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Polynomials biorthogonal to

Appell’s polynomials

Edward D. Fackerell and R.A. Littler

We present the solution of a long-standing problem, namely, the
determination of a set of polynomials in two independent variables
which are biorthogonal over a triangular region to a set of
polynomials previously introduced by Appel!. Some elementary

properties of our polynomials are investigated.

1. Introduction
Appel! [3] introduced the polynomials Fm n(a, Ys Y'; ©, y) defined
by
.
(1) Fp (e Y, Y5 2, y)

r
l—Yyl—Y am+n

)Y+Y’-a x

xy+m-1yy'+n-
]
(Y)m(Y )n aaay™

a+m+n-y—y']

= (1-z-y 1(1-x—y)

in connection with an analysis of polynomials orthogonal with respect to

the weight function

] !
(2) w(x, y) = Pl 1yY l(l—:xt—y)m'-Y Y
in the triangle T defined by
(3) 220, y=z0, l-z-y 20 .

Here we have used Pochhammer's symbol (Y)m = T(y+m)/T(y) , and we shall

confine our attention to those cases where w 1is integrable on T , so

that Rey >0 , Rey' >0 and Re(o-y-y') >-1.
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Certain properties of Appell's polynomials are discussed in the
treatise by Appell and Kampé de Feriet [5] and also in the Bateman
Manuscript Project [Erdélyi, Magnus, Oberhettinger, Tricomi [7, §]1.

Unfortunately the F do not form an orthogonal system for the weight

m.n

function w and the region T defined in equations (2) and (3). However,

in the special case where o =Y +Y' so that the weight function is

() tx, y) = "Y',

Appe!l [4] showed that the polynomials Fﬁn(Y, Y', £, y) and

E (Y, Y', *, ¥) defined by

mn

(5) FoYs Y @, y) = Fp (' v, ¥ 2 y)

and

(6) E (Y, Y', z, y) = E(yy'men, -m, —n, ¥, Y'5 x, ¥)

form a biorthogonal system, the basic formula being

i
[ W00 v e By, v s v dsdy

amkﬁnl mint (ma)1T(y)l(y')

T YeyTeomeen (Y)_(Y") T(y+Y +mn)
m n

Here Gmk is the usual Kronecker symbol defined by

(8) Gmk=0,rﬂ¢k;6mk=l,m=k,

and the Appe!l hypergeometric function F2(a, b,b', e, c'; x,y) is

defined for |x| + lyl <1 by the double series (Appelt [1, 2])
i k
© @ (a), () (b'),zy

' ', _ Jrk' g k

(9) F2(Cl, b, b , Cy C 5 X, y) = z z (c)j(c’)k’j!k!

The main purpose of this paper is to present and to discuss a system

of polynomials Em n(a, Y, Y', £, ¥) which is biorthogonal to the system
E]
Fm n(a’ Y, Y', £, y) for the weight function w and the region T
E]

defined by equations (2) and (3). Explicitly, our polynomials

', .
Em,n(a’ Y, Y'; x, y) are given by
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', - -m. = ',
(10) Ennl® Y5 Y's @, y) = Fylawmin, —m, —n, v, ¥'; 2, ¥) ,

which of course reduce to Appell's Emn(Y, Y'; xy) in the special case

where & =Y + Y¥' . Our principal result is the biorthogonality relation
-1 L O-Y— !
(11) ” &y e R (oL v, v s, ) X
T 3

GmanZF(Y)F(Y’)F(a»Y—Y'+m+n+1)m!n!
x Ek,l(a’ Y, Y ; X y)dx@ = ((!+2”P"2n)(Y)m(Y’)nr(a+”H'n)

A secondary purpose of this paper is to draw attention to the
construction by Karlin and McGregor [9] of a system of polynomials
orthogonal with respect to the weight function w and the region T of
equations (2) and (3). In this apparently little known paper Karlin and
McGregor first solved the rather more general problem of obtaining a system
of discrete orthogonal polynomials‘in a triangular region and then by a
limiting process obtained the corresponding continuous orthogonal
polynomials. We shall give a direct derivation of these orthogonal
polynomials by using a procedure suggested by the work of Kimura [10] for
the solution of a diffusion equation arising in mathematical genetics.

2. Biorthogonality of F_ _(a, v, ¥';s =, y)

and E_ (o, ¥, Y'5 =, y)

The first step in proving the biorthogonality of the polynomial

sequences {Fm A0 s Y5 2, y)} end {Ek (o Y, ¥'s =z, y)} is to show
t ] L]
that both F  (a, v, Y'; z,y) and E _(a, Y, Y'; £, y) satisfy the
m,n k,1
partial differential equation
(12) x(1-x)z . - 2xyz_ + y(1-y)z  + [y-(a+l)z]lz_ + [y'-(a+l)ylz
(1-z)a, - 2ayz, + y(1y)a, + [-(ad)elz, + [y'-(arlylz,

+ L(L+a)z = 0 ,

vhere L =m+n for F , L=k+1 for E and we have used the
myn k,1

convenient abbreviations z = 3z/dx , zxy = Bez/axay . In the case of the

polynomials

', - - - ',
Ek,z(a, Y Y 5 X, y) = Fz(a+k+za ka Za Y, Y5 &, y)
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this property follows almost immediately from the well-known fact ([7],
Section 5.9, equation (10)) that the function

2 = Fe(a, b, b', e, e¢'; x, y)

satisfies the simultaneous partial differential equations

x(l—x)zxx - zyzxy + [c—(a+b+l)x]zx - byzy -abz =0

and

y(l—y)zyy - xys,  + [0'-(a+b+l)y]zy - b'az, - ab'z =0,

Y

and therefore also satisfies their sum, namely,

(13) z(1-2)z . - 2xyzmy +y(1-ylz  + [e-(asd+b'+1)xlz,

yy
+ [G'—(a+b+b'+l)y]zy - alp+b')z =0 .
The required result for v = Ek Z(ot, Y, Y's =, y) , namely,
(1k) x(l—:c)vm - 2xyvxy + y(l—y)vyy + [Y-(a+1)x]vx +
=0 N

[Y’—(a+1)y]vy + (k+1)(o+k+1)v

follows directly on making the identifications a=a+k+ 1, b=~k ,
b'=-1, e=v, e¢'=v"'". In order to prove the corresponding result

for Fm n(a, Y, Y'; x, y) , we note that provided |:c| + |y| <1 and
b ] .

Y+Y -0-m-n<0,
© ® r s
oHmn-y-y' _ oy x
(1-z-y) . = rZO SZ (y+y'-a-m-n) | o,
so that from equation (1),
LA
Fan(® Y5 Y'5 25 9)
© @ (y+m)_(y'+n)_ r e
Ly} r 8 X Yy
= (1—:::—y)Y+Y Y ¥ (y+y'-0-m-n) :
=0 s=0 res (v), (Y, rist
’
= (1-zy) " R vy maemon, yam, Y4, v, Y5 @, y)

Since w = F2(Y+Y'—0.—m—n, Y+m, Y'+n, Y, Y'; %, y) satisfies the partial

differential equation
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1
z(1-z)w . - 2xywxy + y(l-y)wyy + [y-(2y+2y'-ot1)z]w

+ [Y'—(2Y+2Y'-Ol+l)y]wy + (atmn-y-y')(mtnty+y')w = 0 ,
u = Fm n(a, Y, Y'; £, y) is easily shown to satisfy the equation
t
(15) x(l-x)uxx - meuxy + y(l—y)uyy + [y-(a+1)x]ux + [y -(a+l)y]uy
+ (mn)(mn+a)u = 0 ,

thus completing the proof of our first assertion.

On multiplying equation (14) by u and subtracting equation (15)
multiplied by v , we obtain
(16) =z(1-z)(wo -vu ) - 22y (uvxy-vuxy) + y(l-y)(uvyy-vuyy) +
[a-(a"+1)x] (ww -vu ) + [a’—(a+l)y](uvy—vuy) = (mtn-k-1) (mn+k+1+a)uv .

We now define functions P, § and H by

= -V
P uvx Uy

q

uw. - vu ,
Yy Y

and
' Y ]
B=ay’ (1Y (P-q) .
We find that equation (16) may be written as

2 Yyl a-y=y'+l; B Y-l Y (g oY=y 88 _ 3
3 [="y (1~z-y) Pj + dy ("Y' (1-z-y) q + 3~ dy

- " ey !
= (mnek=1) (it o) Ly (1) Y Y o
When this equation is integrated over the region 7T , we find, using an

obvious notation, that

(17)  (mn—k-1) (mn+k+1+a) f [ LY g )OYY £, jdxdy = 0 .
P men k,

Thus if m+ n £k + I , equation (17) requires that

(18) f [ 2V LY " (1mzy) Y Y F £, (dndy = 0 ,
T ’n ]

m

since by the integrability requirements the only case in which

m+n+k+17+a can vanish is m=n=%k =1 =0 =0 , which violates
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the assumption that m+ n # k + 1 .
On the other hand, if k+ I =m + n , we may use equations (1) and

(10) directly to show that

y-1 v'-1 o-y-v'
ffT x' Ty (1-z-y) Fm,nEk,dedy

- 1 ” g
™, "), Mg 323"

+m- "1 + ~y=y!
xymlyY-m (l—x—y)a mmYY]Ek de@

mn ' ' mn
(-1 +m=-1_y'+n-1 atmn—y- 3
e 2Y') ” 2y T (aey) e (5, ey
m n'T dx dy ?
dmksnzl‘(y)r(y')I‘(a—y—y'+m+n+1)m!n!
B (o+2m+on) (y)m(y ! )nI‘(a+m+n) :
since the only term of total degree m+ n =k + 1 in
Ek,Z(a’ Y, Y'; z, y) is
k1 k1

(a+k+L)y,, (k) (=1) 2y
COMCADIIEE

k+1 T(o+2k+21) Xy
T(a+k+1) (Y)k(Y')Z'

= (-1)

We have also used the result

f! xa'lyb_l(l-x-y)c-ldxdy - D(a)r(p)T(e)
17

T(atb+ec) >

which is valid for Rea > 0 , Reb >0 and Rec > 0 . This completes the
proof of the fundamental biorthogonality relation (11).

3. Recurrence relations for E (ay v, ¥'s =, y)

mn

The aim of this section is to prove the existence of recurrence

relations of the form

= + +
xEm,n aEm+l,n * blEmﬂ sn-1 bEEm,n * clEm+1,n-2 * c2Em,n-l cSEm-l M
and

= +
yEm,n dEm,nﬂ * elEm-l,nﬂ * e2Em,n * flEm-Q,nﬂ + f2Em-l,n f3Em,n—l ?

where a, 'bl, b2, Gy Cps Cas d, e1s €5 fs f2 ,» and f3 are certain

constants whose precise values will be determined later. Similar
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recurrences for orthogonal polynomials in two independent variables are

discussed in general terms in [§], Section 12.3.
It is convenient to present the discussion by means of a series of

lemmas.

LEMMA 3.1. Given any monomial xmyn s there exists a unique set of

constants 1 such that

(19) AT D A S
k+lsmn kl'k,1

Proof. We note first of all that there is only one term of total

degree k + 1 in Ek 1 and that this oné term is of precise degree k
3
in x and I in y . All other terms in Ek ; are of lower total degree
3
than k + I . Because of this, the various constants ekl may be

determined in a unique recursive fashion. cmn is the reciprocal of the

coefficient of the unique term in xmyn in Em n If k+1=m+n bdbut
k]

k#m andso L #n, C1 = 0 , so that we may rewrite equation (19) as

(20) Yy - E e, ,E .
R ke ismin-1 KLk, L

The coefficients with k+ 7l =m+ n -1 may now be determined

k1
uniquely from the terms in xkyl with K+l =m+n -1 in the left-
hand-side of equation (20). It is clear that this process may be repeated

until all of the coefficients have been determined uniquely.
Two functions u and v defined in the region T of cquation (3)

are said to be orthogonal if [I w(x, yluvdedy = 0 .
T

LEMMA 3.2. Em n 18 orthogonal to Ek,l if m+n#tk+1.

3

Proof. This result follows by a trivial modification of the proof in

the previous section of the biorthogonality of Em n and Ek 1 for
2 ’

m+n#k+ 1. For, on redefining u as E and keeping v = E s
m,n k,1

the argument from equation (16) to equation (18) inclusive still obtains,
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thus proving the lemma.

LEMMA 3.3. Em n i8 orthogonal to every polynomial Pl{x, y) of

. total degree less than m + n , that is, to every polynomial

i 4
Pz, y) = 1 T A =%,
T4+j<min
Proof. By Lemma 3.1, P(z, y) can be written as ) } Bi 'E'zl .
L+j<min J Tad
for appropriate constants Bij . Bach term in this finite sum is then

orthogonal to Em n by Lemma 3.2.

>

LEMA 3.4. F ig orthogonal to every polynomial Pz, y) of

myn

degree k in x and 1 in y provided either k <m or 1 <n.

Proof. This result follows immediately on writing down the relevant

integral, using equation (1) and integrating by parts.
With these lemmas at our disposal it is easy to prove

THEOREM 3.1. There exist constants a, bl’ b e;s € , and 03 such

2’ 2

= + + + + + .
2t T Ee ot P16y o1 T 2o t G o2 T b1 t O3B

Proof. It follows from Lemma 3.1 that we may write

(21) SR S YR
Indeed we may write

ml n
(22) “tnn = kzo ZZO Yit,1

because if we multiply both sides of equation (21) by w(z, y)k 1 and
-
integrate over 7T , Lemma 3.L4 implies that a g = 0 if either k>m+ 1

or L >n . Moreover, if k+ 1l <m+ n -1 , the same operation of

multiplying by w(x, y)Fi 7 with Z + j <m+ n -1 and integrating over
bl

T gives, on the left-hand-side, the single term ff w(z, y)xF, B dxdy ,
7 1sd Myn
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where xFi i is a polynomial of total degree less than m + n , so that by

E]
Lemma 3.3 the left-hand-side vanishes. However, by the biorthogonality of

F. . and E , the right-hand-side is a non-zero multiple of a.. , SO
1, k,1 Z

that aij must vanish for 7 + J <m+ n - 1 . Consequently, the only

non-vanishing a,, occur for integral k and 1 satisfying

simultaneously
m+n-1=k+1=m+n+1,
k=m+1,
and
l=n;

that is, for (k, 1) being one of the six combinations (m+l, n) ,
(m1, n1) , (m, n) , (m1, n-2) , (m, n-1) or (m-1, n) . The actual

values of the surviving akZ may be computed by the same procedure that

was outlined in the proof of Lemma 3.1. After some tedious algebra one
obtzins the result

(23) xE = ﬁl*’”_)(M”_)
m

;no A(4A+1) m+1,n
__enlysm) . [(Y+M)(m+1) _ m{mey=1)1 ¢
(4-1)(A+1) “m+1i,n-2 A+l A-1 | myn
n(n-1)(ysm) g __n [m(YHﬂ—l) 4 (m+1) (ym) (4-2)]
T A(A1) (otmin-1) Tmtl,m-2 T admin-l A1 A(4+1) | myn-1

3

m [m(mw-l)(A-z) (m1)(y4m)(4-2) _ (m-1) (ym=2)],
~ atmin-1 A+l - 24 2 1 'm-1,n

where
(24) A=o +2m+ 2n .

Similarly we may prove
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THEOREM 3.2.
_ {y'+n)(otmin)
(25) yEm,n - A(A+1) Em,n+1
om(y'+n) o R [(y’+n)(n+1) n(ney'-1)],
T (A-1)(4+1) “m-1,m41 A+1 T Al [ Tmen
m(m-1)(y'+n) m n(y'+n-1) (n+1)(y’+nﬂA—2)']E
T A(A-1)(otmin-1) m-2,mn+2 ~ otmin-1 A-1 A(A+1) | m1,n

_ n [n(n+y')(/l—2) _ (n1)(y'n)(4-2) Ln—l)(Y’+n—2ﬂE
omtn—1 A+l 24 2 1"'mm-1 "

4. Orthogonal polynomials in the triangle

As mentioned in the introduction, Karlin and McGregor [9] derived from
a system of orthogonal polynomials for discrete variables a family of
polynomials orthogonal with respect to the weight function w and
triangular region 7T of equations (2) and (3). 1In this section we shall
derive these orthogonal polynomials of Karlin and McGregor by the more
conventional technique of examining those solutions of equation (12) that
may be written as a product of two factors. To do this we follow Kimura's

technique [10] of introducing variables

(26) E=xz+y
and

N
(27) 71 - x+y ]

which is equivalent to

(28) x = E(1-n)
and
(29) y = &n .

Defining u(&, n) by
(30) u(g, n) = a(x, y) ,
we find that equation (12) transforms to
2 2
(31) £(2-8) T+ 0 (gon) EE oy [yayro(a)E] %
Tad ¢ an° 9

3
+ % [Y'-(y+y")n] 'a% *hu=0,
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where
(32) A = L{I+a) .

If we assume that (&, n) may be written in the product form
(33) u(g, n) = x(£)¥(n) ,

we obtain by the usual procedure the two equations

(34) n(1-n) §§§-+ [y'=(y+y')n] %% + KY =0
and
(35) £2(1-£) gzg + [{y+y')-(o+1)E]E %g + (AE-K)X =0 ,

where K 1is some constant. From the theory of Sturm-Liouville problems
with singular boundary points it is known (ef. Courant and Hilbert [6], p.
328) that the only well-behaved solutions of equation (34) occur for

(36) K = n(n+y+y'-1) ,

where 7 is a non-negative integer. In this case equation (34) has as its

only well-behaved solution the Jacobi polynomial

(37) ¥(n) = G (y+y'-1, ¥', n) ,

where we have used the notation of Courant and Hilbert [6], namely,
(38) G,(p, q, x) = F (-n, p+n, q; x) .

With the value of K given by equation (36) we find, on making the

substitution X = EnU , that equation (35) transforms to

v ' du .
(39) £(1-£) —5+ [(y+y'+2n) - (a+1+2n)E] Tt [A-n(atn) IV = 0 ,
de &

for which well-behaved solutions occur only for

(40) A= (ntl)(ntlra) ,

where [ 1is a non-negative integer. The corresponding solutions of

equation (39) are

(41) U(g) = Gz(a+2n, y+y'+2n, &) ,
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so that our solution of equation (12) is

(k2) 2(z, y)

PZn(a, Y, Y &, ¥)

= n ' "~ v Y
(z+y)"G, (o*2n, y+y'+2n, m+y)6n(Y+Y Ly 2o e

where 1 and n are arbitrary non-negative integers. It is clear that

Pzn(a, Y, Y';s ©, y) 1is a polynomial,since the function

'Gn[y+y'—1, Y, 5%y} is precisely of degree #»n in (x+y)‘1 .

We now prove that {Pln} is an orthogonal system for w(zx, y) in the
triangular region ‘T .

We have

JIT kazﬂwndxdy

- Y-1 v'-1 a-y-y'
= I[T 'y (1-z-y) PkZPmndxdy

1 1
{[ "t e mytn, v, mg, e, v, nidn}
0

1 ) o
x {f VY L)Y g (anal, yay 2L, £)G, (ken, iy 'em, a)da} :
0

Now, if 1 # n , the first integral is zero. If I = n , the second

integral vanishes unless k =m . Thus we have
(43) ffT w(x, y)P(z, y)P (2, y)dedy = 8,6, Ry,
where sz is a certain constant. 1In fact it is easily shown that

= KT (y+2)T (omy=y " +148) T2 (y ' T2 (y+y '+22)
k2 T Tyay -1+20) (a#2Lv2k)T (y "+ )T (y+y '-1+ D) [ (o2 L+K) T (y+y ' +20+K)

(L) R

5. O0ther biorthogonal and orthogonal polynomials
in the triangle

Other biorthogonal and orthogonal families of polynomials in the
triangle given by equation (3) may be obtained if we note that both the

weight function of equation (2) and the triangular region specified by
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equation (3) are invariant under the simultaneous permutation of the

variables &, ¥y and the parameters Y and y' given explicitly by

x>y ,

y>*l-x-y,

y->y',

Y're-y-y'-1,
which of course entails

l-z-y-~>x
and
a->a .,

Indeed, the complete group of substitutions under which the region and the
weight function are invariant gives rise to the fact that

{Pln(a’ Yis Yoi %5 x2} is a set of orthogonal polynomials, and

{Ek,l(a’ Yio Vo3 Ty xz} and {Fk,z(a, Yis Yo5 % x2} are biorthogonal

sets of polynomials for our weight function and region provided

{Yl’ Y2, xl’ xe} is jdentical with one of the six sets

(45) o, v's =, v},

(46) y', a-y=y'+1, y, 1~x-y} ,
(b7) {o-y-y'+1, v, l-z-y, =} ,
(48) {v, a-y-y'+1, z, l-z-y} ,
(49) o' v, gy, b,

or

(50) {a-y-y'+1, ¥', 1-z-y, y} .

In this connection there arises a sequence of interesting problems,

such as the determination of coefficients cz% such that, for example,

', ) - ] .
(51) Ek’z(aa Y i O=Y-Y +la Y, l‘x_y) = izj CkZ E’l:,j(a, Ys Y'a T, y) .

From equation (11) we find that

https://doi.org/10.1017/50004972700043781 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700043781

194 Edward D, Fackerell and R.A. Littler

id (a+22+25 ) (v) . (¥') T (a+i+])
(52) ¢ = M ; AR N
YIT (o' )T (a—y-y " +i+j+1)Z 141

1_ !
[I xY 1yY l(l'x’y)a Yv. F‘l: j(aa Ys Y’a T, y) X
7 s
X Ek Z(a; Y', Q_Y‘Y’+ls Y, l"x’y)drdy .

However, we shall not pursue such problems in this paper.

6. Conclusion

In equations (1), (10) and (11) we have obtained an explicit answer to
the problem raised in Volume 2, p. 271 of [§], namely, to find systems of
polynomials biorthogonal in the triangle 0 £z, y, l-z~y = 1 with respect

! 1
to the weight function xY—lyY l(l—x—y)a Y=Y . Though some properties of
these biorthogonal polynomials have been discussed in the present paper,

the investigation of these polynomials opens up a wide field of research.
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