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The linear and nonlinear dynamics of two-phase swirling flows produced by the
Grabowski–Berger profile under the influence of a viscosity stratification are investigated.
We perform axisymmetric nonlinear simulations and fully three-dimensional linear global
stability analysis of the flow for several swirl numbers S and viscosity ratios μ̃. They are
accompanied by nonlinear three-dimensional simulations and subsequent modal analysis
using the bispectral mode decomposition, recently introduced by Schmidt (Nonlinear
Dyn., vol. 102, issue 4, 2020, pp. 2479–2501). We find a pronounced destabilising
effect of the viscosity stratification on both the onset of axisymmetric vortex breakdown
and helical instability that is linked to the required shear stress continuity across
the interface. Consequently, destabilisation is shifted to lower S as compared with
an equivalent flow with uniform viscosity. Further, the stability analysis reveals the
simultaneous destabilisation of two global modes with wavenumbers m = 1 and m = 2
that have harmonic frequencies. The analysis of the nonlinear flow reveals a strong triadic
resonance between these modes that governs the nonlinear dynamics and leads to a rapid
departure from the linear dynamics. At larger swirl, the bifurcation of additional modes
initiates an interaction cascade by means of triadic resonance which is elucidated by the
bispectral analysis. It leads to the emergence of a variety of additional modes in the
nonlinear flow. This study contributes to an improved understanding of the influence of
viscosity stratification on the onset of vortex breakdown and the destabilisation of global
modes. Further, it provides a clear picture of the dynamics of swirling flows with a
codimension-two point and related triadic interaction of two global modes at harmonic
frequencies and wavenumbers.
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1. Introduction

Two-phase swirling flows are highly relevant for a number of technical applications, as they
appear, for instance, in industrial cyclone separators, swirl atomisers or as a manifestation
of cavitation in hydro turbines (e.g. Maly et al. 2021; Alligne et al. 2014; Hreiz et al. 2014).
In particular, the cavitating swirling flow that appears in Francis turbines under part load
conditions, named the cavitating vortex rope (CVR), is a topic of important and ongoing
research, both from a technical perspective, as well as in the context of modelling and
stability theory. As the appearance of the CVR can tremendously impact the efficiency of
Francis turbines, significant efforts have been made in order to establish a concise physical
model to predict its onset and properties.

Swirling flows at high swirl are known to undergo an abrupt structural change in the flow,
named vortex breakdown. It manifests in the appearance of a stagnation point along the
flows’ centre line. While a number of different manifestations of vortex breakdown have
been identified in the literature (see e.g. the review of Lucca-Negro & O’doherty 2001),
the two most common types are the axisymmetric breakdown and the spiral breakdown
that leads to the emergence of helical coherent structures in the flow. With the rise
of global stability theory in the last two decades, our understanding of the dominant
flow instabilities of swirling flows has substantially improved. The numerical study of
laminar swirling flows, based on the Grabowski–Berger profile (Grabowski & Berger
1976), conducted by Ruith et al. (2003) and the experimental study by Liang & Maxworthy
(2005) have suggested that the single and double helical structures appearing in these
flows are manifestations of global modes becoming unstable through a supercritical Hopf
bifurcation. This view has been confirmed by Gallaire et al. (2006) who performed a
local stability analysis using a similar flow configuration to that of Ruith et al. (2003)
and identified a single-helical unstable global mode. Considering a turbulent swirling
jet with vortex breakdown, Oberleithner et al. (2011) applied local stability analysis
using the time-averaged mean flow and successfully identified a single helical global
mode whose mode shape was in close correspondence to the respective experimental
measurements. The destabilisation of double-helical global modes and their coexistence
with single-helical modes was shown by Meliga, Gallaire & Chomaz (2012), using the
Grabowski–Berger profile as in Ruith et al. (2003) and Gallaire et al. (2006). At one
combination of swirl and Reynolds number, a codimension-two point, the frequencies
of these modes were approximately harmonic, thus enabling resonant behaviour. They
further identified a weakly nonlinear interaction mechanism of these modes to drive the
observed selection of global modes in the direct numerical simulation (DNS) study of
Ruith et al. (2003). Nonlinear interaction of global modes in a Grabowski–Berger vortex
has been studied by Pasche, Avellan & Gallaire (2018) where the appearance of a second
global mode with incommensurate frequency to the primary mode led to the emergence
of a quasi-periodic and chaotic dynamics. A recent study by Vanierschot et al. (2020)
found evidence on the coexistence of multiple global modes in turbulent swirling flows
located in separate regions of the flow. Both modes had separate wavemakers and, despite
their frequencies being harmonically related, no nonlinear interactions between them were
observed.

In the context of hydro turbines, current approaches aim to describe the helical
instability of the fluid flow inside the draft tube at part load conditions as a helical global
mode, stemming from a linear instability mechanism. The studies of Pasche, Avellan &
Gallaire (2017) and Müller et al. (2021) used global stability analysis around the turbulent
mean flow, obtained by numerical simulation and particle image velocimetry of the flow
in a model draft tube at part load, to compute linear global modes. In both works an
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unstable or marginally stable eigenmode was found which resembled the coherent helical
structure observed in the nonlinear flow and whose frequency was in good agreement with
the reference data. The successful description of the occurring helical instability through
a linear instability mechanism thus gives valuable insights into its physical nature and
provides an important step towards active control approaches targeting its suppression.
However, the linear analyses in the referenced numerical studies are unanimously based
on the assumption of a single-phase flow, thus neglecting any influence of the second fluid
phase on the linear and nonlinear dynamics of the flow.

The absence of two-phase flow analyses in this matter is congruent with a general lack
of global stability studies of two- and three-dimensional two-phase flows. The reasons
are likely rooted in the computational costs involving such studies, as well as lacking
availability of efficient linear solvers to facilitate them. Until recently, the studies of planar
two-phase wake and jet flows by Tammisola et al. (2011) and Tammisola, Lundell &
Söderberg (2012) were among the only ones that explored the global linear stability of
two-phase flows. The recent article by Schmidt et al. (2021) presents, for the first time,
a framework that allows for the linear global analysis of general two-phase flows by time
stepping of a linearised DNS solver and is suited to explore the linear stability of two-phase
swirling flows.

Given that two-phase flows potentially involve fluids of different densities or viscosities
as well as an interface at which a surface tension force acts, the parameter space of
any two-phase flow will be greatly increased with respect to its single-phase equivalent,
thus making a general parametric analysis intractable. From this perspective, a sensible
approach is to specifically investigate the influence of a single effect added to the
single-phase flow. The influence of density variations in swirling flows has previously been
investigated in the context of swirl combustion, where it was found that a low-density core
fluid stabilises the flow (Manoharan et al. 2015; Rukes et al. 2016). Capillary instability,
driven by surface tension, is likely to have negligible influence on swirling flows under
breakdown conditions as the involved time scales are much lower.

Therefore, we choose to focus on the effect of a viscosity stratification of the involved
fluids as its influence on the flow dynamics is less clear. From previous studies, the
potentially destabilising nature of a viscosity stratification in two-phase flows has been
highlighted in the seminal work of Yih (1967), who found a fundamental mechanism
which renders all confined interfacial shear flows with viscosity stratification linearly
unstable. Similar destabilisations have been identified, among others, by Hickox (1971)
and Hooper & Boyd (1983). The introduction of a two-fluid flow with such stratification
may therefore be expected to have considerable effects on the already complex linear and
nonlinear dynamics of swirling flows.

The solver of Schmidt et al. (2021) constitutes the starting point for our analysis. We aim
to shed light on the linear and nonlinear dynamics of two-phase swirling flows, particularly
investigating the potentially destabilising effect of a viscosity stratification of the two
immiscible phases, separated by an interface. The employed flow profile is that of the
Grabowski–Berger vortex, extended to two fluid phases. We show that the introduction
of a variable-viscosity flow can indeed promote destabilisation of the flow, leading to
the emergence of two global modes which notably oscillate at harmonic frequencies.
Subsequent bispectral analysis of the nonlinear dynamics reveals strong triadic resonance
to take place in the flow at increased swirl which is rooted in the interaction of the two
harmonic global modes. This leads to the emergence of multiple ultraharmonic frequencies
that alter the flows periodicity. Very recently, the occurrence of synchronised oscillatory
helical modes have been observed in several studies dealing with fully turbulent complex
technical swirl flows in jet engine combustors and hydro turbines (Litvinov et al. 2021;
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Moczarski et al. 2022). The dynamics of the investigated swirling flow may therefore
be seen as a prototype for various other single or two-phase swirling flows where a
similar destabilisation and interaction of multiple global modes may be observed. This
is particularly relevant when developing new flow control schemes that are targeted to
mitigate this dynamics.

To the best of our knowledge, the present work is the first to study the linear stability
of a two-phase swirling flow. The investigated configuration focuses on the dynamics of
a laminar flow and the isolated effect of a viscosity stratification. Nevertheless, we may
expect its analysis to reveal important insights into the dynamics of two-phase swirling
flows that translate to real-world flow scenarios that have gained attention in recent studies
(Alligne et al. 2014; Müller et al. 2021).

The remainder of the paper is structured as follows: in § 2, we give a brief overview
of the governing equations and numerical methodology to perform nonlinear and
linear computations of immiscible two-phase flows. In § 3 we then compute nonlinear
axisymmetric solutions for various flow parameters to get a general overview of how
the viscosity contrast of the phases affects vortex breakdown. The axisymmetric flow
states constitute the basis for the linear stability analysis which is conducted in § 4 to
compute the aforementioned global modes. The linear computations are supplemented by
fully three-dimensional nonlinear simulations to analyse the effect of the nonlinear triadic
interaction of the unstable global modes (§ 5).

2. Numerical simulation and modal decomposition methods

2.1. Nonlinear simulation
The governing equations for an incompressible and immiscible two-phase flow are derived
from their single-phase equivalents by assuming an interface of negligible thickness that
separates both phases. The molecular imbalance of cohesive forces between both fluids is
modelled as a surface tension force, located at the interface. The continuity and momentum
equations, respectively, are given in a unified form over both fluid phases as

∂tρ + u·∇ρ = 0, (2.1a)

ρ(∂tu + u·∇u) = −∇p + ∇· (2μD)+ σκnδ(x − xs), (2.1b)

∇·u = 0, (2.1c)

with u = (u, v,w)T the velocity vector, ρ the density, μ the dynamic viscosity, p the
pressure and xs being the position of the interface. The strain-rate tensor is D = (∇u +
(∇u)T)/2. Density and viscosity are represented by a Heaviside function H(x − xs), that
is 0 in phase 1 and 1 in phase 2 such that

ρ = ρ1 + H(ρ2 − ρ1), (2.2a)

μ = μ1 + H(μ2 − μ1). (2.2b)

The rightmost term in (2.1b) constitutes the surface tension where σ is the surface
tension coefficient, κ is the interface curvature, n is the unit normal vector of the interface
and δ is the Dirac δ-function that is non-zero on the interface. The surface tension is a
surface force but may be converted into a volumetric force as

σκnδ(x − xs) = σκ∇H(x − xs). (2.3)

From a numerical perspective, approximations of δ and H are given as δε and Hε ,
respectively, where ε is a characteristic length scale, related to the local grid size Δ.
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Various numerical approximations for Hε may be found which are based on the
continuum surface method (CSF) (Brackbill, Kothe & Zemach 1992), where we set Hε = c
with c being the volume fraction. This is the methodology applied in the volume-of-fluid
(VOF) method (e.g. Scardovelli & Zaleski 1999). Similarly, for level-set (LS) methods
(Sussman, Smereka & Osher 1994) some smooth representation Hε = f (φ), based on the
signed-distance function φ is used.

The advection of ρ in (2.1a) is equivalent to the advection of c or φ, respectively, and
thus may be replaced by

∂tψ + ∇·(ψu) = 0

{
ψ = c if VOF
ψ = φ if LS

. (2.4a)

The system of (2.1) is solved with the Basilisk solver (http://basilisk.fr), using the CSF
and VOF methods. We will not go into the details of computing the nonlinear surface
tension term but refer to Popinet (2003, 2009, 2018) where these topics are discussed
extensively alongside their numerical implementations in Basilisk.

2.2. Linear stability analysis
In the context of linear stability theory, sustained coherent structures appearing in a flow
may be analysed by the exponential growth of infinitesimal disturbances on a basic state
flow field. To this end, the derivation of the linearised form of (2.1) follows verbatim
the description in Schmidt et al. (2021). Upon non-dimensionalisation, using ρ2, μ2 and
suitable length and velocity scales we obtain

[
1 + Hε(φ)

(
1
ρ̃

− 1
)]
(∂tu + u·∇u)

= −∇p + 1
Re

∇·
[(

1 + Hε(φ)
(

1
μ̃

− 1
))

(∇u + (∇u)T)
]

+ 1
We
κnδε(φ), (2.5)

where the Reynolds number is Re = ρ2Uref Dref /μ2, the Weber number is We =
ρ2U2

ref Dref /σ , ρ̃ = ρ1/ρ2 and μ̃ = μ1/μ2. Further we define the vector q = (u, p, ψ)T,
containing the flow variables, where ψ may denote either c or φ as required.

The quantities in (2.5) are expanded as, q = Q + ξq′, where Q = (U, Ψ )T is the
basic state and q′ = (u′, p′, ψ ′)T is a disturbance, with 0 < ξ � 1. The disturbances are
composed of normal modes

q′(x, y, z, t) = q̂l
(x, y, z)eσ t + c.c. (2.6)

where q̂l denotes the complex amplitude function and σ the associated complex
eigenvalue, c.c. is the complex conjugate. The growth rate and frequency of the modes are
given as Re(σ ) andωl = Im(σ ), respectively. For ease of reading we will denote individual
normal modes by their frequency ωl and a suitable index. At leading order, the resulting
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linear disturbance equations in a LS formulation are then given as[
1 + Hε(Φ)

(
1
ρ̃

− 1
)]
(∂tu′ + u′·∇U + U·∇u′)+ 2

[
δε(Φ)φ

′
(

1
ρ̃

− 1
)]
(U·∇U)

= −∇p′ + 1
Re

∇·
[(

1 + Hε(Φ)
(

1
μ̃

− 1
)) (∇u′ + (∇u)T

)]

+ 1
Re

∇·
[
δε(Φ)φ

′
(

1
μ̃

− 1
) (∇U + (∇u)T

)] + F s(Φ, φ
′), (2.7a)

∂tφ
′ + ∇·(Φu′)+ ∇·(φ′U) = 0, (2.7b)

∇·u′ = 0. (2.7c)

The linearised momentum equation (2.7a) for interfacial two-phase flows contains
several additional terms, as compared with the equation for single-phase flow which stem
from the disturbances of the viscosity and density, as well as the linearised surface tension
force F s(Φ, φ

′). These terms are described in detail in Schmidt et al. (2021). As the present
study only considers a viscosity stratification, the terms involving surface tension and
density perturbation are zero.

The linear system (2.7) is stated in compact form as

∂q′

∂t
= L(Q)q′, (2.8)

where L(Q) is the linearised Navier–Stokes operator. Following Tuckerman & Barkley
(2000) and Barkley, Blackburn & Sherwin (2008), the system (2.8) may be reformulated
as an eigenvalue problem where σ and q̂l are the complex-valued eigenvalues and
eigenmodes, respectively, and solved iteratively with an Arnoldi method.

In practice, the construction of the subspace in the Arnoldi method amounts to time
stepping of the linearised equations (2.7) to obtain each Krylov vector. Following Schmidt
et al. (2021), the equations (2.7) are discretised in Basilisk, similarly to the nonlinear
equations. As a consequence, both the nonlinear and linear computations are facilitated
using the same numerical schemes and on the same computational grid.

2.3. Flow configuration
The three-dimensional nonlinear and linear equations, (2.1) and (2.7) respectively, are
solved in Cartesian coordinates on an octree-discretised grid in a cuboid domain. The
total domain edge length is Ltot = 128 and a cylindrical region with 0 � z � Z and
0 � r � R is statically refined with a cell edge length of Δ = 0.0625 where Z = 64 and
R = 8 (the convergence of the employed mesh for the linear and nonlinear analysis is
demonstrated in Appendix A). The domain outside the refined cylinder is successively
coarsened and indirectly acts as a sponge layer in downstream direction, by numerically
diffusing vorticity and ensuring an approximately vorticity-free outflow. All length scales
are non-dimensionalised with respect to the interface position at the inlet as given in (2.10).
A schematic view of the domain is provided in figure 1.

For the nonlinear flow, the parameterised Grabowski–Berger profile (Grabowski &
Berger 1976), with the velocity stated in cylindrical coordinates as u = (uz, ur, uθ )T, is
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Ltot = 128

r = 8

x, r

y
uθ

θ

Ω1

Ω2

Ω3

uz

z

c = 1 r = 1

c = 0

Figure 1. Schematic view of the computational domain.

given as

uz =
{
α + (1 − α)r2(6 − 8r + 3r2) if r � 1
1 if r > 1

(2.9a)

uθ =
{

Sr(2 − r2) if r � 1
S/r if r > 1

(2.9b)

ur = 0, (2.9c)

where S is the non-dimensional swirl number which is defined as the azimuthal velocity
at r = 1, relative to the axial free-stream velocity S = uθ (r = 1)/uz,∞. The parameter α
blends between jet (α > 1) and wake-like (α < 1) profiles of the core region r � 1 and
is defined as α = uz(r = 0)/uz,∞. Throughout this work, we only consider α = 1, i.e. a
constant axial flow profile.

The Grabowski–Berger profile was initially introduced for single-phase flow, so the
extension to interfacial flow requires the definition of an interface position at the inlet
Rin. Derived from the parameterisation of the uz component, a natural choice is the radial
limit of the inner core region at Rin = 1. However, different choices of Rin will be assessed
in § 3. Consequently, we define the following profiles for the volume fraction c, as well as
for a LS-like passive scalar φ, that is co-advected alongside c:

c =
{

0 if r � Rin

1 if r > Rin
, φ = r − Rin. (2.10a)

The profile is prescribed in Cartesian coordinates at the inletΩ1, located on the left-hand
side of the domain. Previous studies (e.g. Ruith et al. 2003; Ruith, Chen & Meiburg 2004)
have discussed the sensitivity of lateral and outflow boundary conditions on the dynamics
of laminar swirling flows. Therein, convective boundary conditions are advocated to avoid
reflections at the boundaries that affect the flow in the interior of the domain. However,
given the grid coarsening in downstream direction for z > 64 and r > 8, in combination
with a sufficiently large total domain size, we have found it sufficient to employ a standard

955 A24-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
79

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1079


S. Schmidt and K. Oberleithner

outflow condition

∂q/∂nΩ = 0, p = 0, (2.11a,b)

imposed on the right-hand side boundary of the domain Ω2 where nΩ is the unit normal
vector at the domain boundary. On the lateral domain boundariesΩ3 we employ symmetry
conditions

u·nΩ = 0, ∂ψ/∂nΩ = 0, ∂(u·tΩ)/∂nΩ = 0, (2.12a–c)

where tΩ is the unit tangent vector.
For the linear flow, vanishing disturbances q̂l = 0 are enforced at Ω1 and Ω2, as well

as ∂ p̂l/∂nΩ = 0. The boundary conditions for disturbances along Ω3 are similar to the
nonlinear flow. Additionally, for z > 64, a damping volume force is added such that in
this region the disturbances are of the form ˜̂ql = q̂l(1 − η(z)). The damping function is
formulated as

η(z) = 1
2

+ 1
2

tanh
(

z − z0

l

)
, (2.13)

with z0 = 1.25·64 and l = 4 as scaling parameters.
The basic state flow fields Q required for the linear analysis are obtained

with axisymmetric nonlinear simulations including swirl. They are performed on a
two-dimensional grid in the (z, r) plane with a symmetry condition along r = 0 and by
assuming zero gradients in azimuthal direction, ∂/∂θ = 0. The simulations are advanced
towards steady state solutions until convergence with a residual ||u(x̂)n+1 − u(x̂)n||∞ =
O(10−8), where x̂ = (0 � z � 16, 0 � r � 4). The axisymmetric fields are then rotated
and cubically interpolated on the three-dimensional Cartesian grid, used for the linear
analysis.

2.4. Modal decomposition of the nonlinear flow

2.4.1. Azimuthal Fourier decomposition
Given the rotational symmetry of the flow, the computed time-resolved fields are cubically
interpolated from the computational grid in Cartesian coordinates (x, y, z)T onto a
cylindrical grid (z, r, θ)T. The interpolated fields are then decomposed into azimuthal
Fourier modes

q′(z, r, θ, t) =
∞∑

m=−∞
q′

m(z, r,m, t)eimθ , (2.14)

with m being the azimuthal wavenumber, prior to subsequent analysis.

2.4.2. Dynamic mode decomposition
For analysis of the overall flow dynamics, the flow is decomposed into temporal modes
using the dynamic mode decomposition (DMD) (Rowley et al. 2009; Schmid 2010). The
resulting decomposition is an approximation of the Koopman operator, which is a linear
infinite-dimensional operator describing a nonlinear dynamical system. Given a set of n
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snapshots of the flow q′n, the DMD yields a decomposition

q′n =
M−1∑
j=1

λn
j q̂j + r, (2.15)

where λn
j = exp(i2πj/n) and q̂j are the Ritz values and vectors that approximate the

Koopman modes of the dynamical system. The associated frequencies are ω = 2πj/n.
The residual r is the result of the projection onto the subspace, spanned by q′n. We denote
individual DMD modes by their frequency ω and a suitable index.

2.4.3. Sign convention for helical modes
In order to clearly categorise the spatio-temporal characteristics of the computed global
modes, the sign conventions used in this work need to be clarified. The three-dimensional
modes are decomposed into azimuthal wavenumbers according to (2.14) that aid in the
characterisation of the structures observed in the swirling flow. Structures with m = 0
are axisymmetric whereas |m| > 1 corresponds to helical structures. Helical structures,
further, can be characterised by their sense of rotation and winding. The rotation refers to
the temporal change of modes with respect to the base flow. This means that, for fixed z,
a fluid portion on a line of constant phase circulates in time in the same direction in the
r–θ plane as the underlying swirl if the vortex is co-rotating and in the opposite direction
when the vortex is counter-rotating. The winding refers to spatial change of the modes in
the z-direction. Meaning that, for fixed t and moving in positive z, a fluid portion on a
line with constant phase circulates in space in the same direction in the r–θ plane as the
underlying swirl if the vortex is co-winding and in the opposite direction when the vortex
is counter-winding.

The rotation sense from the azimuthally decomposed global modes can be inferred
from the sign of the products ωlm. Following the sign convention in (2.6), modes with
ωlm > 0 are co-rotating and modes with ωlm < 0 are counter-rotating. The global modes
come in complex conjugate pairs. In the present flow modes with ωl > 0 have m > 0
and modes with ωl < 0 have m < 0. The winding sense is deduced visually from the
modes and the basic flow swirl, with the result that in the present study unstable modes
are co-rotating and counter-winding. Given that the modes come in complex conjugate
pairs, the transformation (m, σ ) → (−m,−σ ∗) applies, with the asterisk denoting the
complex conjugate. Thus, we can restrict ourselves to m > 0 or m < 0 modes without loss
of generality. We choose to follow the convention used in, e.g. Oberleithner, Paschereit &
Wygnanski 2014, and only consider m > 0 modes.

2.4.4. Bispectral mode decomposition
Additionally, we employ the bispectral mode decomposition (BMD) which has recently
been introduced by Schmidt (2020) and is briefly summarised here, given its novelty.
The BMD allows for the identification of nonlinear triadic interactions that result from
a quadratic phase coupling of two frequencies. For illustration, we write (2.1) in compact
form with disturbances as in (2.6)

∂q′

∂t
= L(Q)q′ + Q(q′, q′)+ C(q′, q′, q′)+ S(q′), (2.16)

and identify four groups of terms on the right-hand side. The first term is the linear
interaction between the base flow terms and a single disturbance quantity, the second term
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contains quadratic nonlinearities of the velocity disturbances with itself and interactions of
the velocity and density or viscosity disturbances, as well as the quadratic nonlinear part
of the surface tension term. The third term contains cubic interactions of the velocity and
density disturbances, as well as the cubic nonlinear part of the surface tension term. The
last term contains the remaining higher-order nonlinearities of the surface tension term.
Consequently, triadic interactions are driven by Q(q′, q′).

A triad is described by the frequency triplet (ωx, ωy, ωx+y)where the frequencies ωx and
ωy interact to form a third frequency ωx+y, obeying the condition ωx ± ωy ± ωx+y = 0.

The BMD constitutes an analogy to the classical bispectrum for multidimensional
signals. Given a signal q(t) and the third-order moment Rqqq = E[q(t)q(t − τx)q(t − τy)],
where E[·] is the expectation value, the bispectrum is defined as the double Fourier
transform of Rqqq

Sqqq(ωx, ωy) =
∫ ∞

∞

∫ ∞

∞
Rqqq(τx, τy) exp(−i(ωxτx + ωyτy)) dτx dτy

= lim
T→∞

1
T

E[q̂(ωy)
∗q̂(ωx)

∗q̂(ωy + ωx)], (2.17)

where (·)∗ is the complex conjugate and q̂(ωx) and q̂(ωy) are the xth and yth frequency
component of the Fourier transform of q̂.

The BMD, for a multidimensional signal q(x, t), is derived from the bispectrum as the
expectation value of the spatial integral of the Fourier transforms q̂x = q̂(x, ωx), q̂y =
q̂(x, ωy) and q̂x+y = q̂(x, ωx+y)

b(ωx, ωy) ≡ E
[∫

Ω

q̂x ◦ q̂y ◦ q̂x+y dx
]
, (2.18)

where ◦ denotes the element-wise product. Now, taking a number of Nblk realisations of the
Fourier transform q̂, the bispectral modes, representing the spatial structure of the triadic
interaction, are defined as

φ
[i]
x+y(x, ωx+y) =

Nblk∑
j=1

aij(ωx+y)q̂
[j]
x+y. (2.19)

The cross-frequency fields, which quantify the phase alignment of two frequencies, are
given as

φ[i]
x◦y(x, ωx, ωy) =

Nblk∑
j=1

aij(ωx+y)q̂[j]
x◦y, (2.20)

where q̂x◦y = q̂x ◦ q̂y. The bispectral modes are therefore linear combinations of the
Fourier modes q̂ whereas the cross-frequency fields are maps of phase alignment. The
mode bispectrum (2.18) is derived from the spatial integration of the element-wise product

ψx,y(x, ωx, ωy) = |q̂x◦y ◦ q̂x+y|, (2.21)

which is a measure of the local bicorrelation of ωx and ωy and hence we may call ψ an
interaction map.

The goal then is to find the coefficients aij such that the modulus of b(ωx, ωy) in (2.18)
is maximised. The result is the complex mode spectrum λ1(ωx, ωy) which quantifies the
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triadic interaction of the frequency triplet (ωx, ωy, ωx+y). Details on the exact algorithm
may be found in Schmidt (2020).

Similar to the bispectrum of a single signal, Sqqq(ωx, ωy), the cross-bispectrum of up to
three different signals is given as Sqrs(ωx, ωy). It identifies triadic interactions acting across
the involved signals. In similar fashion, the cross-BMD of three different fields q, r, s may
be computed.

3. Steady axisymmetric breakdown states

Before we turn to the linear and nonlinear analyses of helical instability in the flow,
we investigate the flows’ susceptibility to axisymmetric breakdown. As axisymmetric
breakdown is often considered a prerequisite to helical destabilisation, determining the
critical swirl Sc above which vortex breakdown occurs provides an indicator as to where
helical destabilisation might occur. The governing equations for interfacial flows, as
derived in § 2, lead to a notably larger parameter space as compared with a single-phase
flow. While a comprehensive parameter study of interfacial swirling flows is beyond
the scope of this work, it is instructive to map out some parameter combinations for
axisymmetric configurations to get a clear picture when axisymmetric breakdown is
promoted or inhibited.

For the rest of this work we fix Re = 400, and since we are interested in the isolated
effect of the viscosity variation, we assume equal densities of both phases (i.e. ρ̃ = 1) and
neglect the influence of surface tension (We = ∞). The remaining parameters then are S
and μ̃.

The formation of a vortex breakdown bubble implies the development of a reverse flow
region and thus can be tracked using the minimum of the axial velocity

uz,min = min
t→∞{uz|r < R, z < Z}. (3.1)

A stagnation point forms in the flow for uz,min = 0 and as soon as uz,min becomes
negative, vortex breakdown occurs. In figure 2(a) the dependence of the critical swirl Sc
in relation to μ̃ is plotted (blue line). The coloured area represents the breakdown regime
where shades of blue indicate an inhibition of vortex breakdown and shades of red indicate
a promotion of vortex breakdown with respect to the single-phase flow with μ̃ = 1. For
each μ̃, indicated by a dot in the plot, flows are computed with varying S in increments of
0.01. The plotted values of Sc are the smallest ones for which a stagnation point forms in
the flow which leads to vortex breakdown. It is seen that a decrease of μ̃ from unity, i.e. an
increase of the viscosity of the outer fluid, leads to a decrease of Sc thus making the flow
more susceptible to axisymmetric breakdown. Contrastingly, an increase of μ̃ from unity,
i.e. a decrease of the viscosity of the outer fluid, leads to an increase of Sc thus making
the flow less susceptible to axisymmetric breakdown. The transition from a columnar flow
to vortex breakdown proceeds smoothly and without an abrupt change as can be deduced
from figure 2(c) for μ̃ = 0.5.

We now focus on configurations where the outer fluid is more viscous than the inner
fluid, i.e. μ̃ < 1. For further illustration of the flow at pre- and post-breakdown states,
contour plots of the axial velocity field uz for the configurations denoted by black dots in
figure 2(a) are presented in figures 2(d) and 2(e). The interface is shown as a solid white
line and the uz = 0 contour, indicating reverse flow, as a dashed line. The location of the
minimum of uz is shown as a red dot.

Fixing the swirl at S = 0.9 (thus moving horizontally along the black dots in figure 2a),
the flow at μ̃ = 1 is located just inside the breakdown region. Consequently, a small
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Figure 2. (a) In blue: critical swirl Sc in relation to μ̃ above which axisymmetric vortex breakdown (VB) is
observed. Colour indicates a promotion or inhibition of vortex breakdown with respect to the single-phase
flow. As black dots: configurations plotted in (c,d). (b) Influence of Rin on the reverse flow uz,min, for (S, μ̃) =
(0.8, 0.5). The solid and dashed black lines denote uθ,in and duθ,in/dr respectively. (c) Minimum axial velocity
uz,min vs S for pre- and post-vortex breakdown states, μ̃ = 0.5. (d,e) Contour plots of uz of axisymmetric flows
for S = 0.9 and varying μ̃ and μ̃ = 0.5 and varying S. The interface is shown as solid white line and the uz = 0
contour, indicating reverse flow, as dashed line. The location of the minimum of uz is shown as a red dot.

region of reverse flow exists where the axial velocity becomes negative. For μ̃ = 0.5, 0.1,
axisymmetric breakdown intensifies, as the bubble grows and deforms. In addition, a
second recirculation area forms downstream of the first bubble. As a consequence of the
bubble formations, the interface is pushed outwards in radial direction.

Now fixing μ̃ = 0.5 (thus moving vertically along the black dots in figure 2a),
breakdown again occurs for all presented configurations. For increased swirl, the single
breakdown bubble present at S = 0.8 shows a similar behaviour as when decreasing μ̃.
It appears, however, that it converges towards a fixed size and generally remains smaller.
Similarly, a second breakdown bubble forms downstream of the first one that is elongated
when increasing S.

The influence of the inlet interface position Rin on the vortex breakdown formation is
illustrated in figure 2(b) where the minimum axial velocity uz,min is plotted for 0.5 < Rin <
1.5 and (S, μ̃) = (0.8, 0.5). Values uz,min < 0 imply a reverse flow and thus are indicative
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of vortex breakdown. It is seen that the radial position of the interface significantly impacts
intensity of the reverse flow. For values Rin > 1.2 the influence of the second fluid phase
is too weak to trigger a vortex breakdown and its effect on the flow diminishes with further
increase. On the other hand, for 0.55 � Rin � 1.2 the interface is sufficiently close to the
vortex core to trigger a breakdown. Notably, the maximum destabilisation is not reached
at the boundary of the vortex core Rin = 1 but around Rin = 0.8, which corresponds to
the position of the maximum of uθ at the inlet. The sharp change observed between
0.98 < Rin < 1.0 can be attributed the parameterisation of the profile, as duθ,in/dr is not
continuously differentiable r = 1. For Rin < 0.55, the interface is inside the vortex core
and successively starts to weaken the formation of the breakdown bubble.

The effect of μ̃ on the formation of vortex breakdown appears somewhat
counter-intuitive. As the viscosity of the core fluid, where the vortex breakdown occurs,
is kept constant, a viscosity ratio μ̃ < 1 implies that the viscosity of the outer fluid is
increased. Intuition would suggest that the introduction of a second phase with a larger
viscosity stabilises the flow through the decrease of the local Reynolds number in the more
viscous phase which is given as Remin = μ̃Re. Consequently, Sc would lie somewhere
between the respective values for Re and Remin for a flow with μ̃ = 1. However, the
opposite is observed, as the flow for μ̃ < 1 leads to an earlier onset of vortex breakdown.

3.1. Impact of the viscosity variation on the axisymmetric vortex breakdown
To shed light on the physical mechanism behind this destabilisation, we analyse the
matching conditions of the two fluids that need to be fulfilled at the interface. These state
that both the velocity and the shear stress across the interface need to be continuous.
Further, the stress continuity is influenced by the viscosity. The strain-rate tensor is
given as D = (∇u + (∇u)T)/2 and the deviatoric viscous stress tensor consequently is
T = 2μD. In line with Qadri, Mistry & Juniper (2013), the dominant viscous stress
components in the flow are r − z and r − θ , corresponding to the axial and azimuthal
shear. The resulting stress continuity of the considered components on both sides of the
interface then is given as[[

1
μ̃

(
1
r
∂ur

∂z
+ ∂uz

∂r

)]]
r(c=0.5),1

=
[[

1
r
∂ur

∂z
+ ∂uz

∂r

]]
r(c=0.5),2

, (3.2a)

[[
1
μ̃

(
1
r
∂ur

∂θ
+ ∂uθ
∂r

− uθ
r

)]]
r(c=0.5),1

=
[[

1
r
∂ur

∂θ
+ ∂uθ
∂r

− uθ
r

]]
r(c=0.5),2

, (3.2b)

where the phases are denoted by 1 and 2 and the interface location is given by the volume
fraction c as r(c = 0.5). To illustrate the influence of the viscosity stratification on these
terms, we plot their radial evolution in the far wake, z = 64, of a swirling flow with S =
0.78 which is marginally below Sc for μ̃ = 0.5 and compare the profiles for μ̃ = 0.5 and
μ̃ = 1. The respective plots for uz, uθ , ∂uz/∂r and ∂uθ /∂r are shown in figure 3. As the
flow at this axial position is fully relaxed, the gradients of ur are negligibly small and thus
ignored.

From (3.2) it is seen that, for a two-phase flow, the velocity gradients in the radial
direction are discontinuous in order to satisfy shear stress and velocity continuity at the
interface. In figure 3, this results in a slowing of uz and uθ in the less viscous core fluid.
With respect to uz, this aids the onset of vortex breakdown which requires a stagnation
point in the axial velocity. Moreover, the gradient ∂uz/∂r is approximately equal to
the negative azimuthal vorticity −ωθ . The shear stress continuity leads to a substantial
increase of its magnitude which intensifies the vortex breakdown.
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Figure 3. (a) Comparison of (a) uz, (b) ∂uz/∂r, (c) uθ and (d) ∂uθ /∂r around the interface in the far wake,
z = 64, of pre-breakdown swirling flows with S = 0.78 for μ̃ = 0.5 or μ̃ = 1 (in blue). The interface, as defined
by the volume fraction c (in black), is located in the blue area.

The effect of the interface position that was analysed in figure 2(b) is also linked to the
gradient ∂uz/∂r and thus to ωθ . For interface positions approximately between Rin = 1.2
and Rin = 0.6 its maximum increases with the radial inward movement of the interface,
thus intensifying the breakdown, while for Rin < 0.6, its maximum rapidly decreases
again, thus weakening the breakdown (plots not shown here). Further, for small Rin, the
low vorticity of the outer fluid reaches far into the vortex core, thus hindering the formation
of a breakdown bubble.

4. Linear global modes

Continuing from the analysis of the axisymmetric flow, the obtained steady breakdown
states are used as a base flow to compute linear global modes of the respective flow
configurations. In previous studies of single-phase swirling flows, helical destabilisation
has been successfully explained through the instability of the Navier–Stokes operator,
linearised around a stationary basic state (e.g. Meliga et al. 2012; Qadri et al. 2013). It was
shown that the flow undergoes a supercritical Hopf bifurcation through the destabilisation
of one or several helical global modes. In order to investigate the global linear stability
of the present interfacial flow, we employ the solution procedure described in § 2.2 to
compute the most unstable global modes for a selection of swirl numbers above Sc = 0.79
with μ̃ = 0.5 (corresponding to the vertical dots in figure 2a).

The growth rates Re(σ ) and frequencies Im(σ ) of the computed eigenvalues at each
swirl number, ranging from S = 0.78 to S = 1 are shown in figure 4 where increments of
0.01 are used to compute solutions between 0.78 � S � 0.81. The grey shaded area marks
the regime where the nonlinear flow which will be analysed in § 5, converges towards a
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Figure 4. (a) Plot of the growth rates Re(σ ) of the unstable linear global modes ωl, obtained from the linear
analysis, over several S. The grey circles denote stable modes. (b) Comparison of the frequencies Im(σ ) of
the linear global modes ωl (denoted by ◦) with the limit-cycle oscillations ω (denoted by ♦) of the nonlinear
flow in § 5. The dashed lines connecting the data points are printed for improved readability and should not be
interpreted as a linear variation of the data.

S Re(σ ) Im(σ ) ω

0.8 ωl
2: 0.06 1.9 ω2: 1.91

ωl
1: 0.06 0.95 ω1: 0.96

0.9 ωl
2: 0.11 2.18 ω2: 2.22

ωl
1: 0.10 1.09 ω1: 1.1

1.0 ωl
2: 0.20 2.53 ω2: 2.37

ωl
1: 0.17 1.27 ω1: 1.19

ωl
m: 0.05 2.08 ωm: 2.08

ωl
l: 0.04 2.01 ωl: 1.93

Table 1. Tabulated values of growth rates Re(σ ) and frequencies Im(σ ) of the linear modes ωl. The
corresponding frequencies ω, obtained from the nonlinear flow in § 5 are shown for comparison.

stationary solution. Additionally, tabulated values for growth rates and frequencies of the
computed eigenvalues of the linear analysis for S = 0.8, 0.9, 1.0 are given in table 1, as
well as the frequencies of the equivalent modes from the nonlinear flow.

As is seen, the flow remains linearly stable to perturbations for S � 0.78 but becomes
unstable to two global modes, ωl

1 and ωl
2 that bifurcate simultaneously at S ≈ 0.79. Their

frequencies are related harmonically as ωl
2 ≈ 2ωl

1. For the largest investigated swirl, S =
1.0, a destabilisation of two additional modes, ωl

l and ωl
m is observed. Their nomenclature

here is chosen in accordance with the analysis of the nonlinear flow in § 5.2 where two
modes, ωl, ωm are found that bear close resemblance to these linear modes.

The three-dimensional mode shapes of the linear modes for S = 0.8, 0.9, 1.0 are plotted
as velocity and LS disturbances, Re(ûl

θ ) and Re(φ̂l) in figure 5. As the modes in the
three-dimensional computations are not restricted to an imposed azimuthal wavenumber,
they are decomposed into their azimuthal wavenumbers using the conventions described in
§ 2.4.1 for further clarity. In the linear framework the energy content of each mode should
be exclusively associated with a single azimuthal wavenumber. The energy contained
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Figure 5. Shapes of the unstable linear global modes (Re(ûl
θ )/max[Re(ûl

θ )] in red, Re(φ̂l)/max[Re(φ̂l)]
in blue) at the respective swirl numbers. The pictographic bar charts show the relative contributions of the
respective wavenumbers m = 0, 1, 2, 3 (from left to right) to each mode.

in each wavenumber is calculated via the standard L2 norm and a pictographic bar
chart is given that shows the modes’ relative energy content per azimuthal wavenumber
m = 0, 1, 2, 3.

The mode shapes for S = 0.8 reveal that the two unstable global modes have different
azimuthal wavenumbers, where ωl

1 has m = 1 and ωl
2 has m = 2. This is also seen from

the single and double spiralling shape of the respective modes. Both modes are active in
the wake of the breakdown bubble. For S = 0.9, the results are qualitatively similar but
the modes are shifted upstream, closer to the breakdown bubble. For S = 1.0, the mode
shapes of ωl

1 and ωl
2 are concentrated in the immediate vicinity of the breakdown bubble.

Conversely, the newly bifurcated modes ωl
l and ωl

m are located in the far wake region of the
flow. Both modes are double helical (m = 2). Following the sign convention for m made
in § 2.4.1, all modes shown in figure 5 are co-rotating and counter-winding with respect to
the base flow swirl orientation.

To shed light on the evolution of the observed m = 1 and m = 2 modes in the (S, μ̃)
plane, linear modes are computed for various S below and above Sc for 0.4 � μ̃ � 1
and are displayed in figure 6(a). It is seen that the m = 1 mode is the leading (first to
bifurcate) mode for μ̃ > 0.5, while m = 2 leads for μ̃ < 0.5. At μ̃ ≈ 0.5 both modes
become simultaneously unstable. The evolution of the critical curves for both modes in the
plot also implies that they can be traced back to the respective modes in the single-phase
flow with μ̃ = 1. Hence, we can conclude that the observed modes in the two-phase
swirling flow have the same origin as the respective modes in the single-phase flow and
that the underlying mechanism of destabilisation is the same.

The occurrence of multiple unstable modes with increasing azimuthal wavenumbers
has also been observed by Meliga et al. (2012) in their systematic study of single-phase
swirling flows in the S–Re plane using linear and weakly nonlinear analysis to
identify mechanisms of mode selection in the nonlinear flow. Starting from either
an unstable m = 1 or m = 2 mode, they observe subsequent bifurcations of modes
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Figure 6. (a) Critical curves of the observed m = 1 (dashed line, crosses, blueish area) and m = 2 (dotted line,
circles, reddish area) modes. The markers show the computed configurations from which the curves are drawn.
Red markers denote stable modes while blue markers denote unstable modes. The thick black line denotes the
Sc curve, indicating vortex breakdown. (b) Frequency ratio of the unstable modes ωl

2/ω
l
1 at the lowest swirl S

where both modes are linearly unstable.

with higher wavenumbers if Re or S are increased. Moreover, they as well report
the simultaneously bifurcation of an m = 1 and m = 2 mode at a particular S−Re
combination (codimension-two point) where the frequencies of both modes further show
an approximate 2 : 1 resonance. A similar point is found here for (S, μ̃) = (0.79, 0.5) as
can be deduced from figure 6(a), given that the critical curves of m = 1 and m = 2 cross at
this configuration. The change of the leading mode from m = 1 to m = 2 when lowering
μ̃ is likely attributed to the deformation of the columnar and breakdown vortex states, as
has also been suggested by Meliga et al. (2012). It appears that the effect of lowering μ̃ on
the vortex states is similar to the effect of increasing S, namely the formation of a second
vortex bubble in the wake of the primary one that then facilitates the destabilisation of
an m = 2 mode before the m = 1 mode. At the codimension-two point the linear modes
are almost exactly harmonic (ωl

2/ω
l
1 ≈ 2) as can be deduced from figure 6(b), whereas for

larger and lower μ̃ the ratio is lower.
The present linear analysis further has shown that the swirl number where both global

modes bifurcate for μ̃ = 0.5 coincides with the critical swirl for vortex breakdown. For
larger and smaller μ̃, the leading global mode bifurcates even slightly earlier and thus
becomes unstable before vortex breakdown occurs. This is in contrast to previous studies
of the single-phase Grabowski–Berger vortex at lower Reynolds numbers where usually
a notable regime exists where the flow, despite axisymmetric breakdown, remains stable
(e.g. Ruith et al. 2003). In the present study, the Reynolds number is generally larger
and therefore the azimuthal shear is sufficiently strong to overcome viscous damping and
lead to a bifurcation even without the topological change from a columnar to a vortex
breakdown state. A hint towards this behaviour can be deduced from figure 4(a) of Meliga
et al. (2012) for large Reynolds numbers.

4.1. Impact of the viscosity variation on the helical instability
Similarly to the axisymmetric flow, the critical swirl for helical destabilisation of the
three-dimensional flow is reduced to S ≈ 0.79 for μ̃ = 0.5, in contrast to S ≈ 0.85 for
μ̃ = 1. Thus, it is evident that, similarly to the axisymmetric vortex breakdown, the
viscosity stratification, leads to stronger destabilisation than a constant-viscosity flow at
the largest local Reynolds number occurring in the two-phase flow.
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The pronounced helical instability has potentially two causes: it may be purely driven
by the earlier onset of vortex breakdown or additionally be promoted by a destabilisation
of helical modes through the interface and viscosity stratification. Insights can be gained
from the existing literature on viscosity-stratified flows. Yih (1967) discovered a long-wave
mechanism (Yih mode or interface mode) that destabilises all confined shear flows with
a viscosity stratification. Hooper & Boyd (1983), equally, found a destabilisation of
short waves in viscosity-stratified open Couette flow which originates in the vicinity of
the interface. Similarly, for pipe flows with concentric viscosity-stratified fluids, Hickox
(1971), found a destabilisation for azimuthal wavenumbers m = 0 and m = 1. In all of
these studies the respective flows appear stable in the absence of a viscosity stratification.
A physical explanation for the phenomenon was given by Hinch (1984) who argued
that due to the viscosity jump, the undisturbed velocity at the disturbed interface is
discontinuous. In order to satisfy shear stress continuity at the interface, a velocity
disturbance is required, implying an energy transfer from the base flow to the disturbed
flow. This again induces vorticity disturbances on both sides of the interface where the
vorticity of the less viscous layer drives the instability. His argument given for a disturbed
flow, thus, is similar to the argument given above for the steady axisymmetric vortex
breakdown.

The present flow is obviously significantly more complex than the flow studied by Yih
and a direct translation of the above mechanism is questionable especially in light of the
fact that the observed instabilities are similar to those observed in single-phase swirling
flows. Thus, the underlying destabilisation mechanism remains the same. However, it may
be hypothesised that similar effects that lead to a purely viscosity-induced destabilisation,
play a role in the modification of the stability properties in the present flow.

To verify this hypothesis, we again consider the shear stress continuity across the
interface. The condition at the perturbed interface is equal to (3.2) with the velocities
replaced by disturbance quantities. Note, that the condition in this form is strictly only
valid at the perturbed interface. To obtain the full condition at the unperturbed interface,
given by the base flow, a Taylor expansion has to be performed, which introduces several
additional terms. A detailed derivation of this condition for the two-dimensional case
is described in Tammisola et al. (2012). However, to assess the hypothesis it suffices
to directly compare the disturbance quantities and their gradients on both sides of the
unperturbed interface. The exact condition is not needed. To evaluate whether the viscosity
stratification impacts the helical instability, we consider the leading unstable mode of a
flow with (S, μ̃) = (0.73, 0.1) where a pronounced influence of the stratification should
be visible if it exists. We focus on the azimuthal shear r − θ , plot u′

θ and ∂u′
θ /∂r across the

interface in figure 7 and see that ∂u′
θ /∂r indeed is discontinuous across the interface. This

shows that the viscosity stratification modifies the stability of the helical mode. Hence, we
conclude that the helical destabilisation of the flows investigated in this study is driven by
both, the structural change of the base flow through axisymmetric breakdown, promoted
by the viscosity stratification, as well as a promotion of helical instability itself by viscosity
stratification.

5. Analysis of helical instability in the nonlinear flow

The analysis of the axisymmetric breakdown in § 3 and the linear stability analysis
conducted in § 4 have shown that the introduction of a second, more viscous outer fluid has
a destabilising effect on the flow, resulting in vortex breakdown at lower swirl and also in
an earlier destabilisation of helical global modes on the breakdown state. Further, the linear
stability analysis for μ̃ = 0.5 has revealed the simultaneous destabilisation of two unstable
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Figure 7. (a) Evolution of (a) u′
θ and (b) ∂u′

θ /∂r around the interface at z = 32 of the leading mode of an
unstable swirling flow with (S, μ̃) = (0.73, 0.1) (in blue). The disturbance amplitude is scaled arbitrarily. The
interface, as defined by the volume fraction c (in black), is located in the blue area.

global modes in the flow that have harmonic frequencies. It is thus to be expected that a
strong synchronisation and resonance of these modes can be observed in the nonlinear
flow. This is investigated in the following by performing nonlinear simulations of the flow
and subsequent analysis of its dynamics.

5.1. Vortex dynamics
For the nonlinear simulations, we restrict the analysis to S > 0.79 which is beyond
the bifurcation point of the two identified helical global modes (refer to figure 4).
The three-dimensional simulations are initialised from the axisymmetric basic states,
analysed in § 3. After initialisation, disturbances develop in the flow and lead to a loss
of axisymmetry. Consequently, a spiralling motion forms in the wake of the breakdown
bubble, that deforms the interface.

For a phenomenological characterisation of the flow, the vortex dynamics of the three
configurations S = 0.8, 0.9, 1.0 is visualised via isosurfaces of the λ2-criterion (Jeong &
Hussain 1995) together with the fluid interface in figure 8. For each configuration the initial
unstable base flow is shown as well as a snapshot of the fully developed flow. At S = 0.8,
the λ2 isosurfaces suggest the presence of a predominantly single-helical vortex in the
low-viscosity core of the flow. In contrast, the illustration of the interface clearly shows a
double-helical structure. Both spirals are synchronised in space. It therefore appears that
there are two different structures, one single helical and one double helical, present in
the flow which exist at harmonic frequencies as is predicted by the linear analysis. For
S = 0.9, the appearance of the flow changes. The core region now leans towards a double
helix whereas the overall interface deformation is single helical. The illustration of the
flow at S = 1.0 shows an overall similar appearance to that of S = 0.9 but reveals a more
complex dynamics with several new structures appearing and disappearing in downstream
development of the flow which is in line with the bifurcation of the two additional unstable
linear modes at this swirl number.

5.2. Modal analysis

5.2.1. Mode spectra
To gain more detailed insights on the nonlinear dynamics of the flow, a spectral analysis of
the configurations S = 0.8, 0.9, 1.0 with μ̃ = 0.5 using a DMD is performed. A sequence
composed of n = 1024 consecutive snapshots of q′ every�t = 0.5 is used for computation
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Figure 8. Visualisation of the instantaneous flow. The upper image shows the unstable axisymmetric basic
state and the lower image the fully developed flow. Isosurfaces: interface (c = 0.5, in translucent grey) and
vortical structures (λ2 = −0.5, in dark blue; λ2 = −0.25, in light translucent blue).

of the Ritz values λn
j once the flow has reached a stable limit cycle. The resulting amplitude

spectra are presented in figure 9(a). Further, a comparison of the frequencies of the linear
modes ωl and the corresponding nonlinear modes ω is given in table 1 and figure 4(b).

The spectrum obtained for S = 0.8 shows two dominant frequency peaks, ω1 and ω2
which are in close agreement with the global modes ωl

1 and ωl
2 found in the linear analysis.

Both modes have similar amplitudes. For convenience, we denote this set of frequencies
as ωι with ι = 1, 2, 3, . . .

Increasing the swirl number to S = 0.9, results in an overall similar spectrum where
now, however, ω1 is clearly the most energetic frequency. The analysis at S = 1.0
reveals a significantly richer set of frequencies appearing in the spectrum. Apart from

955 A24-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
79

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1079


Global modes of variable-viscosity two-phase swirling flows and their triadic resonance

4

0

0 10 20 30 40 50 60
–4

4

0

0 10 20 30 40 50 60
–4

4

0

0 10 20 30 40 50 60
–4

4

0

0 10 20 30 40 50 60
–4

4

0

0 10 20 30 40 50 60
–4

4

0

0 10 20 30 40 50 60
–4

4

0

0 10 20 30 40 50 60
–4

0.0007 0.02

0.0007 0.02

0.0007 0.02

0.0007 0.02

0.0007 0.02

0.0007 0.02

0.0007 0.02

1.0(a)

(b) (c)

0.8

0.6

0.4

0.2

0 1 2 3

1.0

0.8

0.6

0.4

0.2

0 1 2 3

1.0

0.8

0.6

0.4

0.2

0 1 2 3

(×103) (×103) (×103)

ω

ω

ω

ω1 ω2

ω2
ω1

ω2
ω1

ω1 ω1

ω2
ωa

ωa
ωf

ωm

ωf ωm

ω2

ω ω

‖q̂‖

‖q̂
m
‖

‖q̂
m
‖

0.50

0.25

3

2

1

0

20

z

z

z

r

r

r

r

r

r

r

40

60

0.50

0.25

3

2

1

0

20

40

60

(×103)

(×103)

m = 1 m = 2 m = 3

m = 1m = 0 m = 2 m = 3

S = 0.8

S = 1.0

S = 0.8

S = 0.8 S = 0.9 S = 1.0

S = 1.0

Figure 9. (a) Magnitude of the DMD modes per frequency, extracted from the nonlinear simulation.
(b) Magnitude of the DMD modes per frequency and streamwise stations every �z = 10. The colours denote
the different wavenumbers. The peaks of the annotated modes are marked by ◦ (red). (c) The spatial mode
shapes (Re(ûθ ) in red, Re(φ̂) in blue) corresponding to the annotated modes in (a). The pictographic bar charts
show the relative contributions of the respective wavenumbers m = 0, 1, 2, 3 (from left to right) to each mode.
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the frequencies contained in ωι multiple new peaks appear which are ultraharmonic
frequencies with respect to ωι (their frequency ratios with respect to ω1 may be found
in Appendix B). These are created through nonlinear interactions in the flow. We denote
the resulting set as ωκ where κ = a, b, c, . . . , n. The mode ω1 is again the most energetic
mode.

5.2.2. Streamwise mode spectra and mode shapes
For further analysis of the spatial structure of the modes, the DMD is additionally
performed in the r–θ plane along several downstream stations of the flows for S = 0.8, 1.0
(see figure 9b). Here, snapshots of the azimuthally decomposed vector q′

m are used that
allow for a separation of the involved wavenumbers in the spectrum plot. Consequently,
at every streamwise station, a spectrum for each azimuthal wavenumbers m = 0, 1, 2, 3 is
plotted. The mode shapes corresponding to the annotated modes are shown in figure 9(c).
They are computed from the full vector q′ and are illustrated via the azimuthal disturbance
velocity u′

θ and the interface LS function φ′. For each mode, a pictographic bar chart
is given that shows the mode’s relative energy content per azimuthal wavenumber m =
0, 1, 2, 3.

For S = 0.8, the energy of the mode ω1 is almost exclusively contained in m = 1 and
the mode shape shows a single helix. Conversely, ω2 has most contained in m = 2 and
thus displays a double spiralling structure.

The illustration of the mode structures for ω1, reveals a spatial separation of the velocity
and interface disturbances. The former is prominent in the near wake starting around
z = 10 and extends into the far wake region around z = 20. In contrast, the interfacial
disturbance only develops a significant amplitude in the far wake for z > 20 which,
however, keeps growing further downstream. The m = 2 mode corresponding to ω2 is
concentrated in the region z > 20 and barely shows any activity upstream in the proximity
of the breakdown bubble. The comparison of the mode structures in figure 9 with the
full nonlinear flow in figure 8 corroborates this description: the interfacial disturbances
in the near wake are small and the instability is mainly driven by ω1. In the far wake,
ω2 dominates, which produces the characteristic double helix. The velocity disturbances
of the core fluid show the influence of both modes, with a dominance of ω1, yielding a
predominantly single-helical appearance.

For S = 1.0, the major part of the energy of ω1 remains contained in m = 1. Similarly,
most of the energy of ω2 is contained in m = 2. In comparison with S = 0.8, however,
the relative energy content in the respective wavenumbers diminishes as more energy
is distributed to adjacent wavenumbers. Thus, ω1 shows an increased activity in m = 2,
whereas ω2 is also active in m = 0 and m = 3. The near wake appearance of the ω1
velocity disturbance is similar to S = 0.8, but the activity in the far wake diminishes.
In contrast to S = 0.8, the interfacial disturbance extends upstream into the near wake
and the breakdown bubble. The mode ω2 is significantly shifted upstream into near wake.
The far wake region at this swirl number is dominated by the modes corresponding to ωκ
which spread across several wavenumbers. The most amplified frequencies, contained in
ωκ , at each wavenumber m = 0, 1, 2 are ωa, ωf and ωm, respectively. The nonlinear mode
ωl, corresponding to the linear global mode ωl

l, is very similar in shape to ωm and thus
is not displayed here. The fact that ωa (and other m = 0 modes) does not appear in the
axisymmetric simulations which converge towards steady states, indicates that its origin is
rooted in a nonlinear mechanism not present in the axisymmetric flow.

The mode shapes obtained for S = 0.8 from the linear analysis shown in figure 5 show
a good agreement with the corresponding modes extracted from the nonlinear flow in
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figure 9(c). In particular, the single and double-helical structure of the respective modes
is correctly captured as is the spatial wavelength which is represented through the helix
pitch. A deviation is seen in the streamwise amplitude distribution of the respective modes.
For instance, the amplitude of the near wake velocity disturbance of the linear mode
corresponding to ω1 is smaller than the far wake disturbance which explains the absence
of the upstream structure in figure 5.

The mode shapes of ωl
1 and ωl

2 for S = 1.0 are very localised and concentrated in the
immediate near wake part of the flow and thus deviate significantly from their nonlinear
equivalents. The location of the mode shape of ωl

m on the other hand agrees well with that
of ωm (and so does ωl

l with ωl which is not reproduced here). The observed differences for
S = 1.0 may be attributed to the significant nonlinear interactions which have been shown
to take part in the flow even at this swirl number and which lead to a departure of the actual
dynamics from that represented by the linear analysis.

5.3. Triadic mode interactions

5.3.1. Bispectrum
The amplitude spectra in figure 9 have shown a profound influence of the nonlinear
modal interactions in and between the two sets of modes ωι and ωκ for S = 1.0. To shed
light on these interactions and to identify dominant interaction mechanisms, higher-order
spectral analysis is leveraged. To this end, we apply the BMD to a sequence composed
of n = 1024 consecutive snapshots q′ every �t = 0.5 and compare the configurations
S = 0.8, 1.0. The interactions for S = 0.9 are comparable to those of S = 0.8 and are
not further analysed here. For completeness, the BMD modes for S = 0.8 are presented in
Appendix C, alongside the respective DMD modes and linear global modes.

The obtained magnitude mode bispectra are shown as a scatter plot in the top row of
figure 10. The modulus |λ1(ωx, ωy)| is the magnitude mode bispectrum which quantifies
the interaction of the frequency doublet (ωx, ωy) and every dot in the plot represents
such an interacting doublet. The dot diameters and colour coding are scaled with |λ1|,
such that small, bright dots correspond to weak interactions and large, dark dots to strong
interactions. The dashed diagonal lines, overlaying the plots, denote doublets generating
the same frequency, e.g. ω1 or ω2. Additionally, for selected frequencies, the three most
energetic contributions to this frequency, which lie on the dashed lines, are shown as a bar
chart in the bottom row of figure 10.

The interpretation for S = 0.8 then may be the following: initially, we assume
the existence of the two global modes ωl

1, ωl
2 as the result of the linear instability

mechanism addressed in § 4. Their counterparts in the nonlinear flow are ω1, ω2.
Nonlinear self-interaction ω1 + ω1 = ω2 then takes place via the triad (ω1, ω1, ω2),
marked by ◦(ω1, ω1) in the plot. Subsequent interaction continues as (ω2, ω1, ω3),
(ω2, ω2, ω4) and so forth. Simultaneously, the doublet (ω2,−ω1) feeds back on ω1. The
interactions (ω1,−ω1, 0) and (ω2,−ω2, 0) produce the stationary mean flow correction
and (ω1, 0, ω1), (ω2, 0, ω2) are the interactions of the respective modes with the
mean flow. Hence, the latter approximately correspond to the linear dynamics of these
modes around the mean flow. A comparison of the interaction of e.g. (ω1, 0, ω1) with
(ω2,−ω1, ω1) then allows for an estimate of the strength of the nonlinear interactions
in the flow. Here, (ω2,−ω1, ω1) 
 (ω1, 0, ω1) and thus the energy contribution through
nonlinear triadic interaction dominates over the energy contributed by the linear instability
mechanism that is responsible for the initial appearance of ω1. A similar argument,
(ω1, ω1, ω2) 
 (ω2, 0, ω2), can be made for ω2.
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interactions marked by ◦ in the bispectrum.

Therefore, it is evident that the nonlinear flow at S = 0.8 is already strongly influenced
by triadic interactions which are enabled by the simultaneous destabilisation of ωl

1 and ωl
2.

The resulting dominant interactions are the self-interaction of ω1 that amplifies ω2 and the
reinforcement of ω1 through interaction of its complex conjugate with ω2.

For S = 1.0, significantly more triadic interactions are observed. The bispectrum allows
to clearly identify these appearing interactions in and between the sets ωι and ωκ .
Again, we assume the linear global modes ωl

1, ωl
2 as a starting point which are now

accompanied by two additional modes ωl
l, ω

l
m. This enables all four global modes to
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interact nonlinearly and to form new modes, thus accounting for the appearance of all
the modes contained in the set ωκ . Regarding the analysis of these new modes, we will
concentrate on the modes ωa, ωf and ωm. The interactions inside the set ωι are partly
similar to the interactions for S = 0.8: the most energetic interactions are again the triads
(ω1, ω1, ω2) and (ω2,−ω1, ω1). However, both modes are now also influenced by various
other triads such as (ωm,−ωf , ω1) or (ωi, ωf , ω2). Within the set ωκ , ωf is identified to
be predominantly formed by the doublet (ωm,−ω1), while ωa and ωm are formed by the
doublets (ωb,−ωa) and (ω1, ωf ), respectively. A complete list of the dominant triadic
interactions with respect to each frequency is given in Appendix B.

In summary, the bispectral analysis shows that the simultaneous existence of the
two unstable global modes ωl

1, ωl
2 with harmonic frequencies allows for a triadic

resonance of these modes in the nonlinear flow, resulting in the formation of higher
harmonic modes. Moreover, it is evident that the energy portions stemming from the
harmonic interactions are significantly larger than those from the mean field correction.
Hence it may be concluded that the nonlinear dynamics is predominantly driven by
harmonics generation and not by the mean field correction. Through the appearance of
two additional modes ωl

l, ω
l
m a triadic interaction between all four modes is possible which

initiates an interaction cascade and leads to the emergence of a variety of additional modes.
The appearance of these strictly ultraharmonic modes differs from the observations made
by Pasche et al. (2018) for single-phase swirling flows. There, the nonlinear dynamics is
initiated by the appearance of an additional mode that is incommensurate with respect
to the initially single unstable global mode, resulting in a transition from a periodic to a
chaotic dynamics.

6. Conclusions

We have studied the dynamics of two-phase swirling flows with Re = 400 under the
influence of a viscosity stratification. To this end, we have performed axisymmetric
computations to map out the critical swirl above which vortex breakdown is triggered for
a variety of viscosity ratios. Further, we have investigated the linear stability of the flow
and identified helical global modes with azimuthal wavenumbers m = 1 and m = 2 that
oscillate at harmonic frequencies. An analysis of the fully nonlinear flow using bispectral
analysis has been conducted to elucidate nonlinear interaction between the global modes.
Two main conclusions are drawn from the present study.

First, the introduction of a more viscous outer fluid acts destabilising on the
investigated swirling flows, leading to an earlier onset of vortex breakdown and subsequent
destabilisation of helical global modes in the flow at lower swirl numbers as compared
with an equivalent single-phase flow at the maximum local Reynolds number of the
two-phase flow. The destabilising effect on the vortex breakdown and the subsequent
helical destabilisation may be explained through the shear stress continuity required at
the interface. In the axisymmetric nonlinear flow this induces a slowing of the axial
velocity in the vortex core that promotes vortex breakdown while in the linear flow, it
induces a velocity disturbance that destabilises the flow. In an analogous way, the viscosity
stratification leads to a modification and pronounced destabilisation of helical modes.

Second, the simultaneous destabilisation of two linear global modes at harmonic
frequencies enables strong triadic interactions between these modes to take place in the
nonlinear flow. At larger swirl, the destabilisation of additional modes leads to a cascade
of triadic interactions and synchronisation of the newly formed modes. The resulting
nonlinear dynamics becomes significantly more complex but remains periodic.
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Lz Lr nz nr Re(σ ) Im(σ )

Ruith et al. (2003) 20 10 193 61 0.0359 1.18
Qadri et al. (2013) 20 8 513 127 0.0352 1.17
Meliga et al. (2012) 40 6 — — 0.0335 1.17
Mref 64 8 1024 128 0.0329 1.17
M1 64 8 2048 256 0.0332 1.17
M2 64 8 512 64 0.0242 1.18

Table 2. Convergence of the unstable eigenvalue for Re = 200, S = 1, μ̃ = 1 on different meshes and
comparison with previous studies. As the present computations are three-dimensional in Cartesian coordinates,
radial measures r correspond to the respective measures in y and z. The mesh Mref is used throughout the study.

In consequence, the coexistence of two harmonic global modes acts as a catalyst for the
onset of triadic resonance in the nonlinear flow, starting immediately after the bifurcation
of these modes. As a result, the flow quickly departs from the linear dynamics that is
observed at the bifurcation point.

The presence of single- and double-helical modes at close-to-harmonic frequencies has
been observed to dominate the limit-cycle dynamics of turbulent swirling flows in several
technical applications. However, the analysis of laminar configurations as in the present
study allows for a more fine grained understanding of their origins. This is necessary to,
for instance, design flow control applications that aim to mitigate this dynamics. In the
present flow, control approaches realised through the stabilisation of unstable eigenvalues
would need to target all unstable global modes in order to be successful. Here, linear
analysis is necessary to clearly identify both modes as being linearly unstable since either
of the modes may easily be mistaken as a nonlinear subharmonic or higher harmonic
of the other. The bispectral analysis then allows us to clearly identify the pronounced
nonlinear interactions that are a direct result of the harmonic relation of the single- and
double-helical global modes.
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Appendix A

In table 2 convergence of the linear solver on different meshes is demonstrated. For
comparability with previous studies we compute linear solutions for the single-phase flow
with Re = 200, S = 1, μ̃ = 1. As can be seen, the meshes Mref and M1 are in good
agreement with the results of previous studies. Moreover, only marginal changes in the
growth rate are seen between Mref and the mesh M1 while doubling the resolution in
each dimension. Therefore, the use of the mesh Mref seems justified to avoid excessive
computational resources.
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ωa ωb ωc ωd ωe ωf ωg ω1

ω1·() 1/8 2/8 3/8 4/8 5/8 6/8 7/8 1
(ωx, ωy) (ωb,−ωa) (ω1,−ωf ) (ωa, ωb) (ω1,−ωd) (ωl,−ω1) (ωm,−ω1) (ωm,−ωg) (ω2,−ω1)

ωh ωi ωj ωk ωl ωm ωn ω2

9/8 10/8 11/8 12/8 13/8 14/8 15/8 2
(ω1, ωa) (ω2,−ωf ) (ω1, ωc) (ωg, ωe) (ω1, ωe) (ω1, ωf ) (ω1, ωg) (ω1, ω1)

Table 3. Frequencies occurring for S = 1.0 and dominant triadic interaction forming them.
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Figure 11. Comparison of the computed modes of the linear stability analysis (LSA), the BMD and DMD for
S = 0.8. All modes are computed from uθ or ul

θ . The real parts of the respective modes are shown. For the
BMD, the bispectral modes φ as well as the interaction map ψ are displayed.

Appendix B

The flow for S = 1.0 exhibits a rich nonlinear dynamics. The frequencies occurring in
the flow up to ω2 are listed in table 3. The occurring ultraharmonic frequencies can
be expressed as fractions with respect to ω1. Further, the dominant triadic interaction
partaking in the formation of each frequency is given.
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Appendix C

In figure 11 we compare the computed modes from the linear stability analysis (§ 4), the
DMD (§ 5.2) and the BMD (§ 5.3) for S = 0.8. The respective modes are computed from
uθ or ul

θ and the real parts of the modes are shown. For the BMD, the bispectral modes
φx+y are shown which correspond to the mode shape of ωz, formed by the doublet (ωx, ωy).
Additionally, the interaction map ψx,y is plotted which identifies regions where ωx and ωy
interact.

The DMD and BMD modes along each column of figure 11 appear virtually identical
(apart from not being phase aligned) which is to be expected since they represent similar
frequencies. The linear global modes resemble the overall structure of the nonlinear modes
satisfactorily but exhibit differences in the amplitude distribution and the near wake
structure. This is not unexpected since nonlinear interaction between the global modes
is quite strong even for S = 0.8 as has been shown in § 5.3. The interaction maps show
that the interaction of ω1 with the mean field is limited to the core region in the near wake
whereas that of ω2 extends radially into the far wake region.
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