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Abstract We study the problem −∆pu = f(x, u) + t in Ω with Neumann boundary condition
|∇u|p−2(∂u/∂ν) = 0 on ∂Ω. There exists a t0 ∈ R such that for t > t0 there is no solution. If t � t0,
there is at least a minimal solution, and for t < t0 there are at least two distinct solutions. We use the
sub–supersolution method, a priori estimates and degree theory.
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1. Introduction

We study the problem

−∆pu = f(x, u) + t in Ω,

|∇u|p−2 ∂u

∂ν
= 0 on ∂Ω,

⎫⎬
⎭ (Pt)

where Ω ⊂ R
n is an open bounded domain with smooth boundary ∂Ω, t ∈ R is a

parameter and f : Ω × R → R is a Carathéodory function. Here ∆pu = div(|∇u|p−2∇u)
denotes the p-Laplacian operator for 1 < p < ∞. We also assume that

lim inf
s→∞

f(x, s)
|s|p−2s

> 0 (1.1)

and

lim sup
s→−∞

f(x, s)
|s|p−2s

< 0, (1.2)
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where the limits are uniform in x ∈ Ω. Conditions (1.1) and (1.2) are a sort of eigenvalue
crossing of f . These assumptions imply, respectively,

f(x, s) � µ|s|p−2s − C, s > 0, (1.3)

and

f(x, s) � −µ|s|p−2s − C, s < 0, (1.4)

for some constants C > 0 and µ > 0. The next hypothesis is standard in order to apply
the sub–supersolution method. We shall assume that for all M > 0 there exists λ > 0
such that

f(x, u) + λ|u|p−2u is non-decreasing in u on [−M, M ]. (1.5)

Hypothesis (1.5) is in fact not needed when one assumes that p = 2 and that f is C1,
since in this case the derivative is fu + λ > 0 for u belonging to some interval [−M, M ]
and λ large.

A function u ∈ W 1,p(Ω) is called a (weak) solution of (Pt) if∫
Ω

|∇u|p−2∇u∇φ dx =
∫

Ω

f(x, u)φ dx − t

∫
Ω

uφ dx for all φ ∈ C1(Ω̄),

where

F (x, t) =
∫ t

0
f(x, s) ds.

Theorem 1.1. Suppose (1.1), (1.2) and (1.5) hold and that there exists a constant c

such that

f(x, s) � c(1 + |s|p−1) for all s ∈ R and uniformly for x ∈ Ω. (1.6)

Then there exists t0 ∈ R such that

(i) if t > t0, then (Pt) has no solution and

(ii) if t � t0, then (Pt) has at least a minimal solution.

Moreover, assume f is locally Lipschitz continuous in s uniformly a.e. in x ∈ Ω. Then

(iii) there exists t1 � t0 such that for t < t1 (Pt) has at least two distinct solutions and

(iv) if, moreover, f ∈ C(Ω̄ × R), then t1 = t0.

Problems of this nature fit into a general framework devised in the pioneering paper
by Ambrosetti and Prodi [1]. They studied the problem

−∆u = g(u) + h(x) in Ω

u = 0 on ∂Ω,

}
(1.7)

where g interacts with the spectrum 0 < λ1 < λ2 � λ3 � λ4 � · · · of −∆ in H1
0 (Ω)

in such a way that g′(−∞) < λ1 < g′(+∞) < λ2. Assuming that g′′ > 0, they
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proved that the singular set S of the mapping Φ(u) = −∆u − g(u) from U = {u ∈
C2,α(Ω) : u = 0 on ∂Ω} to V = {u ∈ C0,α(Ω) : u = 0 on ∂Ω}, 0 < α < 1, consists
of a codimension-1 manifold parametrized over {u ∈ U :

∫
Ω

uϕ1 = 0}, where ϕ1 denotes
the first eigenfunction corresponding to λ1. Moreover, Φ(S) is a smooth codimension-1
manifold and V − Φ(S) has exactly two components V0 and V2. If h ∈ V2, then (1.7)
has two solutions. If h ∈ V0, then (1.7) has no solution. If h ∈ Φ(S), then (1.7) has one
solution. Subsequently, in [5] these results have been generalized by parametrizing Φ(S)
in H1

0 . A complete characterization showing that Φ is globally diffeomorphic to the fold
map is given in [4]. A rich structure of the mapping Φ is described in [6–8] in spatial
dimension 1. In the present paper we do not give such a detailed description of (Pt),
since we do not have the Hilbert space structure. Also, −∆p does not possesses the same
regularizing properties of −∆.

Equation (1.7) with Neumann condition ∂u/∂ν = 0 on ∂Ω was studied in [3, 13].
A result similar to ours for Dirichlet boundary condition u = 0 on ∂Ω was addressed
in [2,9] using different techniques.

In § 2 we show some a priori estimates for solutions of (Pt). We use these lemmas to
define adequate sets to apply degree theory to prove Theorem 1.1 in § 3.

2. Preliminaries

Throughout this section we assume (1.1), (1.2) and (1.6) hold. We begin by establishing
an a priori bound for solutions of (Pt).

Lemma 2.1. Let u be a weak solution of (Pt) in W 1,p
0 (Ω). If t belongs to a bounded

interval, then ‖u‖L∞ � c, where c > 0 is a constant depending on t but not on u.

Proof. First we shall prove that ‖u−‖L∞ is bounded. Indeed, multiply (Pt) by ϕ =
max(u− − k, 0) ∈ W 1,p(Ω), where k > 0. Defining Ak = {x ∈ Ω : u− > k} and using
(1.4), we obtain

∫
Ak

|∇(u− − k)|p = −
∫

Ak

(f(x, u) + t)ϕ

�
∫

Ak

(c(u−)p−1 + c + |t|)(u− − k)

=
∫

Ak

c(u−)p−1(u− − k) + (c + |t|)
∫

Ak

(u− − k)

�
∫

Ak

C((u− − k)p + kp−1(u− − k)) + (c + |t|)
∫

Ak

(u− − k)

= C

∫
Ak

(u− − k)p + (Ckp−1 + c + |t|)
∫

Ak

(u− − k). (2.1)
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In the course of this proof, constant C > 0 may vary from line to line. By the Hölder
and Sobolev inequalities,

∫
Ak

(u− − k)p � |Ak|p/n

( ∫
Ak

(u− − k)np/(n−p)
)(n−p)/n

� |Ak|p/nC

( ∫
Ak

|∇(u− − k)|p +
∫

Ak

(u− − k)p

)
, (2.2)

Thus, (2.1) and (2.2) imply

(|Ak|−p/n − C)
∫

Ak

(u− − k)p � C

∫
Ak

(u− − k)p + C(kp−1 + 1 + |t|)
∫

Ak

(u− − k); (2.3)

hence,

(|Ak|−p/n − C)
∫

Ak

(u− − k)p � C(kp−1 + 1 + |t|)
∫

Ak

(u− − k).

Note that |Ak| → 0 as k → ∞. Indeed, by the proof of Lemma 2.2 (see below), one
obtains

|Ak| =
∫

u−>k

dx �
∫

Ak

(u−)p−1

kp−1 � Ck1−p.

Therefore, |Ak|−p/n − C > 0 for every k � k0, where k0 is fixed, large enough and does
not depend on u.

By the Hölder inequality and (2.3),

∫
Ak

(u− − k) � |Ak|(p−1)/p

( ∫
Ak

(u− − k)p

)1/p

� C|Ak|(p−1)/p

(
kp−1 + 1 + |t|
|Ak|−p/n − C

∫
Ak

(u− − k)
)1/p

.

Thus,

( ∫
Ak

(u− − k)
)(p−1)/p

� C|Ak|(p−1)/p

(
kp−1 + 1 + |t|
|Ak|−p/n − C

)1/p

.

Consequently,

∫
Ak

(u− − k) � C|Ak|
(

kp−1 + 1 + |t|
|Ak|−p/n − C

)1/(p−1)

= C|Ak|1+(p/n(p−1))
(

kp−1 + 1 + |t|
1 − |Ak|p/nC

)1/(p−1)

.
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We can assume that 1 − |Ak|p/nC � 1
2 for k � k0, and then∫

Ak

(u− − k) � C|Ak|1+(p(p−1)/n)(kp−1 + 1 + |t|)p−1

= C|Ak|1+(p(p−1)/n)k

(
1 +

1 + |t|
kp−1

)p−1

� C|Ak|1+(p(p−1)/n)k

(
1 +

1 + |t|
kp−1
0

)p−1

� C|Ak|1+(p(p−1)/n)k.

We are now in a position to apply [10, Lemma 5.1, p. 71], to conclude that ‖u−‖L∞ is
bounded by a constant that depends only on t, k0, µ, p, n and ‖u−‖L1(Ak0 ). As we said
before, constant k0 does not depend on u. We shall bound ‖u−‖L1(Ak0 ) more accurately;
this is done below.

Multiplying (Pt) by −u− and using (1.4), we obtain

0 �
∫

Ω

|∇u−|p

=
∫

Ω

−f(x, u)u− − t

∫
Ω

u−

� −µ

∫
Ω

(u−)p + C

∫
Ω

u− − t

∫
Ω

u−.

Hence, ∫
Ω

|∇u−|p + µ

∫
Ω

(u−)p � (C + |t|)
∫

Ω

u− � µ

2

∫
Ω

(u−)p + C(1 + |t|).

It follows that ‖u−‖W 1,p is bounded. Thus,∫
Ak0

|u−| �
∫

Ω

|u−| � C

( ∫
Ω

|u−|p
)1/p

� C(1 + |t|).

Therefore, ‖u−‖L∞ is bounded by a constant depending only on t, µ, p and n.
Now we prove that ‖u+‖L∞ is bounded. We only need to prove that ‖u+‖Lp is bounded,

since the computations above to prove the boundedness of ‖u−‖L∞ can be performed in
a similar manner to conclude that ‖u+‖L∞ is bounded.

Assume by contradiction that there exist a, b ∈ R such that ‖u+
tn

‖Lp → ∞ with tn ∈
[a, b]. Define wn = u+

tn
/(‖u+

tn
‖Lp). Note that wn is bounded in W 1,p. Indeed, using (1.6),∫

Ω

|∇utn |p =
∫

Ω

f(x, utn)utn + t

∫
Ω

utn

� c

∫
Ω

|utn |p + c(1 + |t|)
∫

Ω

|utn |

� c(1 + |t|)
∫

Ω

|utn |p.
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Thus, wn is bounded in W 1,p. So we can assume that wn ⇀ w in W 1,p, wn → w in Lp

and wn → w a.e. x ∈ Ω. Moreover, ‖w‖Lp = 1 and w � 0, since ‖u+
tn

‖L∞ is bounded.
Note that w−

n → 0 a.e. x ∈ Ω.
Let ϕ ∈ W 1,p(Ω) and ϕ � 0. Then∫

|∇wn|p−2∇wn∇ϕ =
∫

f(x, utn
)

‖u+
tn

‖
ϕ + tn

∫
ϕ

‖u+
tn

‖

� µ

∫
|wn|p−1ϕ + o(n).

Letting n → ∞, we get ∫
|∇w|p−2∇w∇ϕ � µ

∫
wp−1ϕ.

Taking ϕ ≡ 1, we obtain µ
∫

wp−1 � 0: a contradiction of the fact that w � 0 and w �≡ 0.
The proof is complete. �

Since weak solutions of (Pt) are bounded, by a result from [10], these solutions belong
to C(Ω̄). The C1,α(Ω̄) regularity follows from [12].

Lemma 2.2. Problem (Pt) has no solution for sufficiently large t > 0.

Proof. By (1.3) and (1.4) we have that f(x, s) � µ|s|p−1 − C for every s ∈ R.
Integrating (Pt), we obtain

0 =
∫

Ω

f(x, ut) + t|Ω|

� µ

∫
Ω

|ut|p−1 − C|Ω| + t|Ω|.

Then
µ

∫
Ω

|ut|p−1 + t|Ω| � C|Ω|,

which gives a contradiction for t > 0 large enough. �

Lemma 2.3. Problem (Pt) has a subsolution for all t.

Proof. There is a constant zt satisfying

−∆pz � f(x, z) + t in Ω,

z � 0 in Ω̄,

|∇z|p−2 ∂z

∂ν
= 0 on ∂Ω.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.4)

In fact, since (1.2) reads as f(x, u) � −µ|u|p−2u − C for some constants µ, C > 0, then
clearly

zt = −
(

|t| + C

µ

)1/(p−1)

satisfies the requirements we need. �
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Remark 2.4. It is easy to see that every constant z < zt is a strict subsolution.

Lemma 2.5. If ut is a solution of (Pt), then ut � zt.

Proof. It is enough to show that (zt − ε − ut)+ = 0 for all ε > 0. Suppose by
contradiction that there exists ε0 > 0 such that (zt − ε0 − ut)+ is non-trivial. Then
Ωε = {x ∈ Ω : ut(x) < zt−ε} �= ∅ for all 0 < ε < ε0. Multiplying (Pt) by (zt−ε−ut)+ �≡ 0
and using (1.4) yields∫

Ωε

|∇ut|p−2∇ut∇(zt − ε − ut)+

=
∫

Ωε

f(x, ut)(zt − ε − ut)+ + t

∫
Ωε

(zt − ε − ut)+

� −µ

∫
Ωε

|ut|p−2ut(zt − ε − ut)+ − (C − t)
∫

Ωε

(zt − ε − ut)+.

Note that for x ∈ Ωε we have ∇(zt − ε − ut)+ = −∇ut. Then one obtains∫
Ωε

|∇ut|p � µ

∫
Ωε

|ut|p−2ut(zt − ε − ut)+ + (C − t)
∫

Ωε

(zt − ε − ut)+

= −µ

∫
Ωε

|ut|p−1(zt − ε − ut)+ + (C − t)
∫

Ωε

(zt − ε − ut)+

� −µ

∫
Ωε

|zt − ε|p−1(zt − ε − ut)+ + (C − t)
∫

Ωε

(zt − ε − ut)+

= (−µ|zt − ε|p−1 + C − t)
∫

Ωε

(zt − ε − ut)+.

This is a contradiction, since −µ|zt − ε|p−1 + C − t < 0 for ε small enough. �

3. Proof of Theorem 1.1

The proof is divided into three parts.
For the first step we show that there exists t0 such that for t � t0 there is a solution

and no solution exists for t > t0; we then show that there is a minimal solution for t � t0.
Finally, we show that there exists t1 such that for t < t1 there are two distinct solutions.

Step 1. First, we shall prove that there exists a t′ such that (Pt) has a solution for
all t � t′. Actually, we take t′ = inf{−f(x, 0) : x ∈ Ω}, so 0 is a supersolution for (Pt)
for all t � t′. In fact, −∆p0 = 0 � f(x, 0) + t′ if and only if t′ � −f(x, 0) for all x. Since,
by Lemma 2.3, for each t there is a negative constant subsolution zt, the claim follows
by the method of sub–supersolution [11].

Now, we shall see that if (Pt) has a solution for some t, then it also has a solution for all
s � t. Indeed, let u be a solution of (Pt) corresponding to t. Clearly, u is a supersolution
of (Pt) corresponding to s for every s < t, since

−∆pu = f(x, u) + t � f(x, u) + s.

Again, the assertion follows by the method of sub–supersolution.
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Hence, the set S = {t : (Pt) has a solution} is non-empty and bounded from above by
Lemma 2.2. In particular, we have (−∞, t0) ⊂ S, where t0 is the supremum of S. Let {tn}
be such that tn ↗ t0. By virtue of the a priori estimates for solutions ut corresponding
to t of Lemma 2.1, there exists a subsequence tnk

such that utnk
→ ut0 in C1(Ω̄), and

so ut0 is a solution of (Pt). Thus, S = (−∞, t0], and Step 1 is proved. This proves (i).

Step 2. Let t � t0. Then (Pt) has a minimal solution if t � t0. Indeed, by Lemmas 2.3
and 2.5, (Pt) has a subsolution and every solution satisfies

u � − 1
µ

(|t| + C).

But
z = − 1

µ
(|t| + C)

is a subsolution of (Pt) and z � u. Thus, (Pt) has a minimal solution in the set of
functions satisfying w � z in Ω̄, since all solutions satisfy the property w � z in Ω̄. The
proof of (ii) is complete.

Step 3. Define
t1 = sup

R

inf
Ω

{−f(x, s)}.

By (1.3) and (1.4), f(x, s) is bounded from below. Hence, t1 is well defined. If t < t1,
then there is a σ such that t < inf{−f(x, σ) : x ∈ Ω}. Thus, wt = σ is a supersolution
for (Pt) corresponding to t. Since for all t (Pt) has a constant subsolution zt, zt < wt, we
can solve (Pt) for t. Thus, there is a solution ut for (Pt), corresponding to t, obtained by
the sub–supersolution method, so zt � ut � wt. In particular, we have t1 � t0. We shall
apply degree theory to find a second solution for t < t1.

First assume that f(x, s) is locally Hölder continuous in s, uniformly in x ∈ Ω. Then
we can choose a constant w such that w > σ and t < inf{−f(x, w) : x ∈ Ω}. Thus, w > σ

is also a supersolution. Moreover, for a fixed constant z with z < zt one concludes that
z is also a subsolution. Define the open set

Λ = {v ∈ C(Ω̄) : z < v < w in Ω̄}.

Thus, ut ∈ Λ. There exists a λ > 0 such that f(x, u)+λ|u|p−2u is non-decreasing in u on
[z, w] for x ∈ Ω̄ (see (1.5)). Clearly, u is a solution of (Pt) if and only if u is a fixed point
of the compact operator Kt : C(Ω̄) → C(Ω̄) defined by Ktv = u, where u is a solution of

−∆pu + λ|u|p−2u = f(x, v) + λ|v|p−2v + t in Ω,

|∇u|p−2 ∂u

∂ν
= 0 on ∂Ω.

⎫⎬
⎭ (3.1)

Since ut ∈ Λ, we can suppose that deg(I −Kt, Λ, 0) is well defined, i.e. 0 /∈ (I −Kt)(∂Λ).
Otherwise, the proof is complete. We claim that

deg(I − Kt, Λ, 0) = 1.
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In fact, take ϕ ∈ Λ and define Tη : C(Ω̄) → C(Ω̄) by Tηv = ηKtv+(1−η)ϕ for η ∈ [0, 1].
Hence, for v ∈ Λ we have that

−∆pz + λ|z|p−2z � −∆p(Ktv) + λ|Ktv|p−2Ktv � −∆pw + λ|w|p−2w.

It follows by the Weak Comparison Principle that Ktv ∈ Λ̄, i.e. z � Ktv � w. Since Λ is
convex and ϕ ∈ Λ, we obtain Tη : Λ → Λ for all η ∈ (0, 1]. Thus, 0 /∈ (I − Tη)(∂Λ) for all
η ∈ [0, 1]. In this way, deg(I − Tη, Λ, 0) is well defined and independent of η. Hence,

deg(I − Kt, Λ, 0) = deg(I − Tη, Λ, 0) = deg(I − T0, Λ, 0).

The map T0u = ϕ for every u ∈ Λ and ϕ ∈ Λ, then

deg(I − T0, Λ, 0) = 1.

The claim is proved.

We also claim that for large enough M > 0 we have

deg(I − Kt, BM , 0) = 0,

where BM = {u ∈ C(Ω̄) : ‖u‖C(Ω̄) < M}.
By Lemma 2.1, one concludes that all fixed points us of Ks, that is, Ksus = us, satisfy

‖u‖C(Ω̄) < M independently of s ∈ [t, t0 + 1]. Note that t is kept fixed and t < t1 � t0.
We can assume that Λ ⊂ BM . Thus,

deg(I − Kt, BM , 0) = deg(I − Kt0+1, BM , 0) = 0,

since Kt0+1 does not have fixed points. The claim is proved.

In conclusion,
deg(I − K, BM − Λ, 0) = −1.

Therefore, (Pt) has a solution which is not in Λ.
Finally, assume that f is continuous on Ω̄×R. For t < t0 we have that ut0 , the minimal

solution corresponding to t0, is a supersolution for (Pt) corresponding to t. Moreover,
zt � ut0 and we have a solution ut such that zt � ut � ut0 . In order to apply the ideas
from the previous case (where f is only Hölder continuous), we need a subsolution z and
a supersolution w such that z < ut < w in Ω̄. We can choose z as a fixed number less
than zt. We claim that w = ut0 + θ is a supersolution if θ > 0 is small enough. Actually,
we have

−∆pw = f(x, ut0) + t0 = f(x, ut0 + θ) + t + (f(x, ut0) − f(x, ut0 + θ) + t − t0).

It is a consequence of the continuity of f that f(x, ut0) − f(x, ut0 + θ) + t − t0 � 0 for
θ > 0 small enough. Thus, −∆pw � f(x, ut0 + θ) + t, and the claim is proved.

The rest of the proof follows as in the previous case.
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