩ σ (S) = ∅ or ω ⊂ σ (S). Since σ (S) is not contained in
ωc, one has ω ⊂ σ (S).

With γ (S) as defined in (1), σ (S) \ σap(S) ⊂ γ (S) as recorded in our comments
following (1). Since N extends S, we have σap(S) ⊂ σap(N) = σ (N) and thus σ (S) \
σ (N) ⊂ γ (S). Since ω ⊂ σ (S) and ω ∩ σ (N) = ∅, we have ω ⊂ γ (S). From the
observations following (1) in Section 1, we have γ (S) ⊂ int(σp(S∗)∗). By hypothesis,
Hr ⊂ ω, so that Hr ⊂ σp(S∗)∗.

Let h ∈ Hr. Choose ε > 0 such that h − ε ∈ Hr. Consider the sequence {gk ≡∑k
n=0 exp{n(h − ε)}En(S, f0)}k≥0 in H, where En(S, f0) is the limit of the sequence

{∑k
m=0

(−n)mSmf0

m! }k≥0 in H. We claim that {gk}k≥0 is convergent in H. Let Ns be the
minimal normal extension of S of spectral type associated with N. Then S admits
the functional model (Mz,µNs

, �[z]|σ (Ns),HµNs
) (refer to the discussion following (0)).

We check that
∥∥f − ∑m

k=0 exp{(−z + h − ε)k}∥∥L converges to 0 as m tends to ∞
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for some f in L = L2(σ (Ns), µNs ). Since Ns is a minimal normal extension of spectral
type of S, by [9, Theorem 5], one has supp(µNs ) = σ (Ns). Also, since D(Ns) ⊂ D(N)
and since Nx = Nsx (x ∈ D(Ns)), it follows that σ (Ns) = σap(Ns) ⊂ σap(N) = σ (N).
Hence supp(µNs ) ⊂ σ (N). Note that for any integer m ≥ 0 and for any z ∈ σ (N) ⊂ Hc

r ,
one has

∣∣∣∣∣∣
∑

k≥m+1

exp{(−z + h − ε)k}
∣∣∣∣∣∣ ≤

∑
k≥m+1

| exp{(−z + h − ε)k}|

=
∑

k≥m+1

exp{(−Rez + Reh − ε)k}

≤
∑

k≥m+1

exp(−εk),

and the last expression tends to 0 as m tends to ∞. In view of supp(µNs ) ⊂ σ (N), one
has

∥∥∥∥∥∥
∑

k≥m+1

exp{(−z + h − ε)k}
∥∥∥∥∥∥

2

L

=
∫ ∣∣∣∣∣∣

∑
k≥m+1

exp{(−z + h − ε)k}
∣∣∣∣∣∣
2

dµNs (z)

=
∫

σ (N)

∣∣∣∣∣∣
∑

k≥m+1

exp{(−z + h − ε)k}
∣∣∣∣∣∣
2

dµNs (z)

≤
⎛
⎝ ∑

k≥m+1

exp(−εk)

⎞
⎠

2

µNs (σ (N)).

The preceding arguments show that f ≡ ∑∞
k=0 exp{(−z + h − ε)k} ∈ L and that

‖f − ∑m
k=0 exp{(−z + h − ε)k}‖L converges to 0 as m tends to ∞. Since gk =∑k

n=0 exp{(h − ε)n}En(S, f0) ∈ H (k ≥ 1), it follows that for every integer k ≥ 1,∑k
n=0 exp{(−z + h − ε)n} ∈ HµNs

. It is now clear that f ∈ HµNs
. Since µNs is a

representing measure of S, there exists a unique unitary V : HµNs
→ H such that

Vp = p(S)f0 for every complex polynomial p in HµNs
. Thus g ≡ Vf is such that

‖g − ∑m
k=0 exp{(h − ε)k}Ek(S, f0)‖H converges to 0 as m tends to ∞. Thus the claim

stands verified.
Since Hr ⊂ σp(S∗)∗ and since h − ε ∈ Hr, one has h − ε ∈ σp(S∗)∗. By [9, Lemma 2],

there exists a constant ch > 0 such that

|p(h − ε)| ≤ ch‖p(S)f0‖H for every polynomial p. (8)

By hypothesis, S admits the analytic model (Mz,Pr,Hr). Since En(S, f0) belongs to H,

exp{(−z + h − ε)n} ∈ Hr. Hence by part (a) of Theorem 1.1, there exists a sequence of
complex polynomials {pn,k} such that ‖pn,k − exp{(−z + h − ε)k}‖Hr → 0 as n tends to
∞ for every integer k ≥ 1. Since h − ε ∈ σp(S∗)∗ and since Hr is a reproducing kernel
Hilbert space, it follows that |pn,k(h − ε) − 1| converges to 0 as n tends to ∞. Hence
| ∑m

k=0 pn,k(h − ε) − (m + 1)| converges to zero for all integers m ≥ 1. Now if we let
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p ≡ ∑m
n=0 pn,k in (8), we get

∣∣∣∣∣
m∑

k=0

pn,k(h − ε)

∣∣∣∣∣ ≤ ch

∥∥∥∥∥
m∑

k=0

pn,k(S)f0

∥∥∥∥∥
H

= ch

∥∥∥∥∥
m∑

k=0

pn,k

∥∥∥∥∥
Hr

.

The passage n tends to ∞ in the preceding inequality yields

m + 1 ≤
∥∥∥∥∥

m∑
k=0

exp{(−z + h − ε)k}
∥∥∥∥∥
Hr

=
∥∥∥∥∥

m∑
k=0

exp{(h − ε)k}Ek(S, f0)

∥∥∥∥∥
H

.

This contradicts the fact that
∥∥∑m

k=0 exp{(h − ε)k}Ek(S, f0)
∥∥
H converges to ‖g‖H as m

tends to ∞. Thus we must have σ (S) ⊂ ωc.
Now assume in addition that σ (N)c is connected so that ωc = σ (N). From what

we saw above, for any normal extension N of S, one has σ (S) ⊂ σ (N). In particular,
one has σ (S) ⊂ σ (Ns), where Ns is the minimal normal extension of S of spectral
type associated with N. Since Ns is a normal extension of spectral type of S, by the
Spectral Inclusion Theorem ([9, Theorem 1]) σ (Ns) ⊂ σ (S). Hence σ (S) = σ (Ns) as
desired. �

THEOREM 2.3. Let S in H be cyclic with the cyclic vector f0, and subnormal with a
normal extension N. Let �r,M denote the cone {z ∈ C : |Imz| ≤ M(Rez − r)} for r ∈ R
and M ∈ (0,∞). Suppose that S admits an analytic model and that σ (N) ⊂ �r,M . If
{∑k

n=0
(−m)nSnf0

n! }k≥0 converges in H for every integer m ≥ 1 then the Friedrichs extension
of S is equal to S.

Proof. Let S, N be as in the statement of the theorem and let A denote the Friedrichs
extension of S as guaranteed by Proposition 2.1. By Lemma 2.2, we have σ (S) ⊂ ωc,
where ω is the unbounded connected component of σ (N)c in C that contains Hr. Since
A is the Friedrichs extension of S, one has σ (A) ⊂ � as noted earlier (refer to (7)). Since
A is closed, A extends S; further, σ (S) ⊂ ωc and σ (A) ⊂ � imply that σ (S)

c ∩ σ (A)c is
non-empty. It then follows from [7, Lemma 1.6.14] that A = S. �

REMARK. Assume the hypotheses of Lemma 2.2, and for a positive real t let
exp(−tS)f0 ≡ limk→∞

∑k
n=0

(−t)nSnf0

n! . An examination of the proof of Theorem 2.3
reveals that S − r is an m-accretive operator. Hence by a result due to R. S. Phillips ([7,
Corollary 4.3.11]), S − r is the generator of a contraction semigroup. It now follows
from [7, Theorem 4.3.1] that exp(−mS)f0 ∈ H for every positive integer m if and only
if {exp(−tS)}t≥0 is a strongly continuous semigroup of bounded linear operators on H
(refer to [7]).

LEMMA 2.4. Let S be as in the statement of Theorem 2.3. Suppose there exist a
densely defined linear operator T in H′ and a unitary U from H onto H′ such that
US = TU. Then the Friedrichs extension of T is equal to T (refer to Remark 1.3 of
Section 1).
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Proof. By Remark 1.3, the Friedrichs extension, say, B of T is guaranteed. Since S
is closable, so is T. Moreover, US = TU. By Theorem 2.3, the Friedrichs extension A
of S is S. Thus UA = TU ; in particular σ (A) = σ (T). Thus σ (T)

c ∩ σ (B)c �= ∅ in view
of (7) and Remark 1.3. Since T ⊂ B, one may appeal to [7, Lemma 1.6.14] to conclude
that B = T . �

COROLLARY 2.5. Let (Mz,Pr,Hr) be an analytic model of a cyclic subnormal S with
a normal extension N. Let �r,M denote the cone {z ∈ C : |Imz| ≤ M(Rez − r)} for r ∈ R
and M ∈ (0,∞). Suppose that σ (N) ⊂ �r,M and that {∑k

n=0
(−m)nzn

n! }k≥0 converges in Hr

for every integer m ≥ 1. If int(σp(M∗
z )) is non-empty then the Friedrichs extension of Mz

is equal to Mmax
z .

Proof. Since S admits the analytic model (Mz,Pr,Hr), W : H → Hr is unitary
and WS = MzW. By Remark 1.3, the Friedrichs extension, say, B of Mz is
guaranteed. By the preceding lemma, B = Mz. Since int(σp(M∗

z )) �= ∅, it follows from
[9, Proposition 11] that Mz = Mmax

z . Hence the Friedrichs extension of Mz is equal to
Mmax

z . �

3. Applications: Galerkin approximations, generalized wave equations, and H∞-
functional calculi. We discuss here several applications of Theorem 2.3. These are
Proposition 3.1, Proposition 3.3, Proposition 3.4, and Corollary 3.5. We mention that
Proposition 3.1 and Proposition 3.3 below generalize Proposition 3 and Proposition 4
of [5] respectively. Our first application of Theorem 2.3 is a Galerkin approximation
result in the functional model space Hµ (refer to [7, sections 2.8 and 2.12]).

PROPOSITION 3.1. Let (Mz,µ, �[z],Hµ) denote a functional model of cyclic subnormal
S. Let N be a normal extension of S and let �r,M denote the cone {z ∈ C :
|Imz| ≤ M(Rez − r)} for r ∈ R and M ∈ (0,∞). Suppose that σ (N) ⊂ �r,M and that
{∑k

n=0
(−m)nzn

n! }k≥0 converges in Hµ for every integer m ≥ 1. Suppose also that S admits
an analytic model. For n ≥ 1, let νn = lin{z1, . . . , zn} where z1 is equal to the constant
function 1 in Hµ and zk = Mk−1

z,µ 1 (k ≥ 2). Let λ ∈ C be such that Reλ < r. If f ∈ Hµ

then, for each n ≥ 1, there exists a unique fn in νn such that

∫
(Mz,µ − λ)fn(z)zk−1(z)dµ =

∫
f (z)zk−1(z)dµ, 1 ≤ k ≤ n.

Moreover,

lim
n→∞

∫ ∣∣∣∣fn(z) − f (z)
z − λ

∣∣∣∣
2

dµ ≤ lim
n→∞

∫
(Rez − r + 1)

∣∣∣∣fn(z) − f (z)
z − λ

∣∣∣∣
2

dµ = 0.

Proof. Let H′ = Hµ and let T = Mz,µ in H′ with D(T) = ∪n≥1νn = C[z]. Since
(Mz,µ, �[z],Hµ) is a functional model for S there exists a unitary U from H onto
H′ such that US = TU. The relation US = TU, guarantees, as in Remark 1.3, that
|Im〈Tf, f 〉H′ | ≤ MRe〈Tf − rf, f 〉H′ for all f in D(T). An appeal to [7, Theorem 2.12.6]
now yields the first part. Since the Friedrichs extension of T is Mz,µ (Lemma 2.4), one
more appeal to [7, Theorem 2.12.6] yields the remaining part in view of part (b) of
Proposition 2.1. �
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Our second application of Theorem 2.3 is obtaining a ‘smooth’Hµ-valued solution
of a generalized wave equation (refer to Section 4.4 of [7]). For that purpose we establish
a lemma (cf. [5]).

LEMMA 3.2. Let (Mz,µ, �[z],Hµ) denote a functional model of cyclic subnormal S
and let N be a normal extension of S. Suppose that σ (N) is contained in �r,M ∩ P where
�r,M = {z ∈ C : |Imz| ≤ M(Rez − r)} and P = {z ∈ C : (Imz)2 ≤ M(Rez − r + 1)} with
r ∈ R and M ∈ (0,∞). Let F be the sesquilinear sectorial form defined on � and let A be
the associated operator (that is, the Friedrichs extension of Mz,µ in Hµ) as guaranteed
by Remark 1.3 of Section 1. Then the following statements are true:

(i) |F(f, g) − F(g, f )| ≤ 2M||f ||�||g||Hr for all f, g ∈ �.
(ii) � = D((A − a)1/2), where a = r − 1.

Proof. (i) Since supp(µ) ⊂ σ (N) (the proof of Lemma 2.2), and σ (N) ⊂ �r,M ∩ P
(hypothesis), one has supp(µ) ⊂ �r,M ∩ P. In view of this, one has, for any f, g ∈ �,

∣∣∣F(f, g) − F(g, f )
∣∣∣ =

∣∣∣∣∣
∫

zf (z)g(z)dµ −
∫

zg(z)f (z)dµ

∣∣∣∣∣
=

∣∣∣∣
∫

(z − z)f (z)g(z)dµ

∣∣∣∣
≤ 2

∫
|Imz||f (z)||g(z)|dµ

≤ 2
(∫

|Imz|2|f (z)|2dµ(z)
)1/2 (∫

|g(z)|2dµ(z)
)1/2

≤ 2M1/2||f ||�||g||Hµ
.

(ii) The desired result follows from part (i) above, [7, Theorem 2.8.12 and
Corollary 6.1.14], and the choice a = r − 1 as recorded at the end of Section 1. �

For a Hilbert space H and for a positive integer k, let Ck([0,∞),H) denote the
vector space of H-valued k times continuously differentiable functions on [0,∞). For
u ∈ Ck([0,∞),H) and for a positive integer m ≤ k, let u(m)(t) denote the mth derivative
of u at t.

PROPOSITION 3.3. Let (Mz,µ, �[z],Hµ) denote a functional model of cyclic subnormal
S and let N be a normal extension of S. Suppose that σ (N) is contained in �r,M ∩ P
where �r,M = {z ∈ C : |Imz| ≤ M(Rez − r)} and P = {z ∈ C : (Imz)2 ≤ M(Rez − r +
1)} with r ∈ R and M ∈ (0,∞). Suppose that S admits an analytic model and that
{∑k

n=0
(−m)nzn

n! }k≥0 converges in Hµ for every integer m ≥ 1. If � ≡ D((Mz,µ − r +
1)1/2), then for each f ∈ D(Mz,µ), g ∈ � there exists a unique u ∈ C2([0,∞),Hµ) ∩
C1([0,∞), �) such that u(0) = f , u(1)(0) = g, u(t) ∈ D(Mz,µ) for all t ∈ [0,∞), and
u(2)(t) = −zu(t) for all t ∈ [0,∞).

Proof. As shown by Lemma 2.4, the action of the Friedrichs extension A of Mz,µ

is multiplication by z. The desired conclusion now follows from the previous lemma
and [7, Theorem 4.4.2]. �

Set �θ = {z ∈ C : |Imz| ≤ tan θ · Rez} for some θ ∈ (0, π ). Let H∞(�θ ) denote
the Banach algebra of all bounded holomorphic functions on �θ endowed with the
supremum norm ‖ · ‖∞,�θ

.
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Our next application of Theorem 2.3 is a bounded H∞-functional calculus for
certain cyclic subnormals.

PROPOSITION 3.4. Let S denote a cyclic subnormal operator with a normal extension
N. Suppose that σp(S∗)∗ has non-empty interior and that σ (N) is contained in �ω where
�ω = {z ∈ C : |Imz| ≤ tan w · Rez} for some ω ∈ (0, π

2 ). Suppose further that S admits
an analytic model and that {∑k

n=0
(−m)nSnf0

n! }k≥0 converges in H for every integer m ≥ 1.

If θ ∈ (ω, π
2 ) then S admits an H∞(�θ )-functional calculus such that

‖f (S)‖ ≤
(

2 + 2√
3

)
‖f ‖∞,�θ

(f ∈ H∞(�θ )).

Proof. By Theorem 2.3 the Friedrichs extension of S is S. Further, an examination
of the proof of Proposition 2.1 reveals that

{〈Sh, h〉 : h ∈ D(S) and ‖h‖ = 1} ⊂ {z ∈ C : |Imz| ≤ tan ω · Rez}.
A routine limit argument now shows that

{〈Sh, h〉 : h ∈ D(S) and ‖h‖ = 1} ⊂ {z ∈ C : |Imz| ≤ tan ω · Rez}.
Furthermore, in view of

σ (S) ⊂ {ζ ∈ C : Re ζ ≥ 0 and |Im ζ | ≤ (tan ω + 2)(Re ζ + 1)}
(see (7)), S + I is invertible. In view of these observations and [6, Corollary 7.1.17], it
suffices to check that S is injective. Since there exists a unitary W from H onto Hr such
that WS = MzW (see the discussion following Theorem 1.1), it is sufficient to verify
that Mz is injective. To see that suppose Mzf = 0 for some f ∈ D(Mz). Since the action
of Mz is multiplication by z, using the reproducing property of Hr one has zf (z) = 0
for every z ∈ σp(M∗

z )∗. Thus f (z) = 0 for every z ∈ σp(M∗
z )∗ \ {0}. By [9, Theorem 7],

the set γ (Mz) as defined in (1) is the maximal open subset of σp(M∗
z )∗ on which all

functions in Hr are holomorphic. It follows that f is identically zero. �
Proposition 3.4 yields an important polynomial approximation result in the

functional model space.

COROLLARY 3.5. Assume the hypotheses of Proposition 3.4. Let (Mz,µ, �[z],Hµ)
denote a functional model of S. Then H∞(�θ ) is contained in the functional model
space Hµ for every θ ∈ (ω, π

2 ). In particular, for every θ ∈ (ω, π
2 ) and for every bounded

holomorphic f on �θ there exists a sequence {pn}n≥0 of complex polynomials such that∫
�ω

|pn(z) − f (z)|2dµ(z) converges to 0 as n → ∞.

Proof. Since there exists a unitary U from H onto Hµ such that US = TU, we
may assume that S = Mz,µ (refer to Remark 1.3 and Lemma 2.4). In view of the
preceding proposition, it suffices to verify that the action of f (Mz,µ) is multiplication
by f. Since σ (Mz,µ) ⊂ �ω (Lemma 2.2), it follows that the action of (z − µ)−1(Mz,µ) ≡
(Mz,µ − µ)−1 is multiplication by (z − µ)−1 for all µ /∈ �θ. Thus for every rational
function f with poles lying outside �θ the action of f (Mz,µ) is multiplication by f (see
[6, Proposition F.3.]).

Now let f ∈ H∞(�θ ). By [6, Proposition F.4] there exists a sequence of rational
functions with poles lying outside �θ such that ‖rn‖�θ ,∞ ≤ ‖f ‖�θ ,∞ for all n, and rn → f
pointwise on �θ. In particular, supn≥0 ‖rn‖∞,�θ

< ∞. Since S is injective (see the proof
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of Proposition 3.4), so is Mz,µ. Hence by [6, Proposition 2.1.1(h)] the range-space of
Mz,µ is dense in H. Also, by the preceding proposition one has

sup
n≥0

‖rn(Mz,µ)‖Hµ
≤

(
2 + 2√

3

)
sup
n≥0

‖rn‖∞,�θ
< ∞.

Now one may appeal to the Convergence Lemma ([6, Proposition 5.1.4(b)]) to conclude
that ‖rn(Mz,µ)x − f (Mz,µ)x‖Hµ

→ 0 for every x ∈ Hµ. Since the action of each rn(Mz,µ)
is multiplication by z, by the standard measure theory, so is the action of f (Mz,µ). This
completes the proof of the corollary. �

4. Examples: multiplication operators with analytic symbols. In this section, we
present a generalization of the main result of [5]. To see that, we need some technical
jargon. Let G be an open subset of the complex plane C and let w : G → (0,∞) be
a positive continuous function. We use µw to denote the weighted area measure on
G defined by dµw(z) = w(z)dz (z ∈ G). Let L2(G, µw) stand for the Hilbert space of
µw-square integrable Lebesgue measurable functions on G (with two functions being
identified if they are µw-almost everywhere equal to each other). Let

L2
a(G, µw) = {f ∈ L2(G, µw) : f is analytic on G}.

As in the case of the Bergman space of a bounded domain (see [3, Chapter II,
Proposition 8.4 and Theorem 8.5]), it can be verified that L2

a(G, µw) is a Hilbert space,
and the point evaluation is bounded on L2

a(G, µw), so that for any λ ∈ G, there exists
kλ ∈ H = L2

a(G, µw) such that

〈f, kλ〉H = f (λ) for all f in L2
a(G, µw). (9)

DEFINITION 4.1. A triple (G, φ,w) is said to be a weighted analytic domain if G is a
non-empty open subset of the complex plane C, φ : G → C is a non-constant analytic
function, w : G → (0,∞) is a continuous function, and φk ∈ L2(G, µw) for every non-
negative integer k. (We interpret φ0 to be the constant function 1G with 1G(z) = 1 for
all z in G.)

Let (G, φ,w) be a weighted analytic domain with P2
φ(G, µw) being the closure

of lin{φk : k = 0, 1, 2, . . .} in L2(G, µw). Then the operator Mφ of multiplication by
φ in P2

φ(G, µw) with domain D(Mφ) ≡ lin {φk : k = 0, 1, . . .} is subnormal; indeed, a
normal extension of Mφ is Nφ in L2(G, µw) defined by Nφf = φf for f ∈ D(Nφ) ≡
{f ∈ L2(G, µw) : φf ∈ L2(G, µw)}. It can be easily seen that σ (Nφ) = φ(G). We define
Mmax

φ to be the operator of multiplication by φ on D(Mmax
φ ) = {f ∈ P2

φ(G, µw) : φf ∈
P2

φ(G, µw)}. It is easy to check that Mmax
φ is a closed linear operator in P2

φ(G, µw); Mmax
φ

obviously extends Mφ .
The following lemma borrowed from ([4, Lemma 3 of Chapter III]) in particular

resolves Question 1 of [5] in the negative. For the sake of completeness, we are including
the proof of the same.

LEMMA 4.2. Let (G, φ,w) be a weighted analytic domain and let Mφ be as described
in the discussion following Definition 4.1. Then the following are true.

1. Mφ admits an analytic model, and
2. The closure Mφ of Mφ is equal to Mmax

φ .
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Proof. (1) As noted in [5, Proposition 1], φ(G) ⊂ σp(M∗
φ)∗; in particular, σp(M∗

φ) �=
∅. So, by Theorem 1.1, there exists a surjective partial isometry W : P2

φ(G, µw) → Hr,
where Hr is as described in the paragraph preceding Theorem 1.1. It suffices then to
check that the null-space of W is trivial. We adapt the argument of [9, Proposition 9]
to the present situation. Let f ∈ P2

φ(G, µw) be such that Wf = 0. Examining the proof
of [9, Theorem 6], we find that W (p ◦ φ)(λ) = p(λ) for any polynomial p and any λ in
σp(M∗

φ)∗. Since f belongs to H = P2
φ(G, µw), there exists a sequence pn of polynomials

such that ‖pn ◦ φ − f ‖H converges to 0. Then there exists a subsequence {qn} of {pn}
such that, z-a.e. [µw], W (qn ◦ φ)(φ(z)) = qn(φ(z)) = (qn ◦ φ)(z) converges to f (z). Also,
since W is continuous, ‖W (qn ◦ φ) − Wf ‖Hr converges to 0. Since Hr is a reproducing
kernel Hilbert space, it follows that W (qn ◦ φ)(φ(z)) converges to (Wf )(φ(z)); thus, z-
a.e. [µw], (Wf )(φ(z)) = f (z). Hence f vanishes almost everywhere [µw]; but f is analytic
so that f = 0.

(2) The proof of the second part here is an adaptation of the proof of [9,
Proposition 11]. As recorded in Section 1, γ (Mφ) as defined in (1) is an open subset of
int(σp(M∗

φ)∗) and  = int
(
σp(M∗

φ)∗
) \ γ (Mφ) is a nowhere dense subset of C. Further,

[5, Proposition 1] yields that φ(G) ⊂ σp(M∗
φ)∗. Therefore φ(G) ⊂ int(σp(M∗

φ)∗). We
claim that γ (Mφ) ∩ φ(G) �= ∅. Suppose that γ (Mφ) ∩ φ(G) is empty so that φ(G) ⊂
γ (Mφ)c. Hence φ(G) ⊂ int(σp(M∗

φ)∗) ∩ γ (Mφ)c = int(σp(M∗
φ)∗) \ γ (Mφ). Since φ(G) is

a non-empty open subset of C, this contradicts the fact that  = int
(
σp(M∗

φ)∗
) \ γ (Mφ)

is a nowhere dense subset of C. Hence we must have γ (Mφ) ∩ φ(G) �= ∅. Next we
observe that γ (Mφ) ∩ (φ(G) \ σap(Mφ)) is non-empty. By [9, Theorem 9], one has
γ (Mφ) = σ (Mφ) \ σap(Mφ) = σ (Mφ) ∩ σap(Mφ)c. Hence

γ (Mφ) ∩ φ(G) = (σ (Mφ) ∩ σap(Mφ)c) ∩ φ(G)

= (σ (Mφ) ∩ σap(Mφ)c) ∩ (σap(Mφ)c ∩ φ(G))

= (σ (Mφ) \ σap(Mφ)) ∩ (φ(G) \ σap(Mφ))

= γ (Mφ) ∩ (φ(G) \ σap(Mφ)).

Since γ (Mφ) ∩ φ(G) is non-empty, so is γ (Mφ) ∩ (φ(G) \ σap(Mφ)). Thus there exists
some λ0 in γ (Mφ) ∩ (φ(G) \ σap(Mφ)). Let f be in D(Mmax

φ ); then (Mmax
φ − λ0)f ∈ H =

P2
φ(G, µw). Thus there exists a sequence {qn ◦ φ} such that ‖qn ◦ φ − (Mmax

φ − λ0)f ‖H
converges to 0. Let z0 ∈ G be such that φ(z0) = λ0. Since P2

φ(G, µw) ⊂ L2
a(G, µw), by

(9), (qn ◦ φ)(z0) converges to 0; consequently, tn = qn ◦ φ − (qn ◦ φ)(z0) ∈ lin{φk : k =
0, 1, 2, . . .}, tn converges to (Mmax

φ − λ0)f , and tn vanishes at z0 for all n. Let pn ∈ lin{φk :
k = 0, 1, 2, . . .} be such that tn = (φ − φ(z0))pn. Since λ0 is not in σap(Mφ), there exists
a positive number N such that ‖(Mφ − λ0)h‖H ≥ N‖h‖H for every h ∈ D(Mφ). Putting
h = pn one has ‖tn‖H ≥ N‖pn‖H for all n. This shows that the sequence {pn} converges
to some g in H. Since (Mφ − λ0)pn = tn converges to (Mmax

φ − λ0)f, the closedness of
Mφ shows that g ∈ D(Mφ) and (Mmax

φ − λ0)f = (Mφ − λ0)g. This in turn implies that
f = g except possibly at z0; but both f and g are analytic so that f = g. Thus f belongs
to D(Mφ) showing that D(Mmax

φ ) ⊂ D(Mφ). �
EXAMPLE 4.3. Let ω ∈ (0, π

2 ) and let �ω = {z ∈ C : |Imz| ≤ tan ω · Rez}. Let θ ∈
(ω, π

2 ) and let f be a bounded analytic function on �θ. It is easy to see that (G ≡
�ω, φ ≡ z|�ω

,w ≡ exp(−|z|2)|�ω
) is a weighted analytic domain, and that exp(−kφ) ∈

P2
φ(G, µw) for every integer k ≥ 0. Since Mφ is subnormal (see the discussion following
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Definition 4.1) and since Mφ admits an analytic model (Lemma 4.2), by Corollary 3.5
there exists a sequence {pn}n≥1 of complex polynomials such that

lim
n→∞

∫
�ω

|pn(z) − f (z)|2 exp(−|z|2)dz = 0.

The following result generalizes [5, Theorem 3].

THEOREM 4.4. Let (G, φ,w) be a weighted analytic domain. Suppose that φ(G)
is contained in the cone �r,M = {z ∈ C : |Imz| ≤ M(Rez − r)} where r ∈ R and M ∈
(0,∞), and exp(−kφ) ∈ P2

φ(G, µw) for every integer k ≥ 0. Then the Friedrichs extension
of Mφ is Mmax

φ .

Proof. Since φ(G) ⊂ σp(M∗
φ)∗ ([5, Proposition 1]) and since σ (Nφ) = φ(G), one

has φ(G) ⊂ σp(M∗
φ)∗ ∩ σ (Nφ). Now arguing as in the proof of Lemma 2.2, it can

be seen that the first part of Lemma 2.2 still holds true under the assumption that
exp(−kφ) ∈ P2

φ(G, µw) for every integer k ≥ 0. Now one may appeal to Theorem 2.3
with S = Mφ , f0 = 1G, and N = Nφ. Since Mφ admits an analytic model and since
Mφ = Mmax

φ (Lemma 4.2), the desired conclusion follows. �
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