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Cayley Flatness

There are two traditional notions of what a “family of varieties” is: the older
Cayley–Chow variant (3.5) and the currently ubiquitous Hilbert–Grothendieck
variant (3.6), which puts flatness at the center.

For stable varieties, the Hilbert–Grothendieck approach gives the correct
moduli theory. That is, a stable morphism X → S is a flat morphism with
additional properties, as in Section 6.2.

A major problem in the moduli theory of stable pairs is that, while the under-
lying varieties X form flat families, the divisorial parts ∆ do not. Neither of the
two main traditional methods of parametrizing varieties or schemes gives the
right answer for the divisorial part.
• Cayley–Chow theory works only over reduced base schemes.
• Hilbert–Grothendieck theory works only when the coefficients of ∆ satisfy

various restrictions, as in Sections 6.2 and 6.4.
In this chapter we develop a theory – called K-flatness – that interpolates
between these two, managing to keep from both of them the properties that we
need. The objects that we parametrize are divisors – so the strong geometric
flavor of Cayley–Chow theory is preserved – but one can work over Artinian
base schemes. The latter is one of the key advantages of the theory of Hilbert
schemes. Quite unexpectedly, the new theory behaves better than either of the
classical approaches in several aspects; see especially (7.4–7.5).

One might say that the main new result is Definition 7.1; we discuss its
origin and relationship to the classical theory of Chow varieties in (7.2). The
rest of this chapter is then devoted to proving that it has all the hoped-for
properties. (Actually, we end up with several variants, but we conjecture them
to be equivalent; see Section 7.4.)

The definition of K-flatness and its main properties are discussed in
Section 7.1, while Section 7.2 reviews divisor theory over Artinian schemes.
The key notion of divisorial support is introduced and studied in Section 7.3.
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7.1 K-flatness 259

Several versions of K-flatness are investigated in Section 7.4. For our
treatment, technically the most important is C-flatness, which is treated in
detail in Section 7.5. The main results are proved in Section 7.6.

Sections 7.7–7.9 are devoted to examples. First, we show that a K-flat
deformation of a normal variety is flat. Then we describe first order K-flat
deformations of plane curves in Section 7.8 and of seminormal curves in Sec-
tion 7.9. While the computations are somewhat lengthy, the answers are quite
nice.

Assumptions In this Chapter we work over an arbitrary field k.

7.1 K-flatness

We eventually introduce several closely related (possibly equivalent) notions
in (7.37). The most natural one is C-flatness, which is closest to the ideas of
Cayley. Aiming to create a notion that is independent of projective embeddings
led to K-flatness. Conveniently, K is also the first syllable of Cayley.

Definition 7.1 (K-flatness) Let f : X → S be a projective morphism of pure
relative dimension n. A relative Mumford divisor D ⊂ X as in (4.68) is K-flat
over S iff one of the following–increasingly more general–conditions hold.
(7.1.1) (S local with infinite residue field) For every finite morphism π : X →
Pn

S , π∗D ⊂ Pn
S is a relative Cartier divisor.

(7.1.2) (S local) For some (equivalently every) flat, local morphism q : S ′ →
S , where S ′ has infinite residue field, the pull-back q∗D is K-flat over S ′.

(7.1.3) (S arbitrary) D is K-flat over every localization of S .
Let us start with some comments on the definition.
(7.1.4) The definition of π∗D is not always obvious; in essence Section 7.3

is mainly devoted to establishing it. However, π∗D equals the scheme-
theoretic image of D if red D → red(π(D)) is birational and π is étale at
every generic point of the closed fiber Ds (7.28.2). It is sufficient to check
condition (7.1.1) for such morphisms π : X → Pn

S .
(7.1.5) If S is not local, then there may not be any finite morphisms π : X →
Pn

S ; see (7.7.2) for an example. This is one reason for the three-step
definition.

(7.1.6) The residue field extension in (7.1.2) is necessary in some cases; see
for example (7.80.9).

(7.1.7) The definition of K-flatness is global in nature, but we show that it is
in fact local on X (7.52).

(7.1.8) We eventually define K-flatness also for families of coherent sheaves
in (7.37). This turns out to be quite convenient technically. However, while
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260 Cayley Flatness

the images π∗D carry a lot of information about a Mumford divisor D, much
of the sheaf information is lost. Thus it is unlikely that K-flatness can be
useful for studying the moduli of sheaves.

7.2 (Why this definition?) The idea in the papers Cayley (1860, 1862) is to
associate to a subvariety Yn−1 ⊂ PN

k a hypersurface

Ch(Y) := {L ∈ Gr(N−n,PN
k ) : Y ∩ L , ∅} ⊂ Gr(N−n,PN

k ),

we call it the Cayley–Chow hypersurface. In modern terminology, the end
result is that, over weakly normal bases, there is a one-to-one correspondence{

well-defined families
of subvarieties

}
↔

{
flat families of

Cayley–Chow hypersurfaces

}
; (7.2.1)

see Section 4.8 or Kollár (1996, sec.I.3) for details.
The correspondence (7.2.1) works well for geometrically reduced, pure

dimensional subschemes, but for an arbitrary subscheme Z ⊂ PN , its Cayley–
Chow hypersurface Ch(Z) detects only red Z and the multiplicities of Z at
the maximal dimensional generic points. This is where the role of X and the
Mumford condition become crucial: a Mumford divisor D ⊂ X is uniquely
determined by red D and the multiplicities.

We know how to define flatness in general, so we try to make the equiva-
lence into a definition over an arbitrary base scheme. So let f : X → S be a
flat, projective morphism, say with reduced fibers of pure dimension n. Fix an
embedding X ↪→ PN

S and let D ⊂ X be a Mumford divisor. We say that D is
C-flat over S iff Ch(D/S ) is flat over S . (This needs a suitable extension of the
definition of Ch(D/S ) to allow for multiple fibers; see (7.37) for details.)

There are two immediate disadvantages of C-flatness. Cayley–Chow hyper-
surfaces are unwieldy objects and the resulting notion is very much tied to the
choice of an embedding Xn ↪→ PN

k .
One can think of a Cayley–Chow hypersurface Ch(D/S ) as encoding the

images π(D) for all linear projections π : PN
S d P

n
S . (This also goes back to

Cayley; it is worked out in Catanese (1992), Dalbec and Sturmfels (1995), and
Kollár (1999).) One can show that the Cayley–Chow hypersurface Ch(D/S ) is
flat over S iff π(D) ⊂ Pn

S is flat over S , for all linear projections π : PN
S d P

n
S

that are finite on Supp D; see (7.47). (In fact, by (7.47), it is enough to check
this for a dense set of projections. We need S to be local with infinite residue
field to ensure that there are enough projections.)

This suggests three different generalizations of C-flatness. We can work with
• projective morphisms f : X → S and all finite π : X → Pn

S ,
• affine morphisms f : U → S and all finite π : U → An

S , or
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• morphisms of complete, local schemes f : X̂ → Ŝ and all finite π : X̂ → Ân
S .

The affine version has the problem that, even if S is local, there might not be
any finite morphisms π : U → An

S ; see (7.38.4) for more on this. Working with
complete, local schemes would be the best theoretically, but several of the tech-
nical problems remain unresolved. This leaves us with projective morphisms,
which is our definition of K-flatness.

The key technical result (7.40) shows that K-flatness is equivalent to C-
flatness for every Veronese embedding X ↪→ PN

S
vm
↪→ PM

S (where M =
(

N+m
m

)
−1);

we call the resulting notion stable C-flatness.
We conjecture that stable C-flatness, K-flatness, local K-flatness, and formal

K-flatness are equivalent, giving a very robust concept. This would show that
our notion is truly about the singularities in families of divisors. The equiva-
lence of C-flatness and K-flatness would be very helpful computationally, but
does not seem to be theoretically significant.

Good Properties of K-flatness

K-flat families have several good properties. Some of them are needed for the
moduli theory of stable pairs, but others, for example (7.5), come as a bonus.

The functoriality of K-flatness is not obvious. Indeed, let T ⊂ S be a closed
subscheme. Then a finite morphism πT : XT → P

n
T need not extend to a finite

morphism πS : XS → P
n
S . Thus flatness of all πS (XS ) does not directly imply

that πT (XT ) is also flat.
Nonetheless, we prove in (7.40) and (7.50) that being K-flat is preserved by

arbitrary base changes and it descends from faithfully flat base changes. Thus
we get the functor KDiv(X/S) of K-flat, relative Mumford divisors on X/S . If
we have a fixed relatively ample divisor H on X, thenKDivd(X/S) denotes the
functor of K-flat, relative Mumford divisors of degree d.

We have a disjoint union decompositionKDiv(X/S) = ∪dKDivd(X/S). The
main result is the following, to be proved in (7.66).

Theorem 7.3 Let f : X → S be a projective morphism of pure relative dimen-
sion n. Then the functor KDivd(X/S) of K-flat, relative Mumford divisors of
degree d is representable by a separated S -scheme of finite type KDivd(X/S ).

Complement 7.3.1 If f is flat with normal fibers, then KDivd(X/S ) is proper
over S , but otherwise usually not. This is not a problem for us.

7.4 (Properties of K-flatness) We list a series of good properties of K-flatness.
Let f : X → S be a projective morphism of pure relative dimension n and D or
Di relative Mumford divisors.
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262 Cayley Flatness

7.4.1 (Comparison with flatness) K-flatness is a generalization of flatness and
it is equivalent to it for smooth morphisms and for normal divisors.
• If f |D : D→ S is flat, then D is K-flat; see (7.54).
• If f : X → S is smooth, then D is K-flat⇔ D is flat over S ⇔ D is a relative

Cartier divisor; see (7.53).
• Assume that D is K-flat, Ds ⊂ Xs has multiplicity 1, and red(Ds) is normal

for some s ∈ S . Then f |D : D→ S is flat along Ds by (7.67).
These properties also hold locally on X. Hence, the notion of K-flatness gives
something new only at the points where f is not smooth and f |D is not flat.

7.4.2 (Reduced base schemes) If S is reduced then every relative Mumford
divisor is K-flat; see (7.29). In retrospect, this is the reason why the moduli
theory of pairs could be developed over reduced base schemes without the
notion of K-flatness in Chapter 4.

7.4.3 (Artinian base schemes) A divisor D ⊂ X is K-flat over S iff DA ⊂ XA is
K-flat over A for every Artinian subscheme A ⊂ S ; see (7.44). Thus one can
fully understand K-flatness by studying it over reduced bases (as in Chapter 4)
and over Artinian base schemes.

7.4.4 (Push-forward) Let g : Y → S be another projective morphisms of pure
relative dimension n, and τ : X → Y a finite morphism. Assume that D ⊂ X
is K-flat and τ∗D is also a relative Mumford divisor. (That is, g is smooth at
generic points of τ(Ds) for every s.) Then τ∗D is also K-flat, see (7.45). (See
Section 7.3 for the definition of τ∗D.) A similar property fails for flatness;
combine (7.7.3) and (7.45).

7.4.5 (Additivity) If D1,D2 are K-flat, then so is D1 +D2, see (7.45). This again
fails for flatness; see (7.7.3).

7.4.6 (Multiplicativity) Let m > 0 be relatively prime to the residue character-
istics. Then D is K-flat iff mD is K-flat; see (7.45).

By contrast, if A is Artinian, nonreduced, with residue field k of characteris-
tic p > 0, then the divisors D on P2

A such that pD is K-flat (= relative Cartier),
but D is not K-flat, span an infinite dimensional k-vectorspace; see (7.10.4–5).
This is an extra difficulty in positive characteristic, see Section 8.8.

7.4.7 (Linear equivalence) K-flatness is preserved by linear equivalence; see
(7.33). (Note that flatness is not preserved by linear equivalence (7.7.4).)

7.4.8 (K-flatness depends only on the divisor) It is well understood that in the
theory of pairs (X,∆) one cannot separate the underlying variety X from the
divisorial part ∆. For example, if X is a surface with quotient singularities only
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7.1 K-flatness 263

and D ⊂ X is a smooth curve, then the pair (X,D) is plt if D ∩ Sing X = ∅, but
not even lc in some other cases. It really matters how exactly D sits inside X.

Thus it is unexpected that K-flatness depends only on the divisor D, not on
the ambient variety X, though maybe this is less surprising if one thinks of
K-flatness as a variant of flatness.

On the other hand, not all K-flat deformations (7.37) of D are realized
on deformations of a given X. For example, for deformations of the pair(
A2,D1 := (xy = 0)

)
, K-flatness is equivalent to flatness by (7.4.2). How-

ever, there are deformations of the pair
(
(xy = z2), (z = 0)

)
that induce a K-flat,

but non-flat deformation of D2 := (xy− z2 = z = 0) ' D1. A typical example is(
(xy = z2 − t2), (x = z + t = 0) ∪ (y = z − t) = 0

)
⊂ A3

xyz × A
1
t .

Now we come to a property that is quite unexpected, but makes the whole
theory much easier to use: K-flatness is essentially a property of surface pairs
(S ,D). Thus K-flatness is mostly about families of singular curves.

Theorem 7.5 (Bertini theorems, up and down) Let f : X → S be a projective
morphism of pure relative dimension n, and D a Mumford divisor on X. Assume
that n ≥ 3, and let |H| be a linear system on X that is base point free in
characteristic 0 and very ample in general. Then D is K-flat iff D|Hλ

is K-flat
for general Hλ ∈ |H|.

This is established by combining (7.57–7.59) with (7.40). As a conse-
quence, K-flatness is really a question about families of surfaces and curves on
them.

This reduction to surfaces is very helpful both conceptually and com-
putationally, since we have rather complete lists of singularities of log
canonical surface pairs (X,∆), at least when the coefficients of ∆ are not too
small.

Another variant of the phenomenon, that higher codimension points some-
times do not matter much, is the Hironaka-type flatness theorem (10.72).

7.6 (Problems and questions about K-flatness) There are also some difficulties
with K-flatness. We believe that they do not effect the general moduli the-
ory of stable pairs, but they make some of the proofs convoluted and explicit
computations lengthy.

7.6.1 (The definition is not formal-local) One expects K-flatness to be a formal-
local property on X, but there are some (hopefully only technical) problems
with this. See (7.41) and (7.60) for partial results. This is probably the main
open foundational question.
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264 Cayley Flatness

7.6.2 (Hard to compute) The definition of K-flatness is quite hard to check,
since for X ⊂ PN we need to check not just linear projections PN

S d P
n
S (7.36),

but all morphisms X → Pn
S involving all linear systems on X.

It is, however, possible that checking general linear projections is in fact
sufficient; see (7.47) and (7.42) for a precise formulation.

In the examples in Sections 7.8–7.9, the computation of the restrictions
imposed by general linear projections is the hard part. From the resulting
answers it is then easy to read off what happens for all morphisms X → Pn

S . It
would be good to work out more examples of space curves C ⊂ A3.

7.6.3 (Tangent space and obstruction theory) We do not know how to write
down the tangent space of KDiv(X/S ). A handful of examples are computed
in Sections 7.8–7.9, but they do not seem to suggest any general pattern. The
obstruction theory of K-flatness is completely open.

7.6.4 (Universal deformations) Let D be a reduced, projective scheme over a
field k. Is there a universal deformation space for its K-flat deformations?

Examples 7.7 The first example shows that the space of first order deforma-
tions of the smooth divisor (x = 0) ⊂ A2, that are Cartier away from the origin,
is infinite dimensional. Thus working with generically flat divisors (3.26) does
not give a sensible moduli space.

(7.7.1) Start with X := Spec k[x, y, ε](x,y) over Spec k[ε] and set X◦ := X \ (x =

y = 0). Let g(y−1) ∈ y−1k[y−1] be a polynomial of degree n. Then

x + g(y−1)ε ∈ k[x, y, y−1, ε](x,y)

defines a relative Cartier divisor D◦g, whose restriction to the closed fiber is
(x = 0). One can check (7.14) that, if g1 , g2, then D◦g1

and D◦g2
give different

elements of Pic(X◦). Set

Ig :=
(
x2, xyn + yng(y−1)ε, εx

)
⊂ k[x, y, ε](x,y), and Dg := Spec k[x, y, ε]/Ig.

Note that yng(y−1) is invertible in k[x, y, ε](x,y), hence

k[x, y, ε](x,y)/
(
x2, xyn + yng(y−1)ε, εx

)
' k[x, y](x,y)/(x2).

Thus Dg is the scheme-theoretic closure of D◦g, (Ig, ε)/(ε) = (x2, xyn), Dg has
no embedded points, and Dg1 ∼ Dg2 iff g1 = g2. More general computations
are done in (7.20).

(7.7.2) To illustrate (7.1.5), let C be a smooth projective curve and E a vector
bundle over C of rank n + 1 ≥ 2 and of degree 0. We claim that usually there is
no finite morphism π : PC(E)→ Pn ×C.
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7.2 Infinitesimal Study of Mumford Divisors 265

Indeed, let p0, . . . , pn+1 ∈ P
n be the coordinate vertices plus (1: · · · :1). Then

Ci := π−1({pi}×C) are n+2 disjoint multi-sections of PC(E)→ C. Pick p : D→
C that factors through all of the Ci → C. Then PD(p∗E) has n + 2 disjoint
sections in linearly general position, hence PD(p∗E) ' Pn × D. Equivalently,
p∗D ' L ⊗ On+1

D for some line bundle L of degree 0.
This cannot happen for most line bundles. The simplest example is E =

OP1 (1)⊕OP1 (−1). More generally, such a line bundle has to be semi-stable. If
E is stable, hence comes from a representation π1(C) → U(n + 1), then its
image in PU(n + 1) must be finite.

(7.7.3) As an example for (7.4.5), set X := (xy = uv) and let π : X → A1
t be

given by t = x + y. Then D1 := (x = u = 0) and D2 := (y = v = 0) are both flat
over A1

t , but D1 ∪ D2 is not flat.

(7.7.4) As an example for (7.4.7), let A ⊂ Pn be a projectively normal abelian
variety of dimension ≥ 2 and CA ⊂ P

n+1 the cone over it. Let π : Pn+1 d P2 be
a general projection. Let H ⊂ CA be a hyperplane section. If H does not pass
through the vertex then H ' A is smooth and π|H : H d P2 is flat.

If H does pass through the vertex v, then depthv H = 1 by (2.35), hence
π|H : H d P2 is not flat at v.

7.2 Infinitesimal Study of Mumford Divisors

In this section, we review the divisor theory of nonreduced schemes. The stand-
ard reference books treat Cartier divisors in detail, but for us the interesting
cases are precisely when the divisors fail to be Cartier. We start with the general
theory, and at the end give explicit formulas for some cases.

Definition 7.8 (Mumford class group) Let S be a scheme and f : X → S a
morphism of pure relative dimension n. Two relative Mumford divisors (4.68)
D1,D2 ⊂ X are linearly equivalent over S if OX(−D1) ' OX(−D2) ⊗ f ∗L for
some line bundle L on S . The linear equivalence classes generate the relative
Mumford class group MCl(X/S ).

This is a higher dimensional version of the generalized Jacobians, worked
out in Severi (1947), Rosenlicht (1954), and Serre (1959). It is slightly dif-
ferent from the theory of almost-Cartier divisors of Hartshorne (1986) and
Hartshorne and Polini (2015).

By definition, if D is a Mumford divisor then there is a closed subset Z ⊂ X
such that D|X\Z is Cartier and Z/S has relative dimension ≤ n − 2. This gives a
natural identification

MCl(X/S ) = limZ Pic
(
(X \ Z)/S

)
, (7.8.1)
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266 Cayley Flatness

where the limit is over all closed subsets Z ⊂ X such that Z/S has relative
dimension ≤ n − 2.

As with the Picard group, it may be better to sheafify MCl(X/S ) in the étale
topology as in Bosch et al. (1990, chap.8). However, we use this notion mostly
when S is local, so this is not important for our current purposes.

7.9 The infinitesimal method to study families of objects in algebraic geome-
try posits that we should proceed in three broad steps:
• Study families over Artinian schemes.
• Inverse limits then give families over complete local schemes.
• For arbitrary local schemes, descend properties from the completion.
This approach has been very successful for proper varieties and for coherent
sheaves. One of the problems with general (possibly nonflat) families of divi-
sors is that the global and the infinitesimal computations do not match up; in
fact they say the opposite in some cases. We discuss two instances of this:
• Relative Cartier divisors on non-proper varieties.
• Generically flat families of divisors on surfaces.
The surprising feature is that the two behave quite differently. We state two
cases where the contrast between Artinian and DVR bases is striking.

Claim 7.9.1 Let π : X → (s, S ) be a smooth, affine morphism, S local.
(a) If S is Artinian, then the restriction map Pic(X) → Pic(Xs) is an

isomorphism by (7.10.2).
(b) If S = Spec k[[t]], then Pic(X) can be infinite dimensional by (7.13.3).

That is, there can be many nontrivial line bundles on X over Spec k[[t]], but we
do not see them when working over Spec k[[t]]/(tm).

The opposite happens for the Mumford class group of projective surfaces.

Claim 7.9.2 MCl
(
P2

k[[t]]/(tm)
)
' Z + k∞ for m ≥ 2, but MCl

(
P2

k[[t]]
)
' Z.

Proof Here P2
k[[t]] is regular, so every Weil divisor on X is Cartier. The first

part follows from (7.8.1) and (7.10.3), since H1(P2 \ Z,OP2\Z) ' H2
Z(P2,OP2 )

is infinite dimensional. �

7.10 (Picard group over Artinian schemes) Let (A,m, k) be a local Artinian
ring and XA → Spec A a flat morphism. Let (ε) ⊂ A be an ideal such that I ' k
and set B = A/(ε). We have an exact sequence

0 // OXk

e // O∗XA
// O∗XB

// 1, (7.10.1)
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where e(h) = 1 + hε is the exponential map. We use its long exact cohomology
sequence and induction on length A to compute Pic(XA). There are three cases
that are especially interesting for us.

Claim 7.10.2 Let XA → Spec A be a flat, affine morphism. Then the restriction
map Pic(XA)→ Pic(Xk) is an isomorphism.

Proof We use the exact sequence

H1(Xk,OXk )→ Pic(XA)→ Pic(XB)→ H2(Xk,OXk ). (7.10.2.a)

Since X is affine, the two groups at the ends vanish, hence we get an
isomorphism in the middle. Induction completes the proof. �

Claim 7.10.3 Let XA → Spec A be a flat, proper morphism. If H0(Xk,OXk ) =

k, then the kernel of the restriction map Pic(XA) → Pic(Xk) is a unipotent
group scheme of dimension ≤ h1(Xk,OXk ) · (length A− 1) and equality holds if
H2(Xk,OXk ) = 0. (In fact, if char k = 0, then the kernel is a k-vector space and
equality holds even if H2(Xk,OXk ) , 0; see Bosch et al. (1990, chap.8).)

Proof By Hartshorne (1977, III.12.11), H0(XA,OXA ) → H0(XB,OXB ) is sur-
jective and so is H0(XA,O∗XA

) → H0(XB,O∗XB
). Thus we get the exactness

of

0→ H1(Xk,OXk )→ Pic(XA)→ Pic(XB)→ H2(Xk,OXk ). �

Claim 7.10.4 Let XA → Spec A be a flat morphism and Z ⊂ XA a closed
subset of codimension ≥ 2. Set X◦A := XA \ Z. Assume that Xk is S 2. Then the
kernel of the restriction map Pic(X◦A) → Pic(X◦k ) is a unipotent group scheme
of dimension ≤ h1(X◦k ,OX◦k ) · (length A − 1).

Proof Since Xk is S 2, H0(X◦k ,OX◦k ) ' H0(Xk,OXk ) and similarly for XA. Thus
H0(X◦A,O

∗
X◦A

) → H0(X◦B,O
∗
X◦B

) is surjective and the rest of the argument works
as in (7.10.3). �

Remark 7.10.5. Although (7.10.4) is very similar to (7.10.3), a key difference
is that in (7.10.4) the group H1(X◦k ,OX◦k ) can be infinite dimensional. Indeed,
H1(X◦k ,OX◦k ) ' H2

Z(Xk,OXk ) and it is
(a) infinite dimensional if dim Xk = 2,
(b) finite dimensional if Xk is S 2 and codimXk Z ≥ 3, and
(c) 0 if Xk is S 3 and codimXk Z ≥ 3.

See, for example, Section 10.3 for these claims.

The following immediate consequence of (7.10.5.c) is especially useful.
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Corollary 7.10.6 Let X → S be a smooth morphism, D ⊂ X a closed sub-
scheme, and Z ⊂ X a closed subset. Assume that D is a relative Cartier divisor
on X \ Z, D has no embedded points in Z, and codimXs Zs ≥ 3 for every s ∈ S .

Then D is a relative Cartier divisor. �

The following is a special case of (4.28).

Lemma 7.11 Let X → S be a flat morphism with S 2 fibers and D a diviso-
rial subscheme. Let U ⊂ X be an open subscheme such that D|U is relatively
Cartier and codimXs (Xs \ Us) ≥ 2 for every s ∈ S .

Then D is relatively Cartier iff the generically Cartier pull-back τ[∗]D (4.2.7)
is relatively Cartier for every Artinian subscheme τ : A ↪→ S . �

Relative Cartier divisors also have some unexpected properties over non-
reduced base schemes. These do not cause theoretical problems, but it is good
to keep them in mind.

Example 7.12 (Cartier divisors over k[ε]) Let R be an integral domain over a
field k. Relative principal ideals in R[ε] over k[ε] are given as ( f + gε) where
f , g ∈ R and f , 0. We list some properties of such principal ideals that hold
for any integral domain R:
(7.12.1) ( f + g1ε) = ( f + g2ε) iff g1 − g2 ∈ ( f ).
(7.12.2) If u ∈ R is a unit then so is u + gε since (u + gε)(u−1 − u−2gε) = 1.
(7.12.3) If f is irreducible then so is f + gε for every g.
(7.12.4) ( f + gε)( f − gε) = f 2 shows that there is no unique factorization.
(7.12.5) If R is a UFD and the fi are pairwise relatively prime, then∏

i( fi + giε) =
∏

i( fi + g′iε) iff gi − g′i ∈ ( fi) ∀i.

The following concrete example illustrates several of the above features.

Example 7.13 (Picard group of a constant elliptic curve) Let (0, E) be a
smooth, projective elliptic curve. Over any base S we have the constant family
π : E×S → S with the constant section s0 : S ' {0}×S . Let L be a line bundle
on E × S . Then L ⊗ π∗s∗0L−1 has a canonical trivialization along {0} × S , hence
it defines a morphism S → Pic(E). Thus

Pic(E × S/S ) ' Mor
(
S ,Pic(E)

)
. (7.13.1)

Corollary 7.13.2 Let (R,m) be a complete local ring. Set S = Spec R and
S n = Spec R/mn. Then Pic(E × S/S ) = lim

←−−
Pic(E × S n/S n). �
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Corollary 7.13.3 Let S = Spec k[t](t) be the local ring of the affine line at the
origin and Ŝ = Spec k[[t]] its completion. Then Pic(E × S/S ) ' Pic(E), but
Pic(E × Ŝ /Ŝ ) is infinite dimensional. �

Next consider the affine elliptic curve E◦ = E \ {0} and the constant affine
family E◦ × S → S . Note that Pic(E◦) ' Pic◦(E).

If S is smooth and D◦ is a Cartier divisor on E◦×S then its closure D ⊂ E×S
is also Cartier. More generally, this also holds if S is normal, using (4.4). Thus
(7.13.1–2) give the following.

Corollary 7.13.3 If S is normal then Pic(E◦ × S/S ) ' Mor
(
S ,Pic◦(E)

)
. �

Corollary 7.13.4 If S = Spec A is Artinian then Pic(E◦ × S/S ) ' Pic◦(E). So
Pic(E◦ × S/S ) has dimension 1, but dimk Mor

(
S ,Pic◦(E)

)
= length A. �

For the rest of the section we make some explicit computations about
Mumford divisors on schemes that are smooth over an Artinian ring.

Proposition 7.14 Let (A, k) be a local Artinian ring, k ' (ε) ⊂ A an ideal, and
B = A/(ε). Let (RA,m) be a flat, local, S 2, A-algebra and set XA := SpecA RA.
Let fB ∈ RB be a non-zerodivisor and set DB := ( fB = 0) ⊂ XB.

Then the set of relative Mumford divisors DA ⊂ XA such that pure
(
(DA)|B

)
=

DB, is a torsor under the k-vector space H1
m(Dk,ODk ).

Proof We can lift fB to fA ∈ RA. Choose y ∈ m that is not a zerodivisor on DB

and such that DA is a principal divisor on XA \ (y = 0). After inverting y, we
can write the ideal of DA as

(I, y−1) = ( fA + εy−rgk), where gk ∈ Rk, r ∈ N. (7.14.1)

We can multiply fA +εy−rgk by 1+εy−sv. This changes y−rgk to y−rgk +vy−s fA.
By (7.15) the relevant information is carried by the residue class

y−rgk ∈ H0(D◦k ,OD◦k ), (7.14.2)

where D◦k ⊂ Dk denotes the complement of the closed point.
If the residue class is in H0(Dk,ODk ), then we get a Cartier divisor. Thus the

non-Cartier divisors are parametrized by

H0(D◦k ,OD◦k )/H0(Dk,ODk ) ' H1
m(Dk,ODk ). (7.14.3)

We get distinct divisors by (7.17.2). �

Lemma 7.15 Let (A, k) be a local Artinian ring, k ' (ε) ⊂ A an ideal, and
B = A/(ε). Let (RA,m) be a flat, local, S 2, A-algebra. Let fA ∈ RA and gk ∈ Rk

be non-zerodivisors and y a non-zerodivisor modulo both fA and gk.
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For I := RA ∩ ( fA + εy−rgk)RA[y−1] the following are equivalent:
(7.15.1) I is a principal ideal.
(7.15.2) The residue class y−rgk lies in Rk/( fk).
(7.15.3) gk ∈ ( fk, yr).

Note that we can change fA + εy−rgk to ( fA + εhk) + εy−r(gk − yrhk) for any
hk ∈ Rk, but gk ∈ ( fk, yr) iff gk − yrhk ∈ ( fk, yr).

Proof I is a principal ideal iff it has a generator of the form fA + εhk where
hk ∈ Rk. This holds iff

fA + εy−rgk = (1 + εy−sbk)( fA + εhk) for some bk ∈ RA.

Equivalently, iff y−rgk = hk + y−sbk fk. If r > s then gk = yrhk + yr−sbk fk, which
is impossible since y is not a zerodivisor modulo gk. If r < s then ys−rgk =

yshk + bk fk, which is impossible since y is not a zerodivisor modulo fk. Thus
r = s and then gk = yrhk + bk fk is equivalent to gk ∈ ( fk, yr). �

The next will be crucial in the proof of (7.60). To state it, let nil(nA) denote
the smallest r ≥ 0 such that nr

A = 0, and for f ∈ RA[y−1], let ordy denote pole
order in y, that is, the smallest r ≥ 0 such that yr f ∈ RA.

Proposition 7.16 Let (A, nA, k) be a local Artinian ring and (RA,mR) a flat,
local, S 2, A-algebra of dimension ≥ 2. Let fk ∈ mk be a non-zerodivisor and
y ∈ mR a non-zerodivisor modulo fk. Let fA, f ′A ∈ RA[y−1] be two liftings of fk.
Assume that fA − f ′A ∈ yNRA, where N = nil(nA) · ordy fA.

Then ( fA) ∩ RA is a principal ideal iff ( f ′A) ∩ RA is.

Proof Note first that N ≥ 0, so fA − f ′A ∈ yNRA implies that ordy fA = ordy f ′A,
so the assumption is symmetric in fA, f ′A. It is thus enough to prove that if
( fA) ∩ RA is a principal ideal, then so is ( f ′A) ∩ RA.

Assume that ( fA) ∩ RA = (FA). Then there is unit uA in RA[y−1] such that
fA = uAFA. Since fk = Fk, we see that uk is a unit in Rk.

We claim that ordy fA = ordy uA. Indeed, if ordy uA = r then we get a nonzero
remainder ūA ∈ y−rRA/y1−rRA ' RA/yRA. Multiplication by FA preserves the
pole-order filtration, so

FAuA = FAūA ∈ y−rRA/y1−rRA ' RA/yRA.

Here RA/yRA has a filtration whose successive quotients are Rk/yRk and FA

acts by multiplication by fk an each graded piece. Since fk is a non-zerodivisor
modulo y, we see that FAuA , 0. So ordy fA = ordy uA. Taylor expansion of the
inverse shows that ordy(u−1

A ) ≤ nil(nA) · ordy fA =: N. Thus
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u−1
A f ′A = u−1

A fA + u−1
A ( f ′A − fA) = FA + (yNu−1

A )
(
y−N( f ′A − fA)

)
∈ RA. �

The connection between (7.14) and (7.10) is given by the following.

7.17 Let X be an affine, S 2 scheme and D := (s = 0) ⊂ X a Cartier divisor.
Let Z ⊂ D be a closed subset that has codimension ≥ 2 in X. Set X◦ := X \ Z
and D◦ := D \ Z. Restricting the exact sequence

0→ OX
s
→ OX → OD → 0

to X◦ and taking cohomologies we get

0→ H0(X◦,OX◦ )
s
→ H0(X◦,OX◦ )→ H0(D◦,OD◦ )

∂
→ H1(X◦,OX◦ ).

Note that H0(X◦,OX◦ ) = H0(X,OX) since X is S 2 and its image in H0(D◦,OD◦ )
is H0(D,OD). Thus ∂ becomes the injection

∂ : H1
Z(D,OD) ' H0(D◦,OD◦ )/H0(D,OD)↪→H2

Z(X,OX). (7.17.1)

We are especially interested in the case when (x, X) is local, two-dimensional
and Z = {x}. In this case (7.17.1) becomes

∂ : H1
x(D,OD)↪→H2

x(X,OX). (7.17.2)

The left side describes first order deformations of D by (7.14) and the right
side the Picard group of the first order deformation of X \ {x} by (7.10.4).

We can be especially explicit about first order deformations in the smooth
case. Let us start with the description as in (7.14).

7.18 (Mumford divisors in k[[u, v]][ε]) Set X = Spec k[[u, v]][ε] with closed
point x ∈ X. By (7.10), the Picard group of the punctured spectrum X \ {x}
is

H2
x(X,OX) '

⊕
i, j>0

1
uiv j · k.

An ideal corresponding to cu−iv− j (where c ∈ k×) can be given as

I
(
cu−iv− j) :=

(
u2i, uiv j + cε, uiε

)
;

a more systematic derivation of this is given in (7.20.1).

This is explicit, but we are more interested in the point of view of (7.10).

Lemma 7.19 Let f ∈ k[[u]][v] be a monic polynomial in v of degree n defining
a curve Ck ⊂ Â

2
uv. Let C ⊂ Â2

k[ε] be a relative Mumford divisor such that
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pure((C)k) = Ck. Then the restriction of C to the complement of (u = 0) can be
uniquely written as(

f + ε
∑n−1

i=0 viφi(u) = 0
)

where φi(u) ∈ u−1k[u−1].

Thus the set of all such C is naturally isomorphic to the infinite dimensional
k-vector space H1

m(Ck,OCk ) ' ⊕
n−1
i=0 u−1k[u−1].

Note that, by the Weierstrass preparation theorem, almost every curve in Âuv

is defined by a monic polynomial in v.

Proof Note that k[[u]][v]/( f ) ' ⊕n−1
i=0 vik[[u]] as a k[[u]]-module, so

H0(Ck,OCk ) ' ⊕
n−1
i=0 vik[[u]] and H0(C◦k ,OC◦k ) ' ⊕n−1

i=0 vik((u)). (7.19.1)

That is, if g ∈ k((u))[v] is a polynomial of degree < n in v, then g|C◦ extends to
a regular function on C iff g ∈ k[[u]][v]. �

We can also restate (7.19.1) as

H1
m(Ck,OCk ) ' ⊕

n−1
i=0 vik((u))/k[[u]] ' ⊕n−1

i=0 viu−1k[u−1]. (7.19.2)

Example 7.20 Consider next the special case of (7.19) when f = v. We can
then write the restriction of C as (v + φ(u)ε = 0) where φ ∈ u−1k[u−1]. Let r
denote the pole-order of φ and set q(u) := urφ(u). By (7.7.1), the ideal of C is

IC =
(
v2, vur + q(u)ε, vε

)
. (7.20.1)

Thus the fiber over the closed point is k[[u, v]]/(v2, vur). Its torsion submodule
is isomorphic to k[[u, v]]/(v, ur) ' k[u]/(ur).

The ideals of relative Mumford divisors in k[[u, v]][ε] are likely to be more
complicated in general. At least the direct generalization of (7.20.1) does not
always give the correct generators.

For example, let f = v2 − u3 and consider the ideal I ⊂ k[[u, v]][ε] extended
from

(
(v2 − u3) + u−3vε

)
. The formula (7.20.1) suggests the elements

(v2 − u3)2, u3(v2 − u3) + vε, (v2 − u3)ε ∈ I.

However, u3(v2 − u3) + vε = v2(v2 − u3) + vε, giving that

I =
(
(v2 − u3)2, v(v2 − u3) + ε, (v2 − u3)ε

)
. (7.20.2)

Using the isomorphism R[ε]/( f 2, f g + ε, f ε) ' R/( f 2,− f 2g) ' R/( f 2), the
examples can be generalized to the nonsmooth case as follows.
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Claim 7.20.3 Let (R,m) be a local, S 2, k-algebra of dimension 2, and f , g ∈ m
a system of parameters. Then J f ,g = ( f 2, f g + ε, f ε) is (the ideal of) a relative
Mumford divisor in R[ε] whose central fiber is R/( f 2, f g), with embedded
subsheaf isomorphic to R/( f , g). �

7.3 Divisorial Support

There are at least three ways to associate a divisor to a sheaf (7.22), but only
one of them – the divisorial support – behaves well in flat families. In this Sec-
tion we develop this notion and a method to compute it. The latter is especially
important for the applications. First, we recall the definition of the Fitting ideal
sheaf.

7.21 (Fitting ideal) Let R be a Noetherian ring, M a finite R-module, and

Rs A
−→ Rr → M → 0

a presentation of M, where A is given by an s × r-matrix with entries in R.
The Fitting ideal, or, more precisely, the 0th Fitting ideal of M, denoted by
FittR(M), is the ideal generated by the determinants of r×r-minors of A. For the
following basic properties, see Fitting (1936) or (Eisenbud, 1995, Sec.20.2).
(7.21.1) FittR(M) is independent of the presentation chosen.
(7.21.2) If R is regular and M ' ⊕iR/(g

mi
i ) then FittR(M) =

(∏
gmi

i
)
.

(7.21.3) The Fitting ideal commutes with base change. That is, if S is an R-
algebra then FittS (M ⊗R S ) is generated by FittR(M) ⊗R S .

The following is a special case of Lipman (1969, lem.1).
(7.21.4) Let M be a torsion module. Then FittR(M) is a principal ideal

generated by a non-zerodivisor iff the projective dimension of M is 1.
One direction is easy. If the projective dimension of M is 1, then M has a

presentation

0→ Rs A
−→ Rr → M → 0.

Here r = s since M is torsion, thus det(A) generates FittR(M).
We prove the converse only in the following special case that we use later,

which, however, captures the essence of the general proof.
(7.21.5) Let X be a smooth variety of dimension n and F a coherent sheaf of

generic rank 0 on X. Then FittX(F) is a principal ideal iff F is CM of pure
dimension n − 1.

Proof This can be checked after localization and completion. Thus we have a
module M over S := k[[x1, . . . , xn]], and, after a coordinate change, we may
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assume that it is finite over R := k[[x1, . . . , xn−1]] of generic rank say r. Using
first (7.21.2) and then (7.21.3) we get that

dimk M ⊗S k[[xn]] = dimk k[[xn]]/Fittk[[xn]](M ⊗S k[[xn]])
= dimk

(
S/FittS (M)

)
⊗S k[[xn]].

(7.21.6)

Next note that M is CM ⇔ M is free over R ⇔ dim M ⊗S k[[xn]] = r. Using
(7.21.1) and the previous equivalences for S/FittS (M), we get that these are
equivalent to S/FittS (M) being CM. This holds iff FittS (M) is a height 1
unmixed ideal, hence principal. �

The following explicit formula is quite useful.

Computation 7.21.7 Let S be a smooth R-algebra and v ∈ S such that S/(v) '
R. (The examples we use are S = R[v] and S = R[[v]].) Let M be an S -
module that is free of finite rank as an R-module. Write M = ⊕r

i=1Rmi and
vmi =

∑r
i=1 ai jm j for ai j ∈ R. Then FittS (M) is generated by det

(
v1r − (ai j)

)
.

Proof A presentation of M as an S -module is given by

⊕r
i=1S ei

φ
−→ ⊕r

i=1S fi
ψ
−→ M → 0,

where ψ( fi) = mi and φ(ei) = v fi −
∑r

j=1 ai j f j. Thus φ = v1r − (ai j) and so
det

(
v1r − (ai j)

)
generates FittS (M). �

Computation 7.21.8 Let T be a free S -algebra and t ∈ T a non-zerodivisor.
Then FittS (T/tT ) is generated by normT/S (t).

Proof We use 0→ T
t
→ T → T/tT → 0 and the definition of the norm. �

Definition 7.22 (Divisorial support I) Let X be a scheme and F a coherent
sheaf on X. One usually defines its support Supp F and its scheme-theoretic
support SSupp F := SpecX(OX/Ann F).

Assume next that Supp F is nowhere dense and X is regular at every generic
point xi ∈ Supp F that has codimension 1 in X. Then there is a unique divisorial
sheaf (3.25) associated to the Weil divisor

∑
length(Fxi ) · [x̄i]. We call it the

divisorial support of F and denote it by DSupp F. Equivalently,

DSupp(F) = Spec
(
OX/FittX(F)

)
, (7.22.1)

where pure denotes the pure codimension 1 part (10.1).
If every associated point of F has codimension 1 in X, then we have

inclusions of subschemes

Supp F ⊂ SSupp F ⊂ DSupp F. (7.22.2)

In general, all three subschemes are different, though with the same support.
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Our aim is to develop a relative version of this notion and some ways of
computing it in families. Let X → S be a morphism and F a coherent sheaf on
X. Informally, we would like the relative divisorial support of F, denoted by
DSuppS F, to be a scheme over S whose fibers are DSupp(Fs) for all s ∈ S . If
S is reduced, this requirement uniquely determines DSuppS F, but in general
there are two problems.
• Even in nice situations, this requirement may be impossible to meet.
• For nonreduced base schemes, the fibers do not determine DSuppS F.
In our main applications, X is smooth over some base scheme S that may well
have nilpotent elements. As in (9.12), we need to allow embedded subsheaves
that “come from” S , but not the others.

Definition 7.23 (Divisorial support II) Let X → S be a smooth morphism of
pure relative dimension n. Let F be a coherent sheaf on X that is flat over S
with CM fibers of pure dimension n − 1. We define its divisorial support as

DSuppS (F) := Spec
(
OX/FittX(F)

)
.

Lemma 7.24 Under the assumptions of (7.23),
(7.24.1) DSuppS (F) is a relative Cartier divisor, and
(7.24.2) DSuppS (F) commutes with base change. That is, let h : S ′ → S be

a morphism. By base change we get g′ : X′ → S ′, hX : X′ → X. Then
h∗X(DSupp F) = DSupp(h∗XF).

Proof The first claim can be checked after localization and completion. We
may thus assume that S = Spec B where (B,m) is local with residue field
k, X = Spec B[[x1, . . . , xn]] and F is the sheafification of M. Since M ⊗B k
has dimension n − 1 over k[[x1, . . . , xn]], after a general coordinate change
we may assume that M/(x1, . . . , xn−1,m)M is finite. Thus M is a finite R :=
B[[x1, . . . , xn−1]]-module. Set Rk = R ⊗B k ' k[[x1, . . . , xn−1]]. Since M is flat
over B, its generic rank over R equals the generic rank of M ⊗B k over Rk. By
assumption, M ⊗B k is CM, hence free over Rk. Thus the generic rank of M
over R equals dimk M ⊗R k and M is free as an R-module. The rest follows
from (7.21.7). The second claim is immediate from (7.21.3). �

The following restriction property is also implied by (7.21.3).

Lemma 7.25 Continuing with the notation and assumptions of (7.23), let D ⊂
X be a relative Cartier divisor that is also smooth over S . Assume that D does
not contain any generic point of Supp Fs for any s ∈ S . Then

DSupp(F|D) = (DSupp F)|D. �
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Now we are ready to define the sheaves for which the relative divisorial
support makes sense, but first we have to distinguish associated points that
come from the base from the other ones.

Definition 7.26 Let X → S be a morphism and F a coherent sheaf on X. The
flat locus of F is the largest open subset U ⊂ X such that F|U is flat over S . We
denote it by FlatS (X, F).

It is usually more convenient to work with the flat-CM locus of F. It is
the largest open subset U ⊂ X such that F|U is flat with CM fibers over S . We
denote it by FlatCMS (X, F). If F is generically flat over S of relative dimension
d, then

(
Supp F \ FlatCMS (X, F)

)
→ S has relative dimension < d.

Definition 7.27 Let X → S be a morphism. A coherent sheaf F is a gener-
ically flat family of pure sheaves of dimension d over S , if F is generically
flat (3.26) and Supp F → S has pure relative dimension d. This property is
preserved by any base change S ′ → S .

For our current purposes, we can harmlessly replace F by its vertically pure
quotient vpure(F) (9.12). The generic fibers of vpure(F) are pure of dimension
d, but special fibers may have embedded points outside the flat locus (7.26).
Vertically purity is preserved by flat base changes.

Definition–Lemma 7.28 (Divisorial support III) Let g : X → S be a flat mor-
phism of pure relative dimension n and g◦ : X◦ → S the smooth locus of
g.

Let F be a coherent sheaf on X that is generically flat and pure over S of
dimension n − 1. Assume that for every s ∈ S , every generic point of Fs is
contained in X◦.

Set U := FlatCMS (X, F) ∩ X◦
)

and j : U ↪→ X the natural injection. We
define the divisorial support of F over S as

DSuppS (F) := DSuppS (F|U), (7.28.1)

the scheme-theoretic closure of DSuppS (F|U). This makes sense since the latter
is already defined by (7.23).

Note that Supp DSuppS (F) = Supp F and DSuppS (F) is a generically flat
family of pure subschemes of dimension n − 1 over S , whose restriction to U
is relatively Cartier.

It is enough to check the following equalities at codimension 1 points, which
follow from (7.24) and (7.21.3).

Claim 7.28.2 Let gi : Xi → S be flat morphisms of pure relative dimension n
and π : X1 → X2 a finite morphism. Let D ⊂ X1 be a relative Mumford divisor.
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Assume that red Ds → red(π(Ds)) is birational and π is étale at generic points
of Ds. Then DSuppS (π∗OD) = π(D), the scheme-theoretic image of D. �

Claim 7.28.3 (Divisorial support commutes with push-forward) Let gi : Xi →

S be flat morphisms of pure relative dimension n and π : X1 → X2 a finite
morphism. Let F be a coherent sheaf on X1 that is generically flat and pure
over S of relative dimension n−1. Assume that g1 (resp. g2) is smooth at every
generic point of Fs (resp. π∗Fs) for every s ∈ S . Then

DSuppS (π∗F) = DSuppS
(
π∗ODSuppS (F)

)
. �

Claim 7.28.4 Let gi : Xi → S be flat morphisms of pure relative dimension n
and π1 : X1 → X2, π2 : X2 → X3 finite morphisms. Let F be a coherent sheaf
on X1 that is generically flat and pure over S of relative dimension n − 1.
Assume that g1 (resp. g2, g3) is smooth at every generic point of Fs (resp.
π1∗Fs, (π2 ◦ π1)∗Fs) for every s ∈ S . Then

DSuppS
(
(π2 ◦ π1)∗F) = DSuppS

(
π2∗ODSuppS (π1∗F)

)
. �

Lemma 7.29 Let X → S be a smooth morphism of pure relative dimension n.
Let F be a coherent sheaf on X that is generically flat over S with pure fibers
of dimension n − 1. Assume that either F is flat over S , or S is reduced.

Then DSuppS F is a relative Cartier divisor.

Proof Assume first that F is flat over S . If x ∈ Xs is a point of codimension
≤ 2, then Fs is CM at x, hence DSuppS F is a relative Cartier divisor at x
by (7.23). Since X → S is smooth, DSuppS F is a relative Cartier divisor
everywhere by (7.10.6).

For the second claim, our argument gives only that DSuppS F is a relative,
generically Cartier divisor. By (4.34), it is then enough to check the conclusion
after base change T → S , where T is the spectrum of a DVR. Then XT is
regular, so DSuppT FT is Cartier. �

7.30 (Restriction to divisors) Let (s, S ) be a local scheme and g : X → S a flat
morphism of pure relative dimension n. Let F be a generically flat family of
pure sheaves of relative dimension n− 1 such that g is smooth at every generic
point of Supp Fs. Let D ⊂ X be a relative Cartier divisor.
(7.30.1) Assume that g|D is smooth and F is flat with CM fiber, at every generic
point of D ∩ Supp Fs. Then

DSuppS (F|D) = vpure
(
(DSuppS F)|D

)
.
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(7.30.2) Assume in addition, that D contains neither a generic point of
Supp Fs \ FlatCMS (X, F), nor a codimension ≥ 2 point of Supp Fs where
DSuppS F is not S 2, then

DSuppS (F|D) = (DSuppS F)|D.

Corollary 7.31 (Bertini theorem for divisorial support) Let g : X → S be a flat
morphism of pure relative dimension n and F a generically flat family of pure
sheaves of dimension n − 1 over S . Fix s ∈ S such that g is smooth at every
generic point of Supp Fs. Let D be a general member of a linear system on X,
that is base point free in characteristic 0 and very ample in general. Then there
is an open neighborhood s ∈ S ◦ ⊂ S such that DSuppS (F|D) = (DSuppS F)|D
holds over S ◦.

Lemma 7.32 (Divisorial support commutes with base change) Let g : X → S
be a flat morphism of pure relative dimension n and F a generically flat family
of pure sheaves of dimension n − 1 over S . Assume that g is smooth at every
generic point of Supp Fs, for every s ∈ S . Let h : S ′ → S be a morphism. By
base change, we get g′ : X′ → S ′ and hX : X′ → X. Then

h[∗]
X (DSuppS F) = DSuppS ′ (h

∗
XF),

where h[∗]
X is the generically Cartier pull-back (4.2.7).

Proof Set U := FlatCMS (X, F) ⊂ X with injection j : U ↪→ X. Set U′ :=
h−1

X (U) and hU : U′ → U the restriction of hX . Then (7.24) shows the equality
h∗U(DSuppS F|U) = DSuppS ′

(
h∗U(F|U)

)
.

By (7.27.4), h[∗]
X (DSuppS F) is a generically flat family of pure divisors and

it agrees with DSuppS ′ (h
∗
XF) over U′. Thus the two are equal. �

7.33 (Proof of 7.4.7) Assume that we have f : X → (s, S ) of relative dimen-
sion n and relative Mumford divisors D1,D2 ⊂ X, where (s, S ) is local. Let
FlatCMS (X) ⊂ X be the largest open subset where f has CM fibers and
Z = X \ FlatCMS (X). Note that Z → S has relative dimension ≤ n − 2.

Let π : X → Pn
S be a finite morphism. Set P◦ := Pn

S \ π(Z) and X◦ := π−1(P◦).
Then π : X◦ → P◦ is finite and flat. If ( f ) = D1 − D2 then, by (7.21.8),(

normX◦/X◦ ( f )
)

= DSuppS (D1)|P◦ − DSuppS (D2)|P◦ .

Since Z → S has relative dimension ≤ n−2, this implies that DSuppS (D1) and
DSuppS (D2) are linearly equivalent. Thus, if one of them is relatively Cartier,
then so is the other. �
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7.4 Variants of K-Flatness

We introduce five versions of K-flatness, which may well be equivalent to each
other. From the technical point of view, Cayley–Chow-flatness (or C-flatness)
is the easiest to use, but a priori it depends on the choice of a projective
embedding. Then most of the work in the next two sections goes to proving
that a modified version (stable C-flatness) is equivalent to K-flatness, hence
independent of the projective embedding.

7.34 (Projections of Pn) Let S be an affine scheme. Projecting Pn
S from the

section (a0 : · · · : an) (where ai ∈ OS ) to the (xn = 0) hyperplane is given by

π : (x0 : · · · : xn)→ (anx0 − a0xn : · · · : anxn−1 − an−1xn). (7.34.1)

It is convenient to normalize an = 1 and then we get

π : (x0 : · · · : xn)→ (x0 − a0xn : · · · : xn−1 − an−1xn). (7.34.2)

Similarly, a Zariski open set of projections of Pn
S to Lr = (xn = · · · = xr+1 = 0)

is given by

π : (x0 : · · · : xn)→
(
x0−`0(xr+1, . . . , xn) : · · · : xr−`r(xr+1, . . . , xn)

)
, (7.34.3)

where the `i are linear forms.
Note that in affine coordinates, when we set x0 = 1, the projections become

π : (x1, . . . , xn)→
(

x1−`1
1−`0

, . . . , xr−`r
1−`0

)
, (7.34.4)

where again the `i are (homogeneous) linear forms in the xr+1, . . . , xn. If `0 ≡ 0,
then we recover the linear projections, but in general the coordinate functions
have a non-linear expansion

xi−`i
1−`0

= (xi − `i)(1 + `0 + `2
0 + · · · ). (7.34.5)

Finally, formal projections are given as

π : (x1, . . . , xn)→
(
x1 − φ1(x1, . . . , xn), . . . , xr − φr(x1, . . . , xn)

)
, (7.34.6)

where φi are power series such that φi(x1, . . . , xr, 0, . . . , 0) ≡ 0 for every i.

7.35 (Approximation of formal projections) Let vm : Pn
S ↪→ PN

S (where N =(
n+m

n

)
− 1) be the mth Veronese embedding. Pulling back the linear coordinates

on PN
S we get all the monomials of degree m. In affine coordinates x1, . . . , xn as

above, we get all monomials of degree ≤ m.
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In particular, we see that given a formal projection π as in (7.34.6) and m >

0, there is a unique linear projection πm of PN
S such that πm ◦ vm is

(x1, . . . , xn)→
(
x1 − ψ1, . . . , xr − ψr

)
, where

ψi ≡ φi mod (x1, . . . , xn)m+1, and degψi ≤ m ∀i.
(7.35.1)

That is, we can approximate formal projections by linear projections composed
with a Veronese embedding. Thus it is reasonable to expect that K-flatness is
very close to C-flatness for all Veronese images; this leads to the notion of
stable C-flatness in (7.37.2).

The uniqueness of this approximation is not always an advantage. In practice
we would like πm to be in general position away from the chosen point. This
is easy to achieve if we increase m a little. In particular, we get the following
obvious result.

Claim 7.35.2 Let (s, S ) be a local scheme and Y ⊂ Pn
S a closed subset of pure

relative dimension d. Let p ∈ Ys be a closed point with maximal ideal mp such
that x0(p) , 0. Fix m ∈ N and let (̂g1: · · · :̂ge) : Ŷp → Â

e
Ŝ

be a finite morphism.
Then for every M ≥ m + 1 there are g1, . . . , ge ∈ H0(Pn

S ,OPn
S
(M)

)
such that

π : (xM
0 :g1: · · · :ge) : Y → Pe

S is a finite morphism, π−1(π(p)) ∩ Y = {p}, and
ĝi ≡ gi/xM

0 mod mm
p for every i. �

Despite having good approximations, the equivalence of K-flatness and
stable C-flatness is not clear. The problem is the following.

Assume for simplicity that S is the spectrum of an Artinian ring A. For
sheaves of dimension d, using the notation of (7.21.7), we can write the equa-
tion of DSupp(̂π∗F̂) in the form det

(
v1r − M)

)
= 0, where the entries of the

matrix M involve rational functions in the power series φi. The problem is that
inverses of power series usually do not have good approximations by rational
functions. For example, there is no rational function g(x1, x2) such that

(x2 − sin x1)−1 − g(x1, x2) ∈ k[[x1, x2]].

The exception is the one-variable case, where truncations of Laurent series give
good approximations. This is what we exploit in (7.60) to prove that K-flatness
is equivalent to stable C-flatness for curves.

Definition 7.36 Let E be a vector bundle over a scheme S and F ⊂ E a vector
subbundle. This induces a natural linear projection map π : PS (E)d PS (F). If
S is local, then E, F are free. After choosing bases, π is given by a matrix of
constant rank with entries in OS . We call these OS -projections if we want to
emphasize this. If S is over a field k, we can also consider k-projections, given
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by a matrix with entries in k. These, however, only make good sense if we have
a canonical trivialization of E; this rarely happens for us.

We can now formulate various versions of K-flatness.

Definition 7.37 Let (s, S ) be a local scheme with infinite residue field and F a
generically flat family of pure, coherent sheaves of relative dimension d on Pn

S
(7.27), with scheme-theoretic support Y := SSupp F.
(7.37.1) F is C-flat over S iff DSupp(π∗F) is Cartier over S for every OS -

projection π : Pn
S d P

d+1
S (7.36) that is finite on Y .

(7.37.2) F is stably C-flat iff (vm)∗F is C-flat for every Veronese embedding
vm : Pn

S ↪→ P
N
S (where N =

(
n+m

n

)
− 1).

(7.37.3) F is K-flat over S iff DSupp(%∗F) is Cartier over S for every finite
morphism % : Y → Pd+1

S .
(7.37.4) F is locally K-flat over S at y ∈ Y iff DSupp(%∗F) is Cartier over S at

%(y) for every finite % : Y → Pd+1
S for which {y} = Supp %−1(%(y)).

(7.37.5) F is formally K-flat over S at a closed point y ∈ Y iff DSupp(%∗F̂) is
Cartier over Ŝ for every finite morphism % : Ŷ → Âd+1

Ŝ
, where Ŝ (resp. Ŷ)

denotes the completion of S at s (resp. Y at y).
7.37.6 (Base change properties) We see in (7.50) that being C-flat is preserved
by arbitrary base changes and the property descends from faithfully flat base
changes. This then implies the same for stable C-flatness. Once we prove that
the latter is equivalent to K-flatness, the latter also has the same base change
properties. Most likely the same holds for formal K-flatness.

7.37.7 (General base schemes) We say that any of the above notions (7.37.1–
5) holds for a local base scheme (s, S ) (with finite residue field) if it holds
after some faithfully flat base change (s′, S ′) → (s, S ), where k(s′) is infinite.
Property (7.37.6) assures that this is independent of the choice of S ′.

Finally, we say that any of the notions (7.37.1–5) holds for an arbitrary base
scheme S , if it holds for all of its localizations.

Variants 7.38 These definitions each have other versions and relatives. I
believe that each of the five are natural and maybe even optimal, though they
may not be stated in the cleanest form. Here are some other possibilities and
equivalent versions.
(7.38.1) It could have been better to define C-flatness using the Cayley–Chow
form; the equivalence is proved in (7.47). The Cayley–Chow form version
matches better with the study of Chow varieties; the definition in (7.37.1)
emphasizes the similarity with the other four.
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(7.38.2) In (7.37.2), it would have been better to say that F is stably C-flat for
L := OY (1). However, we see in (7.62) that this notion is independent of the
choice of an ample line bundle L, so we can eventually drop L from the name.
(7.38.3) In (7.37.3), we get an equivalent notion if we allow all finite mor-
phisms % : Y → W, where W → S is any smooth, projective morphism of pure
relative dimension d + 1 over S . Indeed, let π : W → Pd+1

S be a finite mor-
phism. If F is K-flat then DSupp

(
(π ◦ %)∗F

)
is a relative Cartier divisor, hence

DSupp(%∗F) is K-flat by (7.28.3). Since W → S is smooth, DSupp(%∗F) is a
relative Cartier divisor by (7.53).
(7.38.4) It would be natural to consider an affine version of C-flatness: We start
with a coherent sheaf F on An

S and require that DSupp(π∗F) be Cartier over S
for every projection π : An

S → A
d+1
S that is finite on Y .

The problem is that the relative affine version of Noether’s normalization
theorem does not hold, thus there may not be any such projections (10.47),
though one can try to go around this using (10.46.2). This is why (7.37.4) is
stated for projective morphisms only.

Although a more local version is defined in (7.51), we did not find a truly
local theory. Nonetheless, the notions (7.37.1–4) are étale local on X, and most
likely the following Henselian version of (7.37.5) does work.
(7.38.5) Assume that f : (y,Y) → (s, S ) is a local morphism of pure relative
dimension d of Henselian local schemes such that k(y)/k(s) is finite. Let F
be a coherent sheaf on X that is pure of relative dimension d over S . Then
F is K-flat over S iff DSupp(%∗F) is Cartier over S for every finite mor-
phism % : Y → Spec OS 〈x0, . . . , xd〉 (where R〈x〉 denotes the Henselization of
R[x]).

It is possible that in fact all five versions (7.37.1–5) are equivalent to each
other, but for now we can prove only 13 of the 20 possible implications. Four
of them are easy to see.

Proposition 7.39 Let F be a generically flat family of pure, coherent sheaves
of relative dimension d on Pn

S . Then

formally K-flat⇒ K-flat⇒ locally K-flat⇒ stably C-flat⇒ C-flat.

Proof A divisor D on a scheme X is Cartier iff its completion D̂ is Cartier on
X̂ for every x ∈ X by (7.11). Thus formally K-flat⇒ K-flat.

K-flat ⇒ locally K-flat is clear, and locally K-flat ⇒ stably C-flat follows
from (7.52). Finally stably C-flat⇒ C-flat is clear; see also (7.56). �

A key technical result of the chapter is the following, to be proved in (7.63).
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Theorem 7.40 K-flatness is equivalent to local K-flatness and to stable
C-flatness.

It is quite likely that our methods will prove the following.

Conjecture 7.41 Formal K-flatness is equivalent to K-flatness.

We prove the special case of relative dimension 1 in (7.60); this is also a key
step in the proof of (7.40).

The remaining question is whether C-flat implies stably C-flat. This holds in
the examples computed in Sections 7.8–7.9, but we do not have any conceptual
argument why these two notions should be equivalent.

Question 7.42 Is C-flatness equivalent to stable C-flatness and K-flatness?

Next we show that K-flatness is automatic over reduced schemes and can be
checked on Artinian subschemes.

Proposition 7.43 Let S be a reduced scheme and F a generically flat family
of pure, coherent sheaves on Pn

S . Then F is K-flat over S .

Proof This follows from (7.29.2). �

Proposition 7.44 Let S be a scheme and F a generically flat family of pure,
coherent sheaves on Pn

S . Then F satisfies one of the properties (7.37.1–5) iff
τ∗F satisfies the same property for every Artinian subscheme τ : A ↪→ S .

Proof Set Y := SSupp F and let π : Y → Pd+1
S be a finite morphism. By (7.11),

DSuppS (π∗F) is Cartier iff DSuppA
(
(πA)∗τ∗F

)
is Cartier for every Artinian

subscheme τ : A ↪→ S . Thus the Artinian versions imply the global ones.
To check the converse, we may localize at τ(A). The claim is clear if every

finite morphism πA : YA → P
d+1
A can be extended to π : Y → Pd+1

S . This is
obvious for C-flatness, stable C-flatness, and formal K-flatness, but it need not
hold for K-flatness and local K-flatness.

These cases will be established only after we prove (7.40) in (7.63). Thus
we have to be careful not to use this direction in Section 7.5. �

7.45 (Push-forward, additivity and multiplicativity) First, as a generalization
of (7.4.4), let f : X → S and g : Y → S be projective morphisms of pure
relative dimension n and τ : X → Y a finite morphism. Let F be a coherent
sheaf on X that is generically flat and pure over S of dimension n− 1 such that
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g is smooth at generic points of f∗(Fs) for every s ∈ S . Let π : Y → Pn
S be any

finite morphism. Then

DSuppS
(
(π ◦ τ)∗F

)
= DSuppS

(
π∗(τ∗F)

)
= DSuppS

(
π∗ODSuppS (τ∗F)

)
,

where the first equality follows from the identity π∗(τ∗F) = (π ◦ τ)∗F and for
the second we apply (7.28.3) to τ∗F. This proves (7.4.4).

Additivity (7.4.5) is essentially a special case of this. Let f : X → S be
a projective morphism of pure relative dimension n and D1,D2 ⊂ X K-flat,
relative Mumford divisors. Next take two copies X′ := X1 ∪ X2 of X, mapping
to X by the identity map τ : X′ → X. Let D′ ⊂ X′ be the union of the divisors
Di ⊂ Xi. Then DSuppS (τ∗OD′ ) = D1 + D2. Thus if the Di are K-flat, then so is
D1 + D2.

Finally, consider (7.4.6). If D is K-flat, then so is every mD by additivity, the
interesting claim is the converse. Let π : Y → Pn

S be any finite morphism. Set
E := DSuppS (π∗D). Then mE = DSuppS (π∗(mD)), thus we need to show that
if mE is Cartier and char k - m, then E is Cartier. This was treated in (4.37). �

7.5 Cayley–Chow Flatness

Let Z ⊂ Pn be a subvariety of dimension d. Cayley (1860, 1862) associates to
it the Cayley–Chow hypersurface

Ch(Z) := {L ∈ Gr(n−d−1,Pn) : Z ∩ L , ∅} ⊂ Gr(n−d−1,Pn).

We extend this definition to coherent sheaves on Pn
S over an arbitrary base

scheme. We use two variants, but the proof of (7.47) needs two other versions
as well. All of these are defined in the same way, but Gr(n−d−1,Pn) is replaced
by other universal varieties.

Definition 7.46 (Cayley–Chow hypersurfaces) Let S be a scheme and F a
generically flat family of pure, coherent sheaves of dimension d on Pn

S (7.27).
We define four versions of the Cayley–Chow hypersurface associated to F. In
all four versions the left-hand side map σ is a smooth fiber bundle.

7.46.1 (Grassmannian version) Consider the diagram

FlagS
(
point, n−d−1,Pn)

σgr
vvmmm

mmm
mmm

mmm
m

τgr
))SSS

SSSS
SSSS

SSSS

Pn
S GrS (n−d−1,Pn)
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where the flag variety parametrizes pairs (point) ∈ Ln−d−1 ⊂ Pn. Set

Chgr(F) := DSuppS
(
(τgr)∗σ∗grF

)
.

7.46.2 (Product version) Consider the diagram

IncS
(
point, (P̌n)d+1)

σpr

xxqqq
qqq

qqq
qqq

τpr ''OO
OOO

OOO
OOO

O

Pn
S (P̌n)d+1

S ,

where the incidence variety parametrizes (d + 2)-tuples
(
(point),H0, . . . ,Hd

)
satisfying (point) ∈ Hi for every i. Set

Chpr(F) := DSuppS
(
(τpr)∗σ∗prF

)
.

7.46.3 (Flag version) Consider the diagram

PFlagS (0, n−d−2, n−d−1,Pn)

σ f l

vvmmm
mmm

mmm
mmm

mmm

τ f l
++VVVV

VVVVV
VVVVV

VVVVV

Pn
S FlagS (n−d−2, n−d−1,Pn),

where PFlag parametrizes triples
(
(point), Ln−d−2, Ln−d−1) such that (point) ∈

Ln−d−1 and Ln−d−2 ⊂ Ln−d−1 (but the point need not lie on Ln−d−2). Set

Ch f l(F) := DSuppS
(
(τ f l)∗σ∗f lF

)
.

7.46.4 (Incidence version) Consider the diagram

IncS
(
point, Ln−d−1, (P̌n)d+1)

σin

vvnnn
nnn

nnn
nnn

nnn

τin **TTT
TTTT

TTTT
TTTT

T

Pn
S IncS

(
Ln−d−1, (P̌n)d+1),

where the (d +3)-tuples
(
(point), Ln−d−1,H0, . . . ,Hd

)
satisfy (point) ∈ Ln−d−1 ⊂

Hi for every i. Set

Chin(F) := DSuppS
(
(τin)∗σ∗inF

)
.

Theorem 7.47 Let S be a scheme and F a generically flat family of pure,
coherent sheaves of dimension d on Pn

S . The following are equivalent:
(7.47.1) Chpr(F) ⊂ (P̌n)d+1

S is Cartier over S .
(7.47.2) Chgr(F) ⊂ GrS (n − d − 1,Pn) is Cartier over S .
If S is local with infinite residue field, then these are also equivalent to
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(7.47.3) DSupp(π∗F) is Cartier over S for every OS -projection π : Pn
S d P

d+1
S

(7.36) that is finite on Supp F.
(7.47.4) DSupp(π∗F) is Cartier over S for a dense set of OS -projections

π : Pn
S d P

d+1
S .

Proof The extreme cases d = 0 and d = n − 1 are somewhat exceptional, so
we deal with them first.

If d = n−1, then GrS (n−d−1,Pn
S ) = GrS (0,Pn

S ) ' Pn
S and the only projection

is the identity. Furthermore, Chgr(F) = DSuppS (F) by definition, so (7.47.2)
and (7.47.3) are equivalent. If these hold, then Chpr(F) = Chpr

(
DSuppS (F)

)
is

also flat by (7.23). For (7.47.1)⇒ (7.47.2), the argument in (7.48) works.
If d = 0, then F is flat over S and (7.47.1–3) hold by (7.29).
We may thus assume from now on that 0 < d < n − 1. These cases are

discussed in (7.48–7.49). �

7.48 (Proof of 7.47.1⇔ 7.47.2) To go between the product and the Grassman-
nian versions, the basic diagram is the following.

IncS
(
Ln−d−1, (P̌n)d+1)

wwooo
ooo

ooo
ooo (Pd)d+1-bundle

))RRR
RRR

RRR
RRR

RRR

(P̌n)d+1
S GrS (n−d−1,Pn

S ).

The right-hand side projection

π2 : IncS
(
Ln−d−1, (P̌n)d+1)→ GrS (n−d−1,Pn

S )

is a (Pd)d+1-bundle. Therefore Chin(F) = π∗2 Chgr(F). Thus Chgr(F) is Car-
tier over S iff Chin(F) is Cartier over S . It remains to compare Chin(F) and
Chpr(F).

The left-hand side projection

π1 : IncS
(
Ln−d−1, (P̌n)d+1)→ (P̌n)d+1

S

is birational. It is an isomorphism over (H0, . . . ,Hd) ∈ (P̌n)d+1
S iff dim(H0 ∩

· · · ∩ Hd) = n−d−1, the smallest possible. That is, when the rank of the matrix
formed from the equations of the Hi is d + 1. Thus π−1

1 is an isomorphism
outside a subset of codimension n + 1 − d in each fiber of (P̌n)d+1

S → S .
Therefore, if Chin(F) is Cartier over S then Chpr(F) is Cartier over S , out-

side a subset of codimension n + 1− d ≥ 3 on each fiber of (P̌n)d+1
S → S . Then

Chpr(F) is Cartier over S everywhere by (7.10.6).
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Conversely, let E be the support of the π1-exceptional divisor. If Chpr(F)
is a relative Cartier divisor, then so is π∗1 Chpr(F), which agrees with Chin(F)
outside E.

Note that E consists of those (Ln−d−1,H0, . . . ,Hd) for which H0, . . . ,Hd are
linearly dependent. This is easiest to describe using π2, which is a (Pd)d+1-
bundle over GrS (n−d−1,Pn

S ). In a local trivialization, the points in the ith copy
of Pd have coordinates (ai,0: · · · :ai,d). Then the equation of E is det(ai, j) = 0.
Thus E is irreducible and the restriction of π2

IncS
(
Ln−d−1, (P̌n)d+1) \ E → GrS (n−d−1,Pn

S )

is surjective. Since Chin(F) = π∗2 Chgr(F), this implies that Chgr(F) is relative
Cartier (2.92.1). �

7.49 (Proof of 7.47.2 ⇒ 7.47.3 ⇒ 7.47.4 ⇒ 7.47.2) To go between the
Grassmannian version and the projection versions, the basic diagram is the
following:

FlagS (n−d−2, n−d−1,Pn
S )

Pn−d−1-bundle

uujjjj
jjjj

jjjj
jjj Pd+1-bundle

**TTT
TTTT

TTTT
TTTT

GrS (n−d−1,Pn) GrS (n−d−2,Pn).

The left-hand side projection

%1 : FlagS (n−d−2, n−d−1,Pn
S )→ GrS (n−d−1,Pn

S )

is a Pn−d−1-bundle and Ch f l(X) = %∗1 Chgr(X). Thus Chgr(F) is Cartier over S
iff Ch f l(F) is Cartier over S .

The right-hand side projection

%2 : FlagS (n−d−2, n−d−1,Pn
S )→ GrS (n−d−2,Pn

S )

is a Pd+1-bundle, but Ch f l(X) is not a pull-back from GrS (n−d−2,Pn
S ).

Let L ⊂ Pn
S be a flat family of (n−d−2)-planes over S . The preimage of [L]

is the set of all n−d−1-planes that contain L; we can identify this with sections
of the target of the projection πL : Pn d L⊥. Thus the restriction of Ch f l(X) to
the preimage of L is DSupp

(
(πL)∗(F)

)
.

So, if Ch f l(F) is Cartier over S , then DSupp
(
(πL)∗(F)

)
= Ch f l(F)|L⊥ is also

Cartier over S . Thus (7.47.2)⇒ (7.47.3) and (7.47.3)⇒ (7.47.4) is obvious.
Conversely, assume that DSupp

(
(πL)∗(F)

)
is Cartier over S for general L.

By (7.10.6) it is enough to show that Ch f l(F) is flat over S , outside a subset of
codimension ≥ 3.
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Let UF ⊂ GrS (n−d−2,Pn
S ) be the open subset consisting of those Ln−d−2 that

are disjoint from DSupp(F). The restriction of the projection π f to Suppσ∗f F
is finite over %−1

2 UF , thus Ch f (F) = DSuppS
(
(π f )∗σ∗f F

)
is flat over S , outside

a codimension ≥ 2 subset of each fiber of %−1
2 UF → UF by (7.29). By assump-

tion, the non-flat locus is disjoint from the generic fiber, hence the non-flat
locus has codimension ≥ 3 over UF .

It remains to understand what happens over ZF := GrS (n−d−2,Pn
S ) \ UF .

Note that %−1
2 (ZF) has codimension 2 in FlagS (n−d−2, n−d−1,Pn

S ), so it is
enough to show that Ch f l(F) is flat over S at a general point of a general fiber
over ZF .

Thus let Ln−d−2 be a general point of ZF . Then DSupp(F)∩Ln−d−2 is a single
point p and F is flat over S at p. Furthermore, a general Ln−d−1 ⊃ Ln−d−2 still
intersects DSupp(F) only at p. Thus σ∗f l(F) is flat over S at

(p, Ln−d−2, Ln−d−1) ∈ PFlagS (0, n−d−2, n−d−1,Pn),

and Suppσ∗f lF is finite over (Ln−d−2, Ln−d−1) ∈ FlagS (n−d−2, n−d−1,Pn
S ).

Since Ch f l(F) = DSuppS
(
(π f l)∗σ∗f lF

)
by (7.46.3), it is flat over S at the

point (Ln−d−2, Ln−d−1) by (7.29). �

Corollary 7.50 Let S be a scheme and F a generically flat family of pure,
coherent sheaves of dimension d on Pn

S . Let h : S ′ → S be a morphism. By
base change, we get g′ : X′ → S ′ and F′ = vpure(h∗XF) (9.12).
(7.50.1) If F is C-flat, then so is F′.
(7.50.2) If F′ is C-flat and h is scheme-theoretically dominant, then F is C-flat.

Proof We may assume that S is local with infinite residue field. Being C-flat
is exactly (7.47.3), which is equivalent to (7.47.1). F 7→ Chpr(F) commutes
with base change by (7.32) and, if h is scheme-theoretically dominant, then,
by (4.28), a divisorial sheaf is Cartier iff its divisorial pull-back is. �

Definition 7.51 Let S be a local scheme with infinite residue field and F a
generically flat family of pure, coherent sheaves of dimension d over S (7.27).
F is locally C-flat over S at y ∈ Y := SSupp F iff DSupp(π∗F) is Cartier over
S at π(y) for every OS -projection π : Pn

S d P
d+1
S that is finite on Y for which

{y} = Supp
(
π−1(π(y)) ∩ Y

)
.

Lemma 7.52 Let S be a local scheme with infinite residue field and F a gener-
ically flat family of pure, coherent sheaves of dimension d on Pn

S . Then F is
C-flat iff it is locally C-flat at every point.
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Proof It is clear that C-flat implies locally C-flat. Conversely, assume that F
is locally C-flat. Set Zs := Supp(Fs) \ FlatCMS (X, F) and pick points {yi : i ∈
I}, one in each irreducible component of Zs. If π : Pn

S d P
d+1
S is a general

OS -projection, then {yi} = π−1(π(yi)) ∩ Y for all i ∈ I.
Note that DSupp(π∗F) is a relative Cartier divisor along Pd+1

s \ π(Zs) by
(7.23) and it is also relative Cartier at the points π(yi) for i ∈ I since F is
locally C-flat. Thus DSupp(π∗F) is a relative Cartier divisor outside a codi-
mension ≥ 3 subset of Pd+1

s , hence a relative Cartier divisor everywhere by
(7.10.6). �

Corollary 7.53 Let (s, S ) be a local scheme and X ⊂ Pn
S a closed subscheme

that is flat over S of pure relative dimension d + 1. Let D ⊂ X be a relative
Mumford divisor. Let x ∈ Xs be a smooth point. Then OD is locally C-flat at x
iff D is a relative Cartier divisor at x.

Proof We may assume that S has infinite residue field. A general linear projec-
tion π : X → Pd+1

S is étale at x, and D ∩ π−1(π(x)) = {x}. Thus π|D : D → π(D)
is a local isomorphism at x, hence D is a relative Cartier divisor at x iff π(D) is
a relative Cartier divisor at π(x). By (7.28.2) DSuppS (π∗OD) = π(D), thus D is
a relative Cartier divisor at x iff DSuppS (π∗OD) is a relative Cartier divisor at
π(x). That is, iff OD is locally C-flat at x. �

Corollary 7.54 Let S be a scheme and F a generically flat family of pure,
coherent sheaves of dimension d over S . If F is flat at y ∈ Y := SSupp F then
it is also locally C-flat at y.

Proof We may assume that (s, S ) is local. By (10.17), Fs is CM outside a
subset Zs ⊂ Ys of dimension ≤ d − 2. Let Ws ⊂ Ys be the set of points
where F is not flat. Let π : Y → Pd+1

S be a general linear projection. By (7.23),
DSupp(π∗F) is a relative Cartier divisor outside π(Zs∪Ws), so we may assume
that π(y) < π(Ws). Thus, in a neighborhood of π(y), DSupp(π∗F) is a relative
Cartier divisor outside π(Zs), which has dimension ≤ d − 2. Thus DSupp(π∗F)
is a relative Cartier divisor at y by (7.10.6). �

Lemma 7.55 Let S be a scheme and F a generically flat family of pure, coher-
ent sheaves of dimension d on Pn

S . Let gm : Y ↪→ PN
S be an embedding such that

g∗mOPN
S
(1) ' π∗OPd+1

S
(m). If (gm)∗F is C-flat then F is C-flat.

Proof We may assume that S is local with infinite residue field. Let π : Pn
S d

Pd+1
S be a general linear projection. We need to show that DSupp(π∗F) is a

relative Cartier divisor.
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Choosing d + 2 general sections of OPd+1
S

(m) gives a morphism wm : Pd+1
S →

Pd+1
S . There is a linear projection % : PN

S d P
d+1
S such that wm ◦ π = % ◦ gm. By

assumption DSupp
(
(% ◦ gm)∗F

)
is a relative Cartier divisor, hence so is

DSupp
(
(wm ◦ π)∗F

)
= DSupp

(
(wm)∗ODSupp(π∗F)

)
,

where the equality follows from (7.30.2).
Pick a point x ∈ DSupp(π∗F). Then a general wm is étale at x and also {x} =

w−1
m (wm(x)) ∩ DSupp(π∗F). Thus wm : DSupp(π∗F) → DSupp

(
(wm ◦ π)∗F

)
is

étale at x. Thus DSupp(π∗F) is Cartier at x. �

Corollary 7.56 Let S be a scheme and F a generically flat family of pure,
coherent sheaves of dimension d on Pn

S . Let vm : Pn
S ↪→ P

N
S be the mth Veronese

embedding. If (vm)∗F is C-flat then so is F. �

There are very useful Bertini theorems for C-flatness. The going-down
versions are straightforward.

Lemma 7.57 Let (s, S ) be a local scheme and F a C-flat family of pure, coher-
ent sheaves of dimension d ≥ 1 on Pn

S (7.27). Then there is a finite set of points
Σ ⊂ Supp Fs with the following property.

Let H ⊂ Pn
S be a hyperplane that does not contain any point in Σ and Hs is

smooth at generic points of H ∩ Supp Fs. Then F|H is C-flat.

Proof We may assume that the residue field is infinite. Every projection H d
Pd

S is obtained as the restriction of a projection Pn
S d P

d+1
S . The rest follows

from (7.30.2). �

Corollary 7.58 Let (s, S ) be a local scheme and F a stably C-flat family of
pure, coherent sheaves of dimension d ≥ 1 on Pn

S . Set Y := SSupp F. Let
D ⊂ Y be a relative Cartier divisor that does not contain any point in Σ (7.57)
and Ds is smooth at generic points of D ∩ Supp Fs. Then F|D is also stably
C-flat.

Proof We may assume that the residue field is infinite. By (7.52) it is sufficient
to prove that F|D is locally C-flat. Pick a point y ∈ D and let H ⊃ Pn

S be a
general hypersurface such that H ∩ Y equals D in a neighborhood of y. After a
Veronese embedding, H becomes a hyperplane section, and then (7.57) implies
that F|H is stably C-flat. Hence F|H is locally C-flat by (7.52) and so F|D also
locally C-flat at y. �

The going-up version needs a little more care.
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Lemma 7.59 Let (s, S ) be a local Artinian scheme with infinite residue field
and F a generically flat family of pure, coherent sheaves of dimension d ≥ 2
on Pn

S . Then F is C-flat iff F|H is C-flat for a dense set of hyperplanes
H ⊂ P̌n

S .

Proof The hyperplanes are parametrized by H0(Pn
S ,OPn

S
(1)

)
' On+1

S . Since OS

is Artinian, it makes sense to talk about a dense set of hyperplanes. (This is the
only reason why the lemma is stated for Artinian schemes.)

One direction follows from (7.57). Conversely, if F|H is C-flat for a dense set
of hyperplanes H, then there is a dense set of projections π : Pn

S d P
d+1
S such

that, for a dense set of hyperplanes L ⊂ Pd+1
S , the restriction of F to π−1(L) is

C-flat. Thus DSupp(π∗F) is a relative Cartier divisor in an open neighborhood
of such an L by (7.31). Since d ≥ 2, this implies that DSupp(π∗F) is a relative
Cartier divisor everywhere by (7.10.6). Thus F is C-flat by (7.47). �

Now we come to the key result.

Proposition 7.60 Let (s, S ) be a local scheme and F a generically flat family
of pure, coherent sheaves of dimension 1 on Pn

S . Then F is stably C-flat ⇔
K-flat⇔ formally K-flat.

Proof By (7.39) formally K-flat⇒ K-flat⇒ stably C-flat.
Thus assume that F is stably C-flat. Set Y := SSupp F and pick a closed

point p ∈ Y . We need to show that F is formally K-flat at p. By the already
proved parts of (7.44), it is enough to prove this for Artinian base schemes with
infinite residue field. We may thus assume that S = Spec A for a local Artinian
ring (A, nA, k) with k infinite, and p ∈ Y(k) is the origin (1:0: · · · :0).

Let π : Ŷ → Â2
S = Spec A[[u, v]] be a finite morphism. We need to show that

DSupp(π∗F̂) is Cartier.
Let m0 be as in (7.61). By (7.35.2), for m � m0 we can choose homogeneous

polynomials g1, g2 ∈ H0(Pn
A,OPn

A
(m)

)
such that

τ : Y → P2
S given by (xm

0 :g1:g2) (7.60.1)

is a finite morphism, p is the only point of Y that maps to (1:0:0),

g1/xm
0 ≡ π

∗u mod nm0
R , and g2/xm

0 ≡ π
∗v mod nm0

R , (7.60.2)

where nR is the ideal sheaf of p ∈ Y .
Since F is stably C-flat, DSupp(τ∗F) is a Cartier divisor and so is its

completion at the image of p. Then DSupp(π∗F̂) is Cartier by (7.61). �
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Proposition 7.61 Let (A, nA, k) be an Artinian k-algebra, (R, nR) a local, S 1,
generically flat A-algebra of dimension 1, and F a generically free, finite
R-module. Let π : Spec R → Spec A[[u, v]] be a projection such that R is
finite over A[[u]] and π∗u, π∗v are non-zerodivisors. Then there is an m0 such
that
(7.61.1) if τ : Spec R → Spec A[[u, v]] satisfies τ∗u ≡ π∗u mod nm0

R and
τ∗v ≡ π∗v mod nm0

R , then DSupp(π∗F) is Cartier iff DSupp(τ∗F) is.

Proof We follow the computation of DSupp(π∗F) as in (7.21) and show that
the formula for DSupp(τ∗F) is very similar. Then we finish using (7.16).

Set s := π∗u. Since R is finite over A[[u]], (s) is nR-primary, hence ne
R ⊂ (s)

for some e ≥ 1. Since F is generically free over A[[s]], it contains a free
A[[s]]-module G = ⊕ jA[[s]]e j of the same generic rank = r. Since R is a finite
A[[s]]-algebra, RG ⊂ s−cG for some c ≥ 0. Hence DSupp(π∗F) agrees with
DSupp(π∗G) on the open set (u , 0).

We can thus compute DSupp(π∗F) using multiplication by π∗v on G, which
is given by a meromorphic matrix

Mπ(s) : ⊕ jA[[s]]e j ' G
π∗v
−→ s−dG ' ⊕ js−dA[[s]]e j

for some d ≥ 0. Our bound on m0 depends on r, c, d, e, and nil(nA).

Claim 7.61.2 If s1 ≡ s mod (sm) and m ≥ c + 1, then sr
1G = srG for r ≥ 0.

Proof Note that s1G ⊂ sG + sm−c(scRG) ⊂ sG + sm−cG ⊂ sG. Also, sc
1RG =

Rsc
1G ⊂ RscG = scRG ⊂ G, thus we can interchange s, s1 in the previous

argument to get that s1G = sG. �

In particular, if t := τ∗u ≡ π∗u mod (sm) and m ≥ c + 1, then G =

⊕ jA[[t]]e j. Thus we can use the same G for computing the divisorial sup-
port of τ∗F. Multiplication by τ∗v is given by another meromorphic matrix
Mτ(t) : G → t−dG. Next we compare Mπ and Mτ.

Claim 7.61.3 Assume that τ∗v ≡ π∗v mod (sm+c+d) and t ≡ s mod (sm+c).
Then Mπ(u) ≡ Mτ(u) mod umA[[u]].

Proof The assumptions imply that G/smG = G/tmG, s−dG/smG = t−dG/smG,
and τ∗v, π∗v induce the same map G/smG → s−dG/smG. �

Claim 7.61.4 Assume that Mπ(u) ≡ Mτ(u) mod um+rd−dA[[u]]. Then

det(v1r − Mπ) ≡ det(v1r − Mτ) mod umA[[u]].

Proof The difference of the two sides involves terms that contain at most r−1
entries of Mπ and at least one entry of Mπ − Mτ. �
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Putting these together, we get that if (7.61.1) holds and m0 is large enough,
then det(v1r − Mπ) ≡ det(v1r − Mτ) mod umA[[u]] and m ≥ nil(nA) · d. The
proposition now follows from (7.16). �

Corollary 7.62 Let (s, S ) be a local scheme and F a generically flat family of
pure, coherent sheaves of dimension d ≥ 1 on Pn

S . Let L,M be relatively ample
line bundles on Y := SSupp F. Then F is stably C-flat for L (as in (7.38.2)) iff
it is stably C-flat for M.

Proof We already proved (7.44) for stable C-flatness, thus it is enough to
prove our claim when S is Artinian with infinite residue field.

Assume that F is stably C-flat for M. By (7.56), we may assume that L
is very ample. Repeatedly using (7.58) we get that, for general Li ∈ |L|, the
restriction of F to the complete intersection curve L1 ∩ · · · ∩ Ld−1 ∩ Y is stably
C-flat for M. Thus the restriction of F to L1 ∩ · · · ∩ Ld−1 ∩ Y is formally K-flat
by (7.60). Using (7.60) in the other direction for L, we get that the restriction
of F to L1 ∩ · · · ∩ Ld−1 ∩ Y is stably C-flat for L. Now we can use (7.59) to
conclude that F is stably C-flat for L. �

7.63 (Proof of 7.40 and 7.44) We already noted in (7.39) that K-flat⇒ stably
C-flat.

To see the converse, assume that F is stably C-flat. We aim to prove that it
is K-flat. By the already established directions of (7.44), it is enough to prove
this over Artinian rings. Thus assume that S is the spectrum of an Artinian ring
and let π : X → Pd+1

S be a finite projection. Set L := π∗OPd+1
S

(1). By (7.62) F
is stably C-flat for L, hence DSupp(π∗F) is a relative Cartier divisor by (7.55).
This proves (7.40).

We already proved (7.44) for stable C-flatness. By the just established (7.40),
stable C-flatness is equivalent to K-flatness and local C-flatness, hence (7.44)
also holds for these. �

7.6 Representability Theorems

Definition 7.64 Let S be a scheme and F a generically flat family of pure,
coherent sheaves on Pn

S . As in (3.16.1), the functor of K-flat pull-backs is

KflatF(q : T → S) =

{∅} if q[∗]
P F → T is K-flat, and

∅ otherwise,

https://doi.org/10.1017/9781009346115.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781009346115.009


294 Cayley Flatness

where qP : Pn
T → P

n
S is the induced morphism and q[∗]

P F := vpure(q∗PF) is the
divisorial pull-back as in (4.2.7) or (9.12). If Y ⊂ Pn

S is a generically flat family
of pure subschemes then we write KflatY instead of KflatOY

.
If KflatF is representable by a morphism, we denote it by jkflat

F : S kflat
F → S .

Note that jkflat
F is necessarily a monomorphism.

One defines analogously the functor of C-flat pull-backs CflatF and the func-
tor of stably C-flat pull-backs SCflatF. The monomorphisms representing them
are denoted by jcflat

F : S cflat
F → S and jscflat

F : S scflat
F → S .

In our cases, several of the monomorphisms are subschemes S ∗ ↪→ S such
that red S = red S ∗. (In particular, S ∗ ⊂ S is both open and closed.) We call
such a subscheme full.

Proposition 7.65 Let S be a scheme and F a generically flat family of pure,
coherent sheaves of dimension d on Pn

S . Then the functors of C-flat, stably
C-flat or K-flat pull-backs of F are represented by full subschemes

S kflat
F = S scflat

F ⊂ S cflat
F ⊂ S .

Proof By (7.47), jcflat
F : S cflat

F → S is the same as jcar
Chpr(F) : S car

Chpr(F) → S , with
the Cayley–Chow hypersurface Chpr(F) as defined in (7.46.2). Thus (4.28)
gives S cflat

F ⊂ S .
We can apply this to each Veronese embedding vm : Pn

S ↪→ PN
S , to get full

subschemes S cflat
vm(F) ⊂ S . Their intersection gives S scflat

F ⊂ S . (An intersection
of closed subschemes is a subscheme.) Finally S kflat

F = S scflat
F by (7.40). �

7.66 (Proof of 7.3) Fix an embedding X ↪→ PS . By (4.76), there is a universal
family of generically flat Mumford divisors Univmd

d → MDivd(X ⊂ PS ). By
(7.65), we get KDivd(X) as a full subscheme

jkflat : KDivd(X) = MDivd(X ⊂ PS )kflat ↪→ MDivd(X ⊂ PS ). �

7.7 Normal Varieties

In the next three sections, we aim to give explicit descriptions of K-flat defor-
mations of certain varieties. First, we show that every K-flat deformation of a
normal variety is flat. Then we consider K-flat deformations of planar curves
and of seminormal curves. In both cases, we give a complete answer for first
order deformations only.
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Theorem 7.67 Let g : Y → (s, S ) be a projective morphism. Assume that
red(Ys) is normal, g is K-flat, g is smooth at the generic points of Ys, and
OY is vertically pure. Then g is flat along Ys.

Proof If dim Ys = 1, then the claim follows from (7.68). In general, there is
a smallest, closed subset Z ⊂ Ys such that g is flat along Ys \ Z. Using the
Bertini-type theorem (7.5), we see that the codimension of Z is ≥ 2. In this
case, flatness holds even without K-flatness by (10.71). �

Lemma 7.68 Let g : (y,Y) → (s, S ) be a local morphism of pure relative
dimension 1, that is, essentially of finite type. Assume that g is smooth along
Y \ {y}, g is formally K-flat at y, and pure(Ys) is smooth at y. Then g is smooth
at y.

Proof By (7.44), we may assume that S is Artinian. Then we can reduce it
further to the case when Y is complete and k(y) = k(s) =: k; see (10.57) and
(7.50). Write Y = Spec RA.

By induction on the length of A, we may assume that there is an ideal A ⊃
(ε) ' k such that pure(RA/εRA) ' (A/ε)[[x̄]].

Let x ∈ RA be a lifting of x̄. Set J := ker
[
RA → pure(RA/εRA)

]
. Then J is a

rank 1 Rk-module, hence free; let y ∈ J be a generator. We have xry = εgk(x),
where gk ∈ k[[x]] is a unit and r = dimk(J/εRA). These determine a projection
of RA whose image in Spec A[[x, y]] is given by the ideal

A[[x, y]] ∩
(
y − εx−rgk(x)

)
A[[x, x−1, y]].

By (7.15), this is a principal ideal iff gk(x) ∈ (y, xr), that is, when r = 0. Thus
RA = A[[x]]. �

7.8 Hypersurface Singularities

In this section we give a detailed description of K-flat deformations of
hypersurface singularities over k[ε].

7.69 (Non-flat deformations) Let X ⊂ An be a reduced subscheme of pure
dimension d. We aim to describe nonflat deformations of X that are flat outside
a subset W ⊂ X. Choose equations g1, . . . , gn−d such that

(g1 = · · · = gn−d = 0) = X ∪ X′,

where Z := X∩X′ has dimension < d. Let h be an equation of X′∪W that does
not vanish on any irreducible component of X. Thus X is a complete intersec-
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tion in An \ (h = 0) with equation g1 = · · · = gn−d = 0. Its flat deformations
over an Artinian ring (A,m, k) are then given by

gi(x) = Ψi(x), where Ψi ∈ m[x1, . . . , xn, h−1]. (7.69.1)

Note that we can freely change the Ψi by an element of the ideal
(
gi −Ψi

)
. For

A = k[ε] the equations can be written as

gi(x) = Φi(x)ε, where Φi ∈ k[x1, . . . , xn, h−1]. (7.69.2)

Now we can freely change the Φi by any element of the ideal ε(g1, . . . , gn−d).
Thus the relevant information is carried by φi := Φi|X . So, generically, first
order flat deformations can be given in the form

gi = φiε, where φi ∈ H0(X,OX)[h−1]. (7.69.3)

Set X◦ := X \ (Z ∪W). By varying h, we see that in fact

gi = φiε, where φi ∈ H0(X◦,OX◦
)
. (7.69.4)

This shows that the choice of h is largely irrelevant.
If the deformation is flat then the equations defining X lift, that is, φi ∈

H0(X,OX
)
. In some simple cases, for example if X is a complete intersec-

tion, this is equivalent to flatness. In the examples that we compute, the most
important information is carried by the polar parts

φ̄i ∈ H0(X◦,OX◦
)
/H0(X,OX

)
. (7.69.5)

We study first order K-flat deformations of hypersurface singularities. Plane
curves turn out to be the most interesting ones.

7.70 Consider a hypersurface singularity X := ( f = 0) ⊂ An
x and a generically

flat deformation of it
X ⊂ An+r

x,z [ε]→ Spec k[ε]. (7.70.1)

Aiming to work inductively, we assume that the deformation is flat outside the
origin. Choose coordinates such that the xi do not divide f .

As in (7.69.3), any such deformation can be given as

f (x) = ψ(x)ε and z j = φ j(x)ε, (7.70.2)

where ψ, φ j ∈ ∩iH0(X,OX)[x−1
n ]. If n ≥ 3, then ∩iOX[x−1

i ] = OX and we get
the following special case of (10.73).

Claim 7.70.3 Let X := ( f = 0) ⊂ An be a hypersurface singularity and X ⊂
An+r[ε] a first order deformation of X that is flat outside the origin. If n ≥ 3
then X is flat over k[ε]. �
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For n = 2, we use the following:

Notation 7.70.4 Let B =
(
f (x, y) = 0

)
⊂ A2 be a reduced curve singularity. Set

B◦ := B \ {(0, 0)}. A nonflat deformation B over k[ε] is written as

f (x, y) = Ψ(x, y)ε and z j = Φ j(x, y)ε.

As in (7.69), we set ψ := Ψ|B, φ j := Φ j|B and ψ̄, φ̄ j ∈ H0(B◦,OB◦ )/H0(B,OB)
denote their polar parts.

We say that a (flat, resp. generically flat) deformation over k[ε] globalizes if
it is induced from a (flat, resp. generically flat) deformation over k[[t]].

Theorem 7.71 Consider a generically flat deformation B of the plane curve
singularity B := ( f = 0) ⊂ A2

xy given in (7.70.4).
(7.71.1) If B is C-flat, then ψ ∈ H0(B,OB).
(7.71.2) If ψ ∈ H0(B,OB), then the deformation is

(a) flat iff φ j ∈ H0(B,OB) and
(b) C-flat iff fxφ j, fyφ j ∈ H0(B,OB).

(7.71.3) If B is reduced and ψ = 0, then the deformation globalizes iff φ j ∈

H0(B̄,OB̄), where B̄→ B is the normalization.

Remark 7.71.4 Note that Ω1
B is generated by dx|B, dy|B, while ωB is generated

by f −1
y dx = − f −1

x dy.
If B is reduced, then Ω1

B and ωB are naturally isomorphic over the smooth
locus B◦. This gives a natural inclusion Hom(Ω1

B, ωB) ↪→ OB◦ . Then (7.71.2.b)
says that φ̄ j ∈ Hom(Ω1

B, ωB)/OB. See (7.72) for monomial curves.

Proof For simplicity, we compute with one z coordinate. If ψ, φ ∈ H0(B,OB)
then we can assume that Ψ,Φ are regular, so the deformation is flat. The
converse in (7.71.2.a) is clear.

As for (7.71.2.b), we write down the equation of image of the projection

(x, y, z) 7→ (x̄, ȳ) =
(
x − α(x, y, z)z, y − γ(x, y, z)z

)
,

where α, γ are constants for linear projections and power series that are non-
zero at the origin in general. Since z2 = φ2ε2 = 0, Taylor expansion gives
that

f (x̄, ȳ) = f (x, y) − α(x, y, z) fx(x, y)z − γ(x, y, z) fy(x, y)z.

Similarly, for any polynomial F(x, y), we get that F(x̄, ȳ) ≡ F(x, y) mod εOB,
hence F(x̄, ȳ)z = F(x, y)z in OB since zε = 0. Thus the equation is

f (x̄, ȳ) −
(
ψ(x̄, ȳ) − α(x̄, ȳ, 0) fx(x̄, ȳ)φ − γ(x̄, ȳ, 0) fy(x̄, ȳ)φ

)
· ε = 0. (7.71.5)
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By (7.15.2), this defines a relative Cartier divisor for every α, γ iff ψ, fxφ, fyφ ∈
OB, proving (7.71.2.b). (Thus linear and formal projections give the same
restrictions, hence C-flatness implies formal K-flatness in this case.)

If B globalizes then φ ∈ H0(B̄,OB̄), this is the n = 1 case of (7.73.1). To
prove the converse assertion in (7.71.3), we would like to write the global
deformation as (

f (x, y) = 0, z = φ(x, y)s
)
⊂ A4

xyzs.

The problem with this is that φ has a pole at the origin. Thus we write φ = φ1h−r

where φ1 is regular at the origin and h is a general linear form in x, y. Then the
correct equations are(

f (x, y) = 0, zhr = φ1(x, y)s
)
⊂ A4

xyzs.

Note that typically φ1(0, 0) = 0, hence the two-plane (x = y = 0) ⊂ A4
xyzs

appears as an extra irreducible component. We need one more equation to
eliminate it.

If φ ∈ H0(B̄,OB̄), then it satisfies an equation

φm +
∑m−1

j=0 r jφ
j = 0, where r j ∈ H0(B,OB).

Thus z = φs satisfies the equation zm +
∑m−1

j=0 r jz jsm− j = 0. Now the three
equations

f (x, y) = zhr − φ1(x, y)s = zm +
∑m−1

j=0 r jz jsm− j = 0

define the required globalization of the infinitesimal deformation. �

7.71.6 (Nonreduced curves) Consider B = (y2 = 0) with deformations

y2 = (yψ1(x) + ψ0(x))ε and z = (yφ1(x) + φ0(x))ε,

where ψi, φi ∈ k[x, x−1]. If this is C-flat, then ψi ∈ k[x] by (7.71.1). Since
fx ≡ 0, (7.71.2.b) gives only one condition, that y(yφ1(x) + φ0(x)) be regular.
Since y2 = 0, we get that φ0 ∈ k[x], but no condition on φ1. So it can have a pole
of arbitrary high order. Note that if φ1 has a pole of order m, then regularizing
the second equation we get zxm = yε+ (other terms). This suggests that if these
deformations lie on a family of surfaces, the total space must have more and
more complicated singularity at the origin as m→ ∞.

Example 7.72 (Monomial curves) We can be quite explicit if B is the irreduci-
ble monomial curve B := (xa = yc) ⊂ A2 where (a, c) = 1. Its miniversal space
of flat deformations is given as

xa − yc +
∑a−2

i=0
∑c−2

j=0 si jxiy j = 0.

Its dimension is (a − 1)(c − 1).
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In order to compute C-flat deformations, we parametrize B as t 7→ (tc, ta).
Thus OB = k[tc, ta]. Let EB = Na+Nc⊂N denote the semigroup of exponents.
Then the condition (7.71.2.b) becomes

tac−cφ(t), tac−aφ(t) ∈ k[ta, tc]. (7.72.1)

This needs to be checked one monomial at a time.
For φ = tm and m ≥ 0 the conditions (7.72.1) are automatic, and the defor-

mation is nonflat iff m < EB. These give a space of dimension 1
2 (a − 1)(c − 1).

(This is an integer since one of a, c must be odd.)
For φ = t−m and m ≥ 0, we get the conditions ac−c−m ∈ EB and ac−a−m ∈

EB. By (7.72.4), these are equivalent to ac − a − c −m ∈ EB. The largest value
of m satisfying this gives the deformation(

xa − yc = z − t−ac+a+cε = 0) over k[ε]. (7.72.2)

Note also that for 0 ≤ m ≤ ac − a − c, we have that ac − a − c − m ∈ EB iff
m < EB. These again have 1

2 (a − 1)(c − 1) solutions.
Thus we see that the space of C-flat deformations that are nonflat has (a −

1)(c − 1) extra dimensions; the same as the space of flat deformations. This
looks very promising, but the next example shows that we get different answers
for non-monomial curve singularities.

7.72.3 (Non-monomial example) Consider the curve singularity B = (x4 + y5 +

x2y3 = 0). Blowing up the origin, we get (x/y)4 + y + (x/y)2y = 0. Thus B is
irreducible, it can be parametrized as x = t5 + · · · , y = t4 + · · · , and it is an
equisingular deformation of the monomial curve (x4 + y5 = 0).

In the monomial case we have the deformation (7.72.2) where z− t−11ε = 0.
We claim that B does not have a C-flat deformation z − φε = 0 where φ =

t−11 + · · · . Indeed, such a deformation would satisfy

fxφ = y · (local unit) and fyφ = x · (local unit).

Eliminating φ gives that (x fx)/(y fy) = (local unit). We can compute the left-
hand side as

4x4 + 2x2y3

5y5 + 3x2y3 =
−4y5 − 4x2y3 + 2x2y3

5y5 + 3x2y3 = −
4
5
·

1 + (1/2)(x/y)2

1 + (3/5)(x/y)2 .

This is invertible at the origin of the normalization of B, but it is not regular on
B since x

y = t + · · · . �

The following is left as an exercise.

Claim 7.72.4 For (a, c) = 1, set E = Na + Nc ⊂ N. Then
(a) If 0 ≤ m ≤ min{ac − a, ac − c} then ac − a − m, ac − c − m ∈ E iff

ac − a − c − m ∈ E.
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(b) If 0 ≤ m ≤ ac − a − c then ac − a − c − m ∈ E iff m < E. �

7.73 (Normalization of a deformation) Let T be the spectrum of a DVR with
maximal ideal (t) and residue field k. Let g : X → T be a flat morphism of pure
relative dimension d with generically reduced fibers. Set Z : = Supp tors(X0)
and let π : X̄ → X be the normalization.

By composition, we get ḡ : X̄ → T . Note that π0 : X̄0 → X0 is an iso-
morphism over X0 \ Z and X̄0 is S 1. In particular, X̄0 is dominated by the
normalization Xnor

0 of X0.
Note that tnOX usually has some embedded primes contained in Z. The inter-

section of its height 1 primary ideals (also called the nth symbolic power of
tOX) is (tOX)(n) = OX ∩ tnOX̄ . In particular, we have injections

(tOX)(n)/(tOX)(n+1) ↪→ tnOX̄/t
n+1OX̄ ' OX̄k

. (7.73.1)

A closely related computation is the following.

Example 7.74 Kollár (1999, 4.8) Using (7.34.1), we see that the ideal of Chow
equations of the codimension 2 subvariety

(
xn+1 = f (x0, . . . , xn) = 0

)
⊂ Pn+1

is generated by the forms

f
(
x0 − a0xn+1 : · · · : xn − anxn+1

)
for all a0, . . . , an. (7.74.1)

If the characteristic is 0, then Taylor’s theorem gives that

f
(
x0 − a0xn+1 : · · · : xn − anxn+1

)
=

∑
I

(−1)I

I! aI ∂I f
∂xI x|I|n+1, (7.74.2)

where I = (i0, . . . , in) ∈ Nn+1. The a|I| are linearly independent, hence we get
that the ideal of Chow equations is

Ich( f (x0, . . . , xn), xn+1
)

=
(
f , xn+1D( f ), . . . , xm

n+1Dm( f )
)
, (7.74.3)

where we can stop at m = deg f . Here we use the usual notation

D( f ) :=
(

f , ∂ f
∂x0
, . . . , ∂ f

∂xn

)
(7.74.4)

for derivative ideals.
If we want to work locally at the point p = (x1 = · · · = xn = 0), then we can

set x0 = 1 to get the local version

Ich( f (1, x1, . . . , xn), xn+1
)

=
(
f , xn+1D( f ), . . . , xm

n+1Dm( f )
)
, (7.74.5)

where we can now stop at m = multp f . This also holds if f is an analytic func-
tion, though this needs to be worked out using the more complicated formulas
(7.34.6) that for us become

π : (x1, . . . , xn+1)→
(
x1 − xn+1ψ1, . . . , xn − xn+1ψn

)
, (7.74.6)
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where ψi = ψi(x0, . . . , xn+1) are analytic functions. Expanding as in (7.74.2)
we see that

f
(
x1 − xn+1ψ1, . . . , xn − xn+1ψn

)
∈ Ich( f (x1, . . . , xn), xn+1

)
. (7.74.7)

Thus we get the same ideal if we compute Ich using analytic projections.

7.9 Seminormal Curves

Over an algebraically closed field k, every seminormal curve singularity is
formally isomorphic to

Bn := Spec k[x1, . . . , xn]/(xix j : i , j) ⊂ An
x,

formed by the union of the n coordinate axes. In this section, we study
deformations of Bn over k[ε] that are flat outside the origin.

A normal form is worked out in (7.75.4), which shows that the space of these
deformations is infinite dimensional. Then we describe the flat deformations
(7.76) and their relationship to smoothings (7.77).

We compute C-flat and K-flat deformations in (7.79); these turn out to be
quite close to flat deformations.

The ideal of Chow equations of Bn is computed in Kollár (1999, 4.11). For
n = 3, these are close to C-flat deformations, but the difference between the
two classes increases rapidly with n.

7.75 (Generically flat deformations of Bn) Let Bn ⊂ A
m
x [ε] be a generically

flat deformation of Bn ⊂ A
m
x over k[ε].

If Bn is flat over k[ε], then we can assume that n = m, but a priori we only
know that n ≤ m. Following (7.69), we can describe Bn as follows.

Along the x j-axis and away from the origin, the deformation is flat. Thus, in
the (x j , 0) open set, Bn can be given as

xi = Φi j(x1, . . . , xm)ε, where i , j and Φi j ∈ k[x1, . . . , xm, x−1
j ]. (7.75.1)

Note that (x1, . . . , x̂ j, . . . , xm, ε)2 is identically 0 on Bn ∩ (x j , 0), so the terms
in this ideal can be ignored. Thus along the x j-axis we can change (7.75.1) to
the simpler form

xi = φi j(x j)ε, where i , j and φi j ∈ k[x j, x−1
j ]. (7.75.2)

There is one more simplification that we can make. Write

φi j = φ′i j + γi j where φ′i j ∈ k[x−1
j ], γi j ∈ (x j) ⊂ k[x j],
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and set x′i = xi −
∑

j,iγi j(x j). Then we get the description

x′i = φ′i j(x′j)ε where i , j and φ′i j ∈ k[x′j
−1]. (7.75.3)

For most of our computations, the latter coordinate change is not very
important. Thus we write our deformations as

Bn :
{
xi = φi j(x j)ε along the x j-axis

}
, (7.75.4)

where φi j(x j) ∈ k[x j, x−1
j ], but we keep in mind that we can choose φi j(x j) ∈

k[x−1
j ] if it is convenient. Writing Bn as in (7.75.4) is almost unique; see

(7.76.3) for one more coordinate change that leads to a unique normal form.
Writing xix j in two ways using (7.75.4) we get that

xix j =
(
xiφ ji(xi)1i + x jφi j(xi)1 j

)
ε, (7.75.5)

where 1` denotes the function that is 1 on the x`-axis and 0 on the others.
In order to deal with the cases when m > n, we make the following:

Convention 7.75.6 We set φi j ≡ 0 for j > n.

We get the same result (7.75.4) if we work with the analytic or formal local
scheme of Bn: we still end up with φi j(x j) ∈ k[x−1

j ].

Proposition 7.76 For n ≥ 3, the generically flat deformation Bn ⊂ A
n
x[ε] as in

(7.75.4) is flat iff
(7.76.1) either n ≥ 3 and the φi j have no poles,
(7.76.2) or n = 2 and φ12, φ21 have only simple poles with the same residue.

Proof Bn is flat iff the equations xix j = 0 of Bn lift to equations of Bn. We
computed in (7.75.5) that xix j =

(
xiφ ji(xi)1i + x jφi j(xi)1 j

)
ε, thus xix j lifts to

an equation iff xiφ ji(xi)1i + x jφi j(xi)1 j is regular. Thus the φi j have only simple
poles and the residues must agree along all the axes. xiφ ji(xi)1i + x jφi j(xi)1 j

vanishes along the other n − 2 axes for n ≥ 3, so the residues must be 0. �

Corollary 7.76.3 The first order flat deformation space T 1
Bn

has dimension n(n−
1) − n = n(n − 2).

Proof By (7.75.3) and (7.76), flat deformations can be given as

Bn :
{
xi = ei jε along the x j-axis, where ei j ∈ k

}
.

The constants ei j are not yet unique, xi 7→ xi − ai changes ei j 7→ ei j − a j. �

Strangely, (7.76.3) says that every flat first order deformation of Bn is
obtained by translating the axes independently of each other. These defor-
mations all globalize in the obvious way, but the globalization is not a flat
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deformation of Bn unless the translated axes all pass through the same point.
If this point is (a1ε, . . . , anε), then ei j = a j and applying (7.76.3) we get the
trivial deformation. See (7.77) for smoothings of Bn.

If n = 2, then the universal deformation is x1x2 + ε = 0. One may ask why
this deformation does not lift to a deformation of B3: smooth two of the axes
to a hyperbola and just move the third axis along. If we use x1x2 + t = 0, then
the x3-axis should move to the line (x1 −

√
t = x2 −

√
t = 0). This gives the flat

deformation given by equations

x1x2 + t = x3(x1 −
√

t) = x3(x2 −
√

t) = 0.

Of course this only makes sense if t is a square. Thus setting ε =
√

t mod t
the t = ε2 mod t term becomes 0 and we get

x1x2 = x3x1 − x3ε = x3x2 − x3ε = 0,

which is of the form given in (7.76.1).

Example 7.77 (Smoothing Bn) Rational normal curves Rn ⊂ P
n have a moduli

space of dimension (n + 1)(n + 1) − 1 − 3 = n2 + 2n − 3. The Bn ⊂ P
n have a

moduli space of dimension n + n(n − 1) = n2. Thus the smoothings of Bn have
a moduli space of dimension n2 + 2n− 3− n2 = 2n− 3. We can construct these
smoothings explicitly as follows.

Fix distinct p1, . . . , pn ∈ k and consider the map

(t, z) 7→
(

t
z−p1

, . . . , t
z−pn

)
.

Eliminating z gives the equations

(pi − p j)xix j + (xi − x j)t = 0: 1 ≤ i , j ≤ n (7.77.1)

for the closure of the image, which is an affine cone over a degree n rational
normal curve Rn ⊂ P

n
t,x. So far this is an (n − 1)-dimensional space.

Applying the torus action xi 7→ λ−1
i xi, we get new smoothings given by

(pi − p j)xix j + (λ jxi − λix j)t = 0: 1 ≤ i , j ≤ n. (7.77.2)

Writing it in the form (7.75.4), we get

xi = λi
pi−p j

ε along the x j-axis. (7.77.3)

This looks like a 2n-dimensional family, but Aut(P1) acts on it, reducing the
dimension to the expected 2n−3. The action is clear for z 7→ αz+β, but z 7→ z−1

also works out since
λi

p−1
i −p−1

j
=
−λi p2

i
pi−p j

+ λi pi.
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Claim 7.77.4 For distinct pi ∈ k and λ j ∈ k∗, the vectors(
λ j

pi−p j
: i , j

)
span T 1

Bn
' k(n

2).

So the flat infinitesimal deformations determined in (7.76.3) form the Zariski
tangent space of the smoothings.

Proof Assume that there is a linear relation
∑

i jmi j
λ j

pi−p j
= 0. If we let pi → p j

and keep the others fixed, we get that mi j = 0. �

Remark 7.77.5 If n = 3, then the Hilbert scheme of degree 3 reduced space
curves with pa = 0 is smooth; see Piene and Schlessinger (1985).

Example 7.78 (Simple poles) Among nonflat deformations, the simplest ones
are given by φi j(x j) = ci jx−1

j +ei j. By (7.75.5), xix j =
(
c ji1i +ci j1 j

)
ε. For n ≥ 3

and general choices of the ci j, the rational functions c ji1i +ci j1 j span OB̄n
/OBn .

Thus we get an exact sequence

0→ ε · OB̄n
→ OBn → OBn → 0. (7.78.1)

The main result is the following.

Theorem 7.79 For a first order deformation of Bn ⊂ A
m specified by

Bn :
{
xi = φi j(x j)ε along the x j-axis

}
, (7.79.1)

the following are equivalent:
(7.79.2) Bn is C-flat.
(7.79.3) Bn is K-flat.
(7.79.4) The φi j have only simple poles and φi j, φ ji have the same residue.

Recall that φi j ≡ 0 for j > n by (7.75.6), hence (4) implies that φi j has no
poles for i > n.

Proof The proof consist of two parts. First, we show in (7.80) that (7.79.2)
and (7.79.4) are equivalent by explicitly computing linear projections.

We see in (7.81) that if the φi j have only simple poles, then there is only
one term of the equation of a nonlinear projection that could have a pole. This
term is the same for the linearization of the projection. Hence it vanishes iff it
vanishes for linear projections. This shows that (7.79.4)⇒ (7.79.3). �

Remark 7.79.5 If j > n then φi j ≡ 0 by (7.75.6), so φ ji is regular by (7.79.4).
Evaluating them at the origin gives the vector v j ∈ kn. If

∑
j>nλ jv j = 0 then∑

j>nλ j
(
x j −

∑n
i=1φ jix`ε

)
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is regular and identically 0 on Bn. We can thus eliminate some of the x j for
j > n and obtain that every K-flat deformation of Bn lives in A2n−1.

7.80 (Linear projections) Recall that by our convention (7.75.6), φi j ≡ 0 for
j > n. Extending this, in the following proof all sums/products involving i go
from 1 to m and sums/products involving j go from 1 to n.

With Bn, as in (7.79.1), consider the special projections

πa : An
x[ε]→ A2

uv[ε] given by u =
∑

xi, v =
∑

aixi, (7.80.1)

where ai ∈ k[ε]. Write ai = āi + a′iε. (One should think that a′i = ∂ai/∂ε.)
In order to compute the projection, we follow the method of (7.21.7). Since

we compute over k[u, u−1, ε], we may as well work with the k[u, ε]-module
M := ⊕ jk[x j, ε] and write 1 j ∈ k[x j, ε] for the jth unit. Then multiplication by
u and v are given by

u · 1 j = (
∑

ixi)1 j = x j +
∑

iφi jε, and
v · 1 j = (

∑
i aixi)1 j = a jx j +

∑
iaiφi jε.

(7.80.2)

Thus v · 1 j =
(
a ju +

∑
i(ai − a j)φi j(u)ε

)
· 1 j. and the v-action on M is given by

the diagonal matrix

diag
(
a ju +

∑
i(ai − a j)φi j(u)ε

)
.

By (7.21.7), the equation of the projection is its characteristic polynomial∏
j
(
v − a ju −

∑
i(ai − a j)φi j(u)ε

)
= 0. (7.80.3)

Expanding it, we get an equation of the form∏
j
(
v − ā ju

)
− E(u, v, a, φ)ε = 0, where

E(u, v, a, φ) =
∑

j
(∏

i, j(v − ā ju)
)
·
(
a′ju +

∑
i(āi − ā j)φi j(u)

)
.

(7.80.4)

This is a polynomial of degree ≤ n − 1 in v, hence by (7.19) its restriction to
the curve

(∏
j
(
v − ā ju

)
= 0

)
is regular iff E(u, v, a, φ) is a polynomial in u as

well. Let r be the highest pole order of the φi j and write

φi j(u) = ci ju−r + (higher terms). (7.80.5)

Then the leading part of the coefficient of vn−1 in E(u, v, a, φ) is∑
j
∑

i(āi − ā j)ci ju−r = u−r∑
i āi

(∑
j(ci j − c ji)

)
. (7.80.6)

Since the āi are arbitrary, we get that∑
j(ci j − c ji) = 0 for every i. (7.80.7)
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Next we use a linear reparametrization of the lines xi = λ−1
i yi and then apply a

projection πa as in (7.80.1). The equations xi = φi j(x j)ε become

yi = λiφi j(λ−1
j y j)ε

and ci j changes to λiλ
r
jci j. Thus the equations (7.80.7) become∑

j(λiλ
r
jci j − λ jλ

r
i c ji) = 0 ∀i. (7.80.8)

If r ≥ 2, this implies that ci j = 0 and if r = 1 then we get that ci j = c ji.
This completes the proof of (7.79.2)⇔ (7.79.4).

Remark 7.80.9 Note that if we work over F2, then necessarily λi = 1, hence
(7.80.8) does not exclude the r ≥ 2 cases.

7.81 (Non-linear projections) Consider a general non-linear projection

(x1, . . . , xn) 7→
(
Φ1(x1, . . . , xn),Φ2(x1, . . . , xn)

)
.

After a formal coordinate change, we may assume that Φ1 =
∑

ixi. Note that
the monomials of the form xix jxk, x2

i x2
j , xix jε vanish on Bn, so we can discard

these terms from Φ2. Thus, in suitable local coordinates, a general nonlinear
projection can be written as

u =
∑

ixi, v =
∑

iαi(xi) +
∑

i, jxiβi j(x j), (7.81.1)

where αi(0) = βi j(0) = 0. Note that α′i(0) = ai in the notation of (7.80). Now

u · 1 j = x j +
∑

iφi j(x j)ε, and
v · 1 j = α j(x j) +

∑
i, jαi

(
φi j(x j)ε

)
+

∑
i, jφi j(x j)βi j(x j)ε.

(7.81.2)

Note further that αi
(
φi j(x j)ε

)
= α′i(0)φi j(x j)ε and

α j(x j) = α j
(
u −

∑
iφi j(x j)ε

)
= α j(u) − α′j(u)

∑
iφi j(x j)ε.

Thus, as in (7.80.4), the projection is defined by the vanishing of∏
j

(
v − α j(u) −

∑
i
(
βi j(u) + α′i(0) − α′j(u)

)
φi j(u)ε

)
=:

∏
j
(
v − ᾱ j(u)

)
− E(u, v, α, β, φ)ε.

(7.81.3)

Let β̄i j, ᾱ
′
j denote the residue of βi j, α

′
j modulo ε and write α j(u) = ᾱ j(u) +

∂εα j(u)ε. As in (7.80.5), expanding the product gives that E(u, v, α, β, φ) equals∑
j
(∏

i, j(v − ᾱi(u))
)
·
(
∂εα j(u) +

∑
i
(
β̄i j(u) + ᾱ′i(0) − ᾱ′j(u)

)
φi j

)
. (7.81.4)

We already know that φi j(u) = ci ju−1 + (higher terms), hence E(u, v, α, β, φ)
has at most simple pole along (u = 0). Computing its residue gives that

vn−1∑
j
∑

i
(
β̄i j(0) + ᾱ′i(0) − ᾱ′j(0)

)
ci j = vn−1∑

i j(āi − ā j)ci j. (7.81.5)
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These are the same as in (7.80.6). Thus E(u, v, α, β, φ) is regular iff it is regular
for the linearization. This completes the proof of (7.79.4)⇒ (7.79.3).

Example 7.82 The image of a general linear projection of Bn ⊂ A
n to A2 is n

distinct lines through the origin. A general nonlinear projection to A2 gives n
smooth curve germs with distinct tangent lines through the origin.

As a typical example, the miniversal deformation of (xn + yn = 0) is(
xn + yn +

∑
i, j≤n−2ti jxiy j = 0

)
⊂ A2

xy × A
(n−1)2

t . (7.82.1)

Deformations with tangent cone (xn + yn = 0) form the subfamily(
xn + yn +

∑
i+ j>nti jxiy j = 0

)
⊂ A2

xy × A
(n−3

2 )
t . (7.82.2)

For n ≤ 4, there is no such pair (i, j), thus, for n ≤ 4, every analytic projection
B̂n → Â

2 is obtained as the composite of an automorphism of B̂n, followed by
a linear projection and an automorphism of Â2.

For n = 5, we get the deformations (x5+y5+tx3y3 = 0) ⊂ A2
xy×At. For t , 0,

these give curve germs that are images of B̂n by a nonlinear projection, but
cannot be obtained as the image of a linear projection, up to automorphisms.
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