AN AMBROSETTI–PRODI-TYPE RESULT FOR A QUASILINEAR NEUMANN PROBLEM

FRANCISCO ODAIR DE PAIVA¹ AND MARCELO MONTENEGRO²

¹Departamento de Matemática, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil (odair@dm.ufscar.br) ²IMECC, Departamento de Matemática, Universidade Estadual de Campinas, Rua Sérgio Buarque de Holanda 651, CEP 13083-859, Campinas, SP, Brazil (msm@ime.unicamp.br)

(Received 15 February 2011)

Abstract We study the problem $-\Delta_p u = f(x,u) + t$ in Ω with Neumann boundary condition $|\nabla u|^{p-2}(\partial u/\partial \nu) = 0$ on $\partial \Omega$. There exists a $t_0 \in \mathbb{R}$ such that for $t > t_0$ there is no solution. If $t \leq t_0$, there is at least a minimal solution, and for $t < t_0$ there are at least two distinct solutions. We use the sub–supersolution method, a priori estimates and degree theory.

 $Keywords:\ a\ priori$ estimates; degree theory; sub–supersolutions

2010 Mathematics subject classification: Primary 35J65 Secondary 35J25; 58E07

1. Introduction

We study the problem

$$-\Delta_p u = f(x, u) + t \quad \text{in } \Omega,$$

$$|\nabla u|^{p-2} \frac{\partial u}{\partial \nu} = 0 \qquad \text{on } \partial \Omega,$$

$$(P_t)$$

where $\Omega \subset \mathbb{R}^n$ is an open bounded domain with smooth boundary $\partial \Omega$, $t \in \mathbb{R}$ is a parameter and $f: \Omega \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function. Here $\Delta_p u = \operatorname{div}(|\nabla u|^{p-2}\nabla u)$ denotes the p-Laplacian operator for 1 . We also assume that

$$\liminf_{s \to \infty} \frac{f(x,s)}{|s|^{p-2}s} > 0$$
(1.1)

and

$$\limsup_{s \to -\infty} \frac{f(x,s)}{|s|^{p-2}s} < 0, \tag{1.2}$$

© 2012 The Edinburgh Mathematical Society

771

where the limits are uniform in $x \in \Omega$. Conditions (1.1) and (1.2) are a sort of eigenvalue crossing of f. These assumptions imply, respectively,

$$f(x,s) \geqslant \mu |s|^{p-2} s - C, \quad s > 0,$$
 (1.3)

and

$$f(x,s) \geqslant -\mu |s|^{p-2}s - C, \quad s < 0,$$
 (1.4)

for some constants C>0 and $\mu>0$. The next hypothesis is standard in order to apply the sub–supersolution method. We shall assume that for all M>0 there exists $\lambda>0$ such that

$$f(x,u) + \lambda |u|^{p-2}u$$
 is non-decreasing in u on $[-M,M]$. (1.5)

Hypothesis (1.5) is in fact not needed when one assumes that p=2 and that f is C^1 , since in this case the derivative is $f_u + \lambda > 0$ for u belonging to some interval [-M, M] and λ large.

A function $u \in W^{1,p}(\Omega)$ is called a (weak) solution of (P_t) if

$$\int_{\Omega} |\nabla u|^{p-2} \nabla u \nabla \phi \, \mathrm{d}x = \int_{\Omega} f(x, u) \phi \, \mathrm{d}x - t \int_{\Omega} u \phi \, \mathrm{d}x \quad \text{for all } \phi \in C^{1}(\bar{\Omega}),$$

where

$$F(x,t) = \int_0^t f(x,s) \, \mathrm{d}s.$$

Theorem 1.1. Suppose (1.1), (1.2) and (1.5) hold and that there exists a constant c such that

$$f(x,s) \le c(1+|s|^{p-1})$$
 for all $s \in \mathbb{R}$ and uniformly for $x \in \Omega$. (1.6)

Then there exists $t_0 \in \mathbb{R}$ such that

- (i) if $t > t_0$, then (P_t) has no solution and
- (ii) if $t \leq t_0$, then (P_t) has at least a minimal solution.

Moreover, assume f is locally Lipschitz continuous in s uniformly a.e. in $x \in \Omega$. Then

- (iii) there exists $t_1 \leq t_0$ such that for $t < t_1$ (P_t) has at least two distinct solutions and
- (iv) if, moreover, $f \in C(\bar{\Omega} \times \mathbb{R})$, then $t_1 = t_0$.

Problems of this nature fit into a general framework devised in the pioneering paper by Ambrosetti and Prodi [1]. They studied the problem

$$-\Delta u = g(u) + h(x) \quad \text{in } \Omega
 u = 0 \quad \text{on } \partial\Omega,$$
(1.7)

where g interacts with the spectrum $0 < \lambda_1 < \lambda_2 \leqslant \lambda_3 \leqslant \lambda_4 \leqslant \cdots$ of $-\Delta$ in $H_0^1(\Omega)$ in such a way that $g'(-\infty) < \lambda_1 < g'(+\infty) < \lambda_2$. Assuming that g'' > 0, they

proved that the singular set S of the mapping $\Phi(u) = -\Delta u - g(u)$ from $U = \{u \in C^{2,\alpha}(\Omega) : u = 0 \text{ on } \partial\Omega\}$ to $V = \{u \in C^{0,\alpha}(\Omega) : u = 0 \text{ on } \partial\Omega\}$, $0 < \alpha < 1$, consists of a codimension-1 manifold parametrized over $\{u \in U : \int_{\Omega} u\varphi_1 = 0\}$, where φ_1 denotes the first eigenfunction corresponding to λ_1 . Moreover, $\Phi(S)$ is a smooth codimension-1 manifold and $V - \Phi(S)$ has exactly two components V_0 and V_2 . If $h \in V_2$, then (1.7) has two solutions. If $h \in V_0$, then (1.7) has no solution. If $h \in \Phi(S)$, then (1.7) has one solution. Subsequently, in [5] these results have been generalized by parametrizing $\Phi(S)$ in H_0^1 . A complete characterization showing that Φ is globally diffeomorphic to the fold map is given in [4]. A rich structure of the mapping Φ is described in [6–8] in spatial dimension 1. In the present paper we do not give such a detailed description of (P_t) , since we do not have the Hilbert space structure. Also, $-\Delta_p$ does not possesses the same regularizing properties of $-\Delta$.

Equation (1.7) with Neumann condition $\partial u/\partial \nu = 0$ on $\partial \Omega$ was studied in [3, 13]. A result similar to ours for Dirichlet boundary condition u = 0 on $\partial \Omega$ was addressed in [2,9] using different techniques.

In § 2 we show some a priori estimates for solutions of (P_t) . We use these lemmas to define adequate sets to apply degree theory to prove Theorem 1.1 in § 3.

2. Preliminaries

Throughout this section we assume (1.1), (1.2) and (1.6) hold. We begin by establishing an *a priori* bound for solutions of (P_t) .

Lemma 2.1. Let u be a weak solution of (P_t) in $W_0^{1,p}(\Omega)$. If t belongs to a bounded interval, then $||u||_{L^{\infty}} \leq c$, where c > 0 is a constant depending on t but not on u.

Proof. First we shall prove that $||u^-||_{L^{\infty}}$ is bounded. Indeed, multiply (P_t) by $\varphi = \max(u^- - k, 0) \in W^{1,p}(\Omega)$, where k > 0. Defining $A_k = \{x \in \Omega : u^- > k\}$ and using (1.4), we obtain

$$\int_{A_k} |\nabla(u^- - k)|^p = -\int_{A_k} (f(x, u) + t)\varphi$$

$$\leqslant \int_{A_k} (c(u^-)^{p-1} + c + |t|)(u^- - k)$$

$$= \int_{A_k} c(u^-)^{p-1}(u^- - k) + (c + |t|) \int_{A_k} (u^- - k)$$

$$\leqslant \int_{A_k} C((u^- - k)^p + k^{p-1}(u^- - k)) + (c + |t|) \int_{A_k} (u^- - k)$$

$$= C \int_{A_k} (u^- - k)^p + (Ck^{p-1} + c + |t|) \int_{A_k} (u^- - k). \tag{2.1}$$

In the course of this proof, constant C > 0 may vary from line to line. By the Hölder and Sobolev inequalities,

$$\int_{A_k} (u^- - k)^p \leq |A_k|^{p/n} \left(\int_{A_k} (u^- - k)^{np/(n-p)} \right)^{(n-p)/n}$$

$$\leq |A_k|^{p/n} C \left(\int_{A_k} |\nabla (u^- - k)|^p + \int_{A_k} (u^- - k)^p \right), \tag{2.2}$$

Thus, (2.1) and (2.2) imply

$$(|A_k|^{-p/n} - C) \int_{A_k} (u^- - k)^p \le C \int_{A_k} (u^- - k)^p + C(k^{p-1} + 1 + |t|) \int_{A_k} (u^- - k); \tag{2.3}$$

hence.

$$(|A_k|^{-p/n} - C) \int_{A_k} (u^- - k)^p \le C(k^{p-1} + 1 + |t|) \int_{A_k} (u^- - k).$$

Note that $|A_k| \to 0$ as $k \to \infty$. Indeed, by the proof of Lemma 2.2 (see below), one obtains

$$|A_k| = \int_{u^- > k} dx \leqslant \int_{A_k} \frac{(u^-)^{p-1}}{k^{p-1}} \leqslant Ck^{1-p}.$$

Therefore, $|A_k|^{-p/n} - C > 0$ for every $k \ge k_0$, where k_0 is fixed, large enough and does not depend on u.

By the Hölder inequality and (2.3),

$$\int_{A_k} (u^- - k) \le |A_k|^{(p-1)/p} \left(\int_{A_k} (u^- - k)^p \right)^{1/p}$$

$$\le C|A_k|^{(p-1)/p} \left(\frac{k^{p-1} + 1 + |t|}{|A_k|^{-p/n} - C} \int_{A_k} (u^- - k) \right)^{1/p}.$$

Thus,

$$\bigg(\int_{A_k} (u^- - k)\bigg)^{(p-1)/p} \leqslant C |A_k|^{(p-1)/p} \bigg(\frac{k^{p-1} + 1 + |t|}{|A_k|^{-p/n} - C}\bigg)^{1/p}.$$

Consequently,

$$\begin{split} \int_{A_k} (u^- - k) &\leqslant C |A_k| \left(\frac{k^{p-1} + 1 + |t|}{|A_k|^{-p/n} - C} \right)^{1/(p-1)} \\ &= C |A_k|^{1 + (p/n(p-1))} \left(\frac{k^{p-1} + 1 + |t|}{1 - |A_k|^{p/n} C} \right)^{1/(p-1)}. \end{split}$$

We can assume that $1-|A_k|^{p/n}C\geqslant \frac{1}{2}$ for $k\geqslant k_0$, and then

$$\begin{split} \int_{A_k} (u^- - k) &\leqslant C |A_k|^{1 + (p(p-1)/n)} (k^{p-1} + 1 + |t|)^{p-1} \\ &= C |A_k|^{1 + (p(p-1)/n)} k \left(1 + \frac{1 + |t|}{k^{p-1}} \right)^{p-1} \\ &\leqslant C |A_k|^{1 + (p(p-1)/n)} k \left(1 + \frac{1 + |t|}{k_0^{p-1}} \right)^{p-1} \\ &\leqslant C |A_k|^{1 + (p(p-1)/n)} k. \end{split}$$

We are now in a position to apply [10, Lemma 5.1, p. 71], to conclude that $||u^-||_{L^{\infty}}$ is bounded by a constant that depends only on t, k_0 , μ , p, n and $||u^-||_{L^1(A_{k_0})}$. As we said before, constant k_0 does not depend on u. We shall bound $||u^-||_{L^1(A_{k_0})}$ more accurately; this is done below.

Multiplying (P_t) by $-u^-$ and using (1.4), we obtain

$$0 \leqslant \int_{\Omega} |\nabla u^{-}|^{p}$$

$$= \int_{\Omega} -f(x, u)u^{-} - t \int_{\Omega} u^{-}$$

$$\leqslant -\mu \int_{\Omega} (u^{-})^{p} + C \int_{\Omega} u^{-} - t \int_{\Omega} u^{-}.$$

Hence,

$$\int_{\varOmega} |\nabla u^-|^p + \mu \int_{\varOmega} (u^-)^p \leqslant (C + |t|) \int_{\varOmega} u^- \leqslant \frac{\mu}{2} \int_{\varOmega} (u^-)^p + C(1 + |t|).$$

It follows that $||u^-||_{W^{1,p}}$ is bounded. Thus,

$$\int_{A_{kr}} |u^-| \leqslant \int_{\varOmega} |u^-| \leqslant C \bigg(\int_{\varOmega} |u^-|^p \bigg)^{\!1/p} \leqslant C (1+|t|).$$

Therefore, $||u^-||_{L^{\infty}}$ is bounded by a constant depending only on t, μ , p and n.

Now we prove that $||u^+||_{L^{\infty}}$ is bounded. We only need to prove that $||u^+||_{L^p}$ is bounded, since the computations above to prove the boundedness of $||u^-||_{L^{\infty}}$ can be performed in a similar manner to conclude that $||u^+||_{L^{\infty}}$ is bounded.

Assume by contradiction that there exist $a, b \in \mathbb{R}$ such that $\|u_{t_n}^+\|_{L^p} \to \infty$ with $t_n \in [a, b]$. Define $w_n = u_{t_n}^+/(\|u_{t_n}^+\|_{L^p})$. Note that w_n is bounded in $W^{1,p}$. Indeed, using (1.6),

$$\int_{\Omega} |\nabla u_{t_n}|^p = \int_{\Omega} f(x, u_{t_n}) u_{t_n} + t \int_{\Omega} u_{t_n}$$

$$\leqslant c \int_{\Omega} |u_{t_n}|^p + c(1 + |t|) \int_{\Omega} |u_{t_n}|$$

$$\leqslant c(1 + |t|) \int_{\Omega} |u_{t_n}|^p.$$

Thus, w_n is bounded in $W^{1,p}$. So we can assume that $w_n \to w$ in $W^{1,p}$, $w_n \to w$ in L^p and $w_n \to w$ a.e. $x \in \Omega$. Moreover, $\|w\|_{L^p} = 1$ and $w \geqslant 0$, since $\|u_{t_n}^+\|_{L^\infty}$ is bounded. Note that $w_n^- \to 0$ a.e. $x \in \Omega$.

Let $\varphi \in W^{1,p}(\Omega)$ and $\varphi \geqslant 0$. Then

$$\int |\nabla w_n|^{p-2} \nabla w_n \nabla \varphi = \int \frac{f(x, u_{t_n})}{\|u_{t_n}^+\|} \varphi + t_n \int \frac{\varphi}{\|u_{t_n}^+\|}$$
$$\geqslant \mu \int |w_n|^{p-1} \varphi + o(n).$$

Letting $n \to \infty$, we get

$$\int |\nabla w|^{p-2} \nabla w \nabla \varphi \geqslant \mu \int w^{p-1} \varphi.$$

Taking $\varphi \equiv 1$, we obtain $\mu \int w^{p-1} \leqslant 0$: a contradiction of the fact that $w \geqslant 0$ and $w \not\equiv 0$. The proof is complete.

Since weak solutions of (P_t) are bounded, by a result from [10], these solutions belong to $C(\bar{\Omega})$. The $C^{1,\alpha}(\bar{\Omega})$ regularity follows from [12].

Lemma 2.2. Problem (P_t) has no solution for sufficiently large t > 0.

Proof. By (1.3) and (1.4) we have that $f(x,s) \ge \mu |s|^{p-1} - C$ for every $s \in \mathbb{R}$. Integrating (P_t) , we obtain

$$0 = \int_{\Omega} f(x, u_t) + t|\Omega|$$

$$\geqslant \mu \int_{\Omega} |u_t|^{p-1} - C|\Omega| + t|\Omega|.$$

Then

$$\mu \int_{\Omega} |u_t|^{p-1} + t|\Omega| \leqslant C|\Omega|,$$

which gives a contradiction for t > 0 large enough.

Lemma 2.3. Problem (P_t) has a subsolution for all t.

Proof. There is a constant z_t satisfying

$$-\Delta_{p}z \leqslant f(x,z) + t \quad \text{in } \Omega,
z \leqslant 0 \qquad \text{in } \bar{\Omega},
|\nabla z|^{p-2} \frac{\partial z}{\partial \nu} = 0 \qquad \text{on } \partial \Omega.$$
(2.4)

In fact, since (1.2) reads as $f(x,u) \ge -\mu |u|^{p-2}u - C$ for some constants $\mu, C > 0$, then clearly

$$z_t = -\left(\frac{|t| + C}{\mu}\right)^{1/(p-1)}$$

satisfies the requirements we need.

Remark 2.4. It is easy to see that every constant $z < z_t$ is a strict subsolution.

Lemma 2.5. If u_t is a solution of (P_t) , then $u_t \ge z_t$.

Proof. It is enough to show that $(z_t - \varepsilon - u_t)^+ = 0$ for all $\varepsilon > 0$. Suppose by contradiction that there exists $\varepsilon_0 > 0$ such that $(z_t - \varepsilon_0 - u_t)^+$ is non-trivial. Then $\Omega_{\varepsilon} = \{x \in \Omega : u_t(x) < z_t - \varepsilon\} \neq \emptyset$ for all $0 < \varepsilon < \varepsilon_0$. Multiplying (P_t) by $(z_t - \varepsilon - u_t)^+ \not\equiv 0$ and using (1.4) yields

$$\int_{\Omega_{\varepsilon}} |\nabla u_{t}|^{p-2} \nabla u_{t} \nabla (z_{t} - \varepsilon - u_{t})^{+}$$

$$= \int_{\Omega_{\varepsilon}} f(x, u_{t}) (z_{t} - \varepsilon - u_{t})^{+} + t \int_{\Omega_{\varepsilon}} (z_{t} - \varepsilon - u_{t})^{+}$$

$$\geqslant -\mu \int_{\Omega} |u_{t}|^{p-2} u_{t} (z_{t} - \varepsilon - u_{t})^{+} - (C - t) \int_{\Omega} (z_{t} - \varepsilon - u_{t})^{+}.$$

Note that for $x \in \Omega_{\varepsilon}$ we have $\nabla (z_t - \varepsilon - u_t)^+ = -\nabla u_t$. Then one obtains

$$\int_{\Omega_{\varepsilon}} |\nabla u_{t}|^{p} \leq \mu \int_{\Omega_{\varepsilon}} |u_{t}|^{p-2} u_{t} (z_{t} - \varepsilon - u_{t})^{+} + (C - t) \int_{\Omega_{\varepsilon}} (z_{t} - \varepsilon - u_{t})^{+}
= -\mu \int_{\Omega_{\varepsilon}} |u_{t}|^{p-1} (z_{t} - \varepsilon - u_{t})^{+} + (C - t) \int_{\Omega_{\varepsilon}} (z_{t} - \varepsilon - u_{t})^{+}
\leq -\mu \int_{\Omega_{\varepsilon}} |z_{t} - \varepsilon|^{p-1} (z_{t} - \varepsilon - u_{t})^{+} + (C - t) \int_{\Omega_{\varepsilon}} (z_{t} - \varepsilon - u_{t})^{+}
= (-\mu |z_{t} - \varepsilon|^{p-1} + C - t) \int_{\Omega_{\varepsilon}} (z_{t} - \varepsilon - u_{t})^{+}.$$

This is a contradiction, since $-\mu|z_t - \varepsilon|^{p-1} + C - t < 0$ for ε small enough.

3. Proof of Theorem 1.1

The proof is divided into three parts.

For the first step we show that there exists t_0 such that for $t \leq t_0$ there is a solution and no solution exists for $t > t_0$; we then show that there is a minimal solution for $t \leq t_0$. Finally, we show that there exists t_1 such that for $t < t_1$ there are two distinct solutions.

Step 1. First, we shall prove that there exists a t' such that (P_t) has a solution for all $t \leq t'$. Actually, we take $t' = \inf\{-f(x,0) : x \in \Omega\}$, so 0 is a supersolution for (P_t) for all $t \leq t'$. In fact, $-\Delta_p 0 = 0 \geq f(x,0) + t'$ if and only if $t' \leq -f(x,0)$ for all x. Since, by Lemma 2.3, for each t there is a negative constant subsolution z_t , the claim follows by the method of sub–supersolution [11].

Now, we shall see that if (P_t) has a solution for some t, then it also has a solution for all $s \leq t$. Indeed, let u be a solution of (P_t) corresponding to t. Clearly, u is a supersolution of (P_t) corresponding to t for every t is a supersolution of t to t ince

$$-\Delta_p u = f(x, u) + t \geqslant f(x, u) + s.$$

Again, the assertion follows by the method of sub–supersolution.

Hence, the set $S = \{t: (P_t) \text{ has a solution}\}$ is non-empty and bounded from above by Lemma 2.2. In particular, we have $(-\infty, t_0) \subset S$, where t_0 is the supremum of S. Let $\{t_n\}$ be such that $t_n \nearrow t_0$. By virtue of the *a priori* estimates for solutions u_t corresponding to t of Lemma 2.1, there exists a subsequence t_{n_k} such that $u_{t_{n_k}} \to u_{t_0}$ in $C^1(\bar{\Omega})$, and so u_{t_0} is a solution of (P_t) . Thus, $S = (-\infty, t_0]$, and Step 1 is proved. This proves (i).

Step 2. Let $t \leq t_0$. Then (P_t) has a minimal solution if $t \leq t_0$. Indeed, by Lemmas 2.3 and 2.5, (P_t) has a subsolution and every solution satisfies

$$u \geqslant -\frac{1}{\mu}(|t| + C).$$

But

$$z = -\frac{1}{\mu}(|t| + C)$$

is a subsolution of (P_t) and $z \leq u$. Thus, (P_t) has a minimal solution in the set of functions satisfying $w \geq z$ in $\bar{\Omega}$, since all solutions satisfy the property $w \geq z$ in $\bar{\Omega}$. The proof of (ii) is complete.

Step 3. Define

$$t_1 = \sup_{\mathbb{R}} \inf_{\Omega} \{ -f(x, s) \}.$$

By (1.3) and (1.4), f(x, s) is bounded from below. Hence, t_1 is well defined. If $t < t_1$, then there is a σ such that $t < \inf\{-f(x, \sigma) \colon x \in \Omega\}$. Thus, $w_t = \sigma$ is a supersolution for (P_t) corresponding to t. Since for all t (P_t) has a constant subsolution z_t , $z_t < w_t$, we can solve (P_t) for t. Thus, there is a solution u_t for (P_t) , corresponding to t, obtained by the sub–supersolution method, so $z_t \leq u_t \leq w_t$. In particular, we have $t_1 \leq t_0$. We shall apply degree theory to find a second solution for $t < t_1$.

First assume that f(x, s) is locally Hölder continuous in s, uniformly in $x \in \Omega$. Then we can choose a constant w such that $w > \sigma$ and $t < \inf\{-f(x, w) : x \in \Omega\}$. Thus, $w > \sigma$ is also a supersolution. Moreover, for a fixed constant z with $z < z_t$ one concludes that z is also a subsolution. Define the open set

$$\Lambda = \{ v \in C(\bar{\Omega}) \colon z < v < w \text{ in } \bar{\Omega} \}.$$

Thus, $u_t \in \Lambda$. There exists a $\lambda > 0$ such that $f(x, u) + \lambda |u|^{p-2}u$ is non-decreasing in u on [z, w] for $x \in \bar{\Omega}$ (see (1.5)). Clearly, u is a solution of (P_t) if and only if u is a fixed point of the compact operator $K_t \colon C(\bar{\Omega}) \to C(\bar{\Omega})$ defined by $K_t v = u$, where u is a solution of

$$-\Delta_{p}u + \lambda |u|^{p-2}u = f(x,v) + \lambda |v|^{p-2}v + t \quad \text{in } \Omega,$$

$$|\nabla u|^{p-2}\frac{\partial u}{\partial \nu} = 0 \qquad \text{on } \partial\Omega.$$
(3.1)

Since $u_t \in \Lambda$, we can suppose that $\deg(I - K_t, \Lambda, 0)$ is well defined, i.e. $0 \notin (I - K_t)(\partial \Lambda)$. Otherwise, the proof is complete. We claim that

$$\deg(I - K_t, \Lambda, 0) = 1.$$

In fact, take $\varphi \in \Lambda$ and define $T_{\eta} : C(\bar{\Omega}) \to C(\bar{\Omega})$ by $T_{\eta}v = \eta K_t v + (1 - \eta)\varphi$ for $\eta \in [0, 1]$. Hence, for $v \in \Lambda$ we have that

$$-\Delta_p z + \lambda |z|^{p-2} z \leqslant -\Delta_p (K_t v) + \lambda |K_t v|^{p-2} K_t v \leqslant -\Delta_p w + \lambda |w|^{p-2} w.$$

It follows by the Weak Comparison Principle that $K_t v \in \bar{\Lambda}$, i.e. $z \leq K_t v \leq w$. Since Λ is convex and $\varphi \in \Lambda$, we obtain $T_{\eta} \colon \Lambda \to \Lambda$ for all $\eta \in (0,1]$. Thus, $0 \notin (I - T_{\eta})(\partial \Lambda)$ for all $\eta \in [0,1]$. In this way, $\deg(I - T_{\eta}, \Lambda, 0)$ is well defined and independent of η . Hence,

$$\deg(I - K_t, \Lambda, 0) = \deg(I - T_n, \Lambda, 0) = \deg(I - T_0, \Lambda, 0).$$

The map $T_0u = \varphi$ for every $u \in \Lambda$ and $\varphi \in \Lambda$, then

$$deg(I - T_0, \Lambda, 0) = 1.$$

The claim is proved.

We also claim that for large enough M > 0 we have

$$\deg(I - K_t, B_M, 0) = 0,$$

where $B_M = \{ u \in C(\bar{\Omega}) : ||u||_{C(\bar{\Omega})} < M \}.$

By Lemma 2.1, one concludes that all fixed points u_s of K_s , that is, $K_s u_s = u_s$, satisfy $||u||_{C(\bar{\Omega})} < M$ independently of $s \in [t, t_0 + 1]$. Note that t is kept fixed and $t < t_1 \le t_0$. We can assume that $\Lambda \subset B_M$. Thus,

$$deg(I - K_t, B_M, 0) = deg(I - K_{t_0+1}, B_M, 0) = 0,$$

since K_{t_0+1} does not have fixed points. The claim is proved.

In conclusion,

$$deg(I - K, B_M - \Lambda, 0) = -1.$$

Therefore, (P_t) has a solution which is not in Λ .

Finally, assume that f is continuous on $\bar{\Omega} \times \mathbb{R}$. For $t < t_0$ we have that u_{t_0} , the minimal solution corresponding to t_0 , is a supersolution for (P_t) corresponding to t. Moreover, $z_t \leqslant u_{t_0}$ and we have a solution u_t such that $z_t \leqslant u_t \leqslant u_{t_0}$. In order to apply the ideas from the previous case (where f is only Hölder continuous), we need a subsolution z and a supersolution w such that $z < u_t < w$ in $\bar{\Omega}$. We can choose z as a fixed number less than z_t . We claim that $w = u_{t_0} + \theta$ is a supersolution if $\theta > 0$ is small enough. Actually, we have

$$-\Delta_p w = f(x, u_{t_0}) + t_0 = f(x, u_{t_0} + \theta) + t + (f(x, u_{t_0}) - f(x, u_{t_0} + \theta) + t - t_0).$$

It is a consequence of the continuity of f that $f(x, u_{t_0}) - f(x, u_{t_0} + \theta) + t - t_0 \ge 0$ for $\theta > 0$ small enough. Thus, $-\Delta_p w \ge f(x, u_{t_0} + \theta) + t$, and the claim is proved.

The rest of the proof follows as in the previous case.

Acknowledgements. The authors were supported by CNPq and FAPESP. Part of this work was done while F.O.P. was working at IMECC-UNICAMP. The authors thank the referee for helpful comments and suggestions.

References

- 1. A. Ambrosetti and G. Prodi, On the inversion of some differentiable mappings with singularities between Banach spaces, *Annali Mat. Pura Appl.* **93** (1972), 231–247.
- 2. D. Arcoya and D. Ruiz, The Ambrosetti–Prodi problem for the *p*-Laplacian operator, *Commun. PDEs* **31** (2006), 849–865.
- 3. H. BERESTYCKI AND P. L. LIONS, Sharp esistence results for a class of semilinear elliptic problems, *Bol. Soc. Brasil Mat.* **12** (1981), 9–20.
- 4. M. S. Berger and P. T. Church, Complete integrability and perturbation of a non-linear Dirichlet problem, I, *Indiana Univ. Math. J.* 28 (1979), 935–952.
- M. S. Berger and E. Podolak, On the solutions of a nonlinear Dirichlet problem, Indiana Univ. Math. J. 24 (1975), 837–846.
- H. BUENO AND C. TOMEI, Critical sets of nonlinear Sturm-Liouville operators of Ambrosetti-Prodi type, Nonlinearity 15 (2002), 1073-1077.
- 7. H. Bueno and A. Zumpano, Remarks about the geometry of the Ambrosetti-Prodi problem, *Nonlin. Analysis* **48** (2002), 651–661.
- 8. D. Burghelea, N. Saldanha and C. Tomei, The geometry of the critical set of non-linear periodic Sturm-Liouville operators, *J. Diff. Eqns* **246** (2009), 3380–3397.
- 9. E. KOIZUMI AND K. SCHMITT, Ambrosetti-Prodi-type problems for quasilinear elliptic problems, *Diff. Integ. Eqns* **18** (2005), 241–262.
- O. LADYZHENSKAYA AND N. URALTSEVA, Linear and quasilinear elliptic equations (Academic Press, 1968).
- V. K. Le and K. Schmitt, Some general concepts of sub- and supersolutions for nonlinear elliptic problems, *Topolog. Meth. Nonlin. Analysis* 28 (2006), 87–103.
- G. M. LIEBERMAN, Boundary regularity for solutions of degenerate elliptic equations, Nonlin. Analysis 12 (1988), 1203–1219.
- 13. J. MAWHIN, Ambrosetti-Prodi-type results in nonlinear boundary value problems, Lecture Notes in Mathematics, Volume 1285, pp. 290–313 (Springer, 1987).