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RANGES OF PRODUCTS OF OPERATORS 

SANDY GRABINER 

1. Introduction. Suppose that T and A are bounded linear operators. In 
this paper we examine the relation between the ranges of A and TA, under 
various additional hypotheses on T and A. We also consider the dual problem 
of the relation between the null-spaces of T and AT; and we consider some 
cases where T or A are only closed operators. Our major results about ranges 
of bounded operators are summarized in the following theorem. 

THEOREM 1. Suppose that T is a bounded operator on a Banach space E and 
that A is a non-zero bounded operator from some Banach space to E. 

(A) / / T is quasi-nilpotent, then the range of TA does not equal or properly 
contain the range of A. 

(B) If T is a Riesz operator and A has infinite rank, and if T and A commute, 
then the range of TA has infinite co-dimension in the range of A. 

(C) If 0 is a boundary point of the spectrum of T, but is not a pole of T, and if 
A is a non-negative power of T, then the range of TA has infinite co-dimension 
in the range of A. 

Theorem 1(C) and its dual result for null-spaces can be viewed as a new 
characterization of those points in the spectrum of a bounded operator T 
which are poles of T (see Theorem (5.4) below and the abstract [11]). Many 
papers have considered characterizations of poles (see for instance [2 ; 20 ; 24 ; 
25], and the survey [19]). Our characterization of poles is similar to that of 
D. C. Lay [20, pp. 202-206], which contains a slightly weaker version of our 
Theorem 1(C). The main difference between Lay's results and our Theorem 
1(C) is one of method. Lay's proofs are based on the rather deep perturbation 
theory of Kato [16], while our proofs use only the more elementary results on 
spectral boundaries due to Rickart and Yood [22, pp. 22 and 278-279; 29, 
pp. 493-494]. 

There are elementary proofs known for parts of Theorem 1 (C) in the special 
case that T is quasi-nilpotent. In this case, Johnson [14, p. 913] and Kato 
[17, Theorem 5.30, p. 240] have shown that T(E) has infinite co-dimension 
in E; and we have shown [9, Theorem 2, p. 150] that if T is not nilpotent, 
then the spaces {T^ÇE)) are all distinct. Results intermediate in generality 
between the above special cases and the results in this paper were announced 
in the abstract [8]. 
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2. Quasi-nilpotent operators. In this section we prove Theorem 1(A) 
(restated as Theorem (2.1), below) together with some generalizations. We 
also apply Theorem (2.1) to the study of continuous or discontinuous linear 
operators which commute with a pair of bounded operators (related to results 
in [13; 14; 15]). Our proof of Theorem (2.1) is adapted from our earlier proof 
of a special case [9, Theorem 2, p. 150]. 

THEOREM (2.1). If T is a quasi-nilpotent operator on a Banach space E and 
if A is a non-zero bounded operator from some Banach space F to E, then TA (F) 
does not equal or properly contain A(F). 

Proof. We assume that no JTM = 0, since the theorem is obvious otherwise. 
If <t> belongs to E and if / = ^ \nz

n is a complex formal power series in the 
indeterminate z, we denote the series ]£ ^nTn<t> by f(T)<l>. 

Let cn = | | r M | | . We will construct a formal power series / = X ^nZn for 
which: 

(2.2) £ |X„cn+i| converges 

(2.3) \im\\ncn\ = oo. 

The construction of such a series/ will complete the proof. For Formula (2.2) 
implies t h a t / ( J T ) 0 converges for all <f> in TA (F) ; while Formula (2.3) implies 
that f{T)<i> diverges for some <j> in A(F), because of the Banach-Steinhaus 
uniform boundedness theorem. 

Since T is quasi-nilpotent, \im(cn)
l/n = 0; so that lim inf cn/cn-\ = 0. 

Choose a sequence of positive integers {nk}™=i for which cnJcn]-\ < \/kz. 
Then 

nk—l 

satisfies (2.2) and (2.3) ; so the proof is complete. 

Theorem (2.1) yields the following easy corollary for certain non-quasi-
nilpotent operators T. 

COROLLARY (2.5). Suppose that T is a bounded linear operator on a Banach 
space E and that A is a bounded operator from a Banach space F to E. If 0 is 
an isolated point of the spectrum of T, if P is the projection associated with 0, 
and if PA ^ 0, then TA (F) does not properly contain or equal A (F). 

Proof. Let M be the range of P , and let Tr be the restriction of T to M. 
Then Tr is quasi-nilpotent [4, p. 574]. If TA{F) contains A(F), then 
PTA(F) = TPA(F) = TTPA{F) contains PA{F). But this is impossible, 
by Theorem (2.1) ; so the proof is complete. 

The above corollary, with essentially the same proof, remains true if T 
is just a closed operator. We merely use the theory of spectral sets for closed 
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operators [23, pp. 298-300] in place of the theory for bounded operators 
[4, pp. 574-575]. 

Suppose that T and V are bounded linear operators on Banach spaces E 
and F, respectively. Following Johnson and Sinclair [15, p. 533], we say that 
a linear operator A (not necessarily bounded) with domain equal to F and 
range in E commutes with the pair { V, T}, if A V = TA. They call a subspace 
M of E, T-divisible [15, p. 534; 14, p. 914] if p{T)M = M for all polynomials 
p. Since E becomes a module over the polynomials under the operation 
P ' <t> = P(F)<j), M is a T-divisible subspace if and only if it is a divisible 
polynomial module, and hence if and only if it is an injective polynomial 
module [12, pp. 5-6]. Notice that if T is one-to-one and quasi-nilpotent, then 
C]nT

n(E) is the maximum Indivisible subspace. Johnson and Sinclair show 
that a bounded operator T with a non-zero Indivisible subspace has a discon­
tinuous commuting operator [15, Lemma 2.4, p. 534; 14, p. 914]. Using 
Theorem (2.1), above, we extend this result to a pair { V, T) of quasi-nilpotent 
operators. 

THEOREM (2.6). Suppose that T and V are one-to-one quasi-nilpotent operators 
on Banach spaces E and F, respectively. If there exist non-zero T-divisible sub-
spaces and non-zero V-divisible sub spaces, then there is a discontinuous linear 
operator A commuting with the pair {V, T}. 

Proof. Let x be a fixed non-zero element of some T-divisible subspace of E. 
Then the map; r —•» r(T)x is one-to-one from the space of quotients of poly­
nomials into E. Let Rx be the space of all r(T)x. Similarly choose some non­
zero y in a F-divisible subspace of F, and form Ry. Define the map A from Ry 
to Rx, by A(r{V)y) = r(T)x. Ry and Rx are polynomial submodules of F 
and E, respectively, and A is a module homomorphism. Ry is a divisible 
module, and hence is an injective module, so A can be extended to a module 
homomorphism from F onto Rx [12, pp. 5-6]. A commutes with {V, T\, and 
TA(F) = T{Rx) = Rx = A(F). So A must be discontinuous, because of 
Theorem (2.1); and the proof is complete. 

Most of [13; 14], and [15] are devoted to proving that certain pairs { V, T) 
have no discontinuous commuting operators. Combining their results with 
Theorem (2.1) allows us to prove that certain pairs have no non-zero com­
muting linear operators at all. 

THEOREM (2.7). Suppose that T is an injective quasi-nilpotent operator on 
a Banach space E} that V is a surjective bounded linear operator on a Banach 
space F, and that A is a linear operator from F to E. If F has no non-zero V-
divisible sub spaces and if AV = TA, then ^ 4 = 0 . 

Proof. A is continuous by [15, Theorem 3.3, p. 537]. Also TA (F) = 
A V(F) = A(F). Hence A = 0, by Theorem (2.1). 
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3. Operator ranges . A linear subspace i f of a Banach space E will be 
called an operator range if it is the range of a bounded linear operator from 
some Banach space to E. M is an operator range if and only if it can be given 
a norm under which it becomes a Banach space continuously embedded in E 
[5, pp . 255-257]. By the closed graph theorem, all such norms on M are 
equivalent. If M is the range of the bounded operator A, a convenient formula 
for the norm on M is: 

(3.1) | | y | | ' = i n f { | | * | M * = : y } . 

The operator ranges in E can also be characterized as the domains of closed 
operators from E to some Banach space; or as the ranges of closed operators 
[5, pp . 255-257]. If M is the domain of the closed operator A, a convenient 
norm for M is the graph norm: 

(3.2) ||*||' = ||*|| + ||,4*|| 

In Sections 4 and 5, we will obtain Theorem 1(B) and (C), and the dual 
results about null-spaces, by studying the restrictions to suitable operator 
ranges of certain bounded linear operators between Banach spaces. T h e 
restrictions are continuous, by the closed graph theorem. In this section, we 
prove the dual results, for null-space, to Theorem (2.1) and Corollary (2.5), 
and we obtain some general results about operator ranges. 

T H E O R E M (3.3). Suppose that T is a quasi-nilpotent operator on a Banach 
space E and that A is a non-zero bounded linear operator from E into a Banach 
space F. If AT(E) is closed, then N(AT) is not a subspace (proper or improper) 
ofN(A). 

Proof. Since A (E) is itself a Banach space, there is no loss of generality in 
assuming t ha t A(E) = F. In this case, both A and AT have closed range. 
Hence, by [7, Theorem IV. 1.2, p. 95], the orthogonal complement of N(A) is 
A*(F*), and the orthogonal complement of N(AT) is T*A*(F*). Bu t the 
range of T*A* cannot contain the range of A*, by Theorem (2.1); so the 
proof is complete. 

Since the following result follows from Corollary (2.5) in the same way 
t ha t Theorem (3.3) followed from Theorem (2.1), we omit the proof. 

COROLLARY (3.4). Suppose that T is a bounded operator on a Banach space E, 
that 0 is an isolated point of the spectrum of T, and that P is the projection 
associated with 0. If A is a bounded operator from E to a Banach space F, if 
AP ?± 0, and if AT(E) is closed in F, then N(AT) is not a subspace of N(A). 

As we pointed out above, not only are all operator ranges in a Banach space 
E Banach spaces continuously embedded in E (called BT-subspaces in 
[1, Definition 5.1, p . 64]); bu t also all ^T-subspaces are operator ranges. 
Many properties known for ^T-subspaces , or more generally for Banach and 
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Fréchet spaces embedded in a Hausdorff vector space, have apparently not 
been explicitly recognized as properties of arbitrary operator ranges. Very 
useful discussions of these properties of I? T-subspaces can be found in [27, 
pp. 202-207; 28, pp. 62-69 and 78-79; 1, pp. 64-65]. 

We mention a few of the more important properties of operator ranges 
which follow from viewing them as .ST-subspaces. The collection of operator 
ranges form a lattice [27, Theorem 3, p. 205; 1, p. 64]. No operator range can 
have countably infinite co-dimension in another operator range [27, Corollary 
6, p. 205; 1, p. 65; 18]. Also, two algebraically complementary operator ranges 
must both be closed subspaces [28, p. 78]. The above facts have long been 
known for Hilbert space operator ranges [21; 3, pp. 42-44; 5, pp. 260-262]. 

The following corollary rephrases Theorem (2.1) as a condition which 
guarantees that a space is not an operator range. 

COROLLARY (3.5). If T is a quasi-nilpotent operator on a Banach space E, 
and if M is a non-zero linear sub space of E for which T(M) 3 M, then M is 
not an operator range in E. 

The above corollary is useful for showing that certain subspaces of a Banach 
space are not operator ranges, even when they can be continuously embedded 
as Fréchet spaces. For instance, using a quasi-nilpotent weighted shift, one 
can show that the space of rapidly decreasing sequences is not an operator 
range in any lv space. Similarly, using the Volterra integral operator, one can 
show that C°°[0, 1] is not an operator range in any Cw[0, 1] or Lp[0, 1]. 

We conclude this section with an analogue of a result of Foias [6, Corollary 4, 
p. 888] about ranges of bounded operators on a Hilbert space. 

THEOREM (3.6). Suppose that S is a uniformly closed algebra of bounded 
operators on a Banach space E and that S has no proper non-zero invariant 
operator ranges. Then S is algebraically n-transitive for every n. 

Proof. The set of x in E for which Sx = 0 is a closed invariant subspace 
and must therefore be 0. Hence for each x in E, Sx is a non-zero invariant 
operator range. Thus 5 is algebraically transitive, and hence is algebraically 
w-transitive for every n [22, Theorem (2.4.6), p. 62], 

4. Riesz operators and spectra of restrictions. In this section and the 
next section we prove Theorems 1(B) and 1(C) (restated as Theorem (4.2) 
and Theorem (5.2), respectively) together with various generalizations. We 
break the proofs of these results into two parts. First, in Theorem (4.1), we 
show how information about the images of operator ranges under a bounded 
operator T can be obtained from information about the spectra of the restric­
tions of T to the ranges of various operators related to T. Then we concentrate 
on obtaining as much information as possible about the spectral properties of 
restrictions of various classes of operators T to ranges of operators A which 
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are closely related to T. The example summarized in Theorem (4.6), below, 
indicates the need to place some restrictions on A. 

Theorem (4.1) (A) is essentially the result announced in the abstract [8]. 

THEOREM (4.1). Suppose that T is a bounded linear operator on a Banach 
space E and that 0 is in the boundary of the spectrum of T. 

(A) If T is not algebraically nilpotent, and if, for all non-negative integers n, 
0 is in the spectrum of the restriction of T to Tn(E)1 then Tn+1(E) always has 
infinite co-dimension in 7^(£). 

(B) I/O belongs to the spectrum of T restricted to A (E) whenever A is a bounded 
operator, of infinite rank, which commutes with T, then TA (E) has infinite 
co-dimension in A (E) for all such A. 

Proof. (B) will follow from applying (A) to the restriction of T to A(E), 
so we need only prove (A). 

It is clear that the sequence {A\m(Tn(E)/Tn+1{E))} is non-increasing. Also, 
0 belongs to the boundary of the spectrum of the restriction of T to Tn(E), 
for each non-negative integer n. Hence the restriction of T to Tn(E) is a two-
sided topological divisor of zero in the space of bounded operators on Tn(E) 
[22, Theorem (1.5.4) (iii), p. 22]. The fact that each of these restrictions 
is a right topological divisor of zero implies that none of these restrictions 
can be surjective (see [22, p. 279] or [29, Theorem 3.6, p. 494]) ; in other words, 
Tn+l(E) always has co-dimension at least one in Tn(E). 

Hence, if Theorem (4.1) (A) were false, we could find a positive integer m, 
a Banach space E, and a bounded operator T on E, satisfying: 

(i) 0 belongs to the boundary of the spectrum of T; 
(ii) for all non-negative integers n, Tn+l(E) has co-dimension exactly 

equal to m in Tn(E). 
By (ii), each Tn(E) has finite co-dimension in E, and is therefore a closed 

subspace of E [7, Corollary IV. 1.13, p. 101]. Hence D Tn(E) is closed; so, 
by passing to a quotient space, if necessary, we can assume that T also satisfies: 

(iii) n?T»(E) = {0}. 
We complete the proof by showing that no bounded operator, T, can satisfy 

(i), (ii), and (iii). As we pointed out above, if T satisfies (i) it is a left topo­
logical divisor of zero in an algebra of bounded operators on E. Hence T 
cannot be bounded below (see [22, pp. 278-279] or ([9, Theorem 3.5, p. 493]). 
On the other hand, T has closed range, because of (ii), so if we show that T 
is injective we will obtain a contradiction. 

Suppose therefore that x is a non-zero element of E. By (iii), there is a 
fixed non-negative integer k for which x belongs to Tk(E) but not to Tk+l(E). 
Hence, by (ii), Tx belongs to Tk+l(E) but not to Tk+2(E). Therefore Tx 
cannot be zero. This completes the proof of Theorem (4.1). 

With slight modifications, the above proof remains true in the case that T 
is a closed operator. Instead of using the fact that: if 0 is in the boundary 
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of the spectrum of a bounded operator T, then T is neither bounded below nor 
surjective [22, pp. 22, 278-279; 29, pp. 493-494], one uses the analogous 
result for closed operators [23, pp . 258 and 233]. 

T H E O R E M (4.2). Suppose T and A are commuting bounded operators on a 
Banach space E. If T is quasi-nilpotent, compact, or a Riesz operator, respectively, 
then its restriction to A(E) has the same property. If T has any one of the above 
properties and if A has infinite rank, then TA(E) has infinite co-dimension in 
A(E). 

Proof. I t is easy to see t h a t the spectrum of the restriction of T to A ( £ ) 
is a subset of the spectrum of T. T h u s if T is quasi-nilpotent, so is its restric­
tion. If T is compact , an easy direct calculation, using formula (3.1), shows 
t ha t the restriction of T to A (E) is compact . 

Suppose T is a Riesz operator , and let B be the algebra of bounded operators 
on E which commute with A. Each member of B has the same spectrum in B 
as in the algebra of all bounded operators on E. If V belongs to B, let Vr 

be the restriction of V to A(E). T h e m a p V —» Vr is a cont inuous algebra 
homomorphism from B into the algebra of bounded operators on A(E). 
Suppose t h a t X is a non-zero element of the spectrum of T and t h a t P is the 
projection associated with X as an element of the spectrum of T. Then , either 
X is in the resolvent of Tr, or X is a pole of Tr and Pr is the projection associated 
with X as an element of the spectrum of Tr. T h u s the spectrum of Tr is a 
subset of the spectrum of T and all non-zero elements of the spectrum of T r 

are poles of finite rank. Hence Tr is a Riesz operator . 
Finally, 0 belongs to the boundary of the spectrum of each quasi-nilpotent , 

compact , or Riesz operator ; so the final s t a t ement in Theorem (4.2) now 
follows from Theorem (4.1) (B) . 

We now prove the dual of Theorem (4.2) for null-spaces. 

COROLLARY (4.3). Suppose T and A are commuting bounded linear operators 
on a Banach space E. If T is a Riesz operator, if A has infinite rank, and if 
TA (E) is a closed subspace of E, then N(A ) has infinite co-dimension in N(A T). 

Proof. Let Tr be the restriction of T to A{E). Tr has closed range, so, by 
[7, Theorem IV. 1.2, p . 95], the range of Tr* is the orthogonal complement 
of N(Tr). Bu t Tr, and hence Tr*, are Riesz operators , by Theorem (4.2). 
T h u s the dimension of N(Tr), which equals the co-dimension of the range 
of T r*, is, by Theorem (4.2) again, infinite. B u t N(Tr) = N(T) C\A(E) is 
easily shown to be linearly isomorphic to N{AT)/N(T). This completes 
the proof. 

We now extend Theorem (4.2) to the case t h a t A is just a closed operator . 

T H E O R E M (4.4). Suppose that T is a bounded operator on a Banach space E 
and that A is a closed operator which commutes with T {i.e., TA C AT) and 
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has infinite-dimensional range. If T is a quasi-nilpotent, compact, or Riesz 
operator, then the restrictions of T to the domain and range of A are the same 
kind of operator (i.e., quasi-nilpotent, compact, or Riesz) as T. 

Proof. We first consider the domain of A. T h e case where T is compact 
is an easy calculation using formula (3.2). 

For T a quasi-nilpotent or a Riesz operator, let B be the algebra of bounded 
operators on E which commute with A. For V in B, let Vr be the restriction 
of V to the domain of A. The map V —» Vr is a continuous algebra homo-
morphism from B into the algebra of bounded operators on the domain of A. 
Hence, if T is quasi-nilpotent, so is Tr. If T is a Riesz operator, its spectrum 
as an operator does not disconnect the plane, so t ha t its operator spectrum 
is the same as its spectrum in B [22, Theorem (1.6.13), p. 34]. T h e proof t ha t 
Tr is a Riesz operator is now the same as the analogous proof in Theorem (4.2). 

If we consider A as a bounded operator from its domain to E, then TA = 
A Tr. The s ta tements about the restrictions of T to the range of A will therefore 
follow from the following lemma. 

LEMMA (4.5). Suppose that S and T are bounded operators on Banach spaces 
F and E, respectively, and that A is a bounded operator from F to E for which 
TA = AS. If S is quasi-nilpotent, compact, or Riesz, then the restriction of T 
to the range of A has the same property as S. 

Proof. Again, the case where 5 is compact is an easy calculation, using 
formula (3.1). For S quasi-nilpotent or Riesz, let B be the algebra of bounded 
operators on F which map the null-space of A into itself. As in Theorem (4.4), 
if 5 is a quasi-nilpotent or Riesz operator, then 5 has the same spectrum in B 
t ha t it has as an operator on E. For each V in B, define the operator V on 
A (E) by V (Ax) = A Vx. I t is easy to see t ha t the map V —* V is a continuous 
algebra homomorphism from B into the algebra of bounded operators on 
A (E). Moreover Sf is jus t the restriction of T to A (E). The rest of the proof 
follows exactly as in Theorem (4.2). 

Suppose T is a Riesz operator on E and M is a closed subspace of E for 
which T(M) Ç M. If we let A be the injection of M into E, we see, as a 
special case of Theorem (4.4), t ha t T restricted to M is Riesz. Similarly, if 
we let A be the natural projection of E onto E/M; we see, as a special case of 
Lemma (4.5), t ha t the operator induced by T on E/M is Riesz. These two 
special cases are due to T . T . West [26, p . 746]. 

We conclude this section with an example tha t shows t ha t our results about 
the restrictions of T to ranges of operators commuting with T do not generalize 
to ranges of arbi t rary operators. T h e example also shows tha t Theorem (2.1) 
is in a sense optimal. Let E = F = h and let {en} be the natural basis of h. 
Define the weighted shift T on E by Ten = en+i/(n + 1). T is compact and 
quasi-nilpotent. Define A from F to E by Aen = ejn\. Then T(Aen) = Aen+i, 
so T restricted to A (F) is just the simple unilateral shift on h. Hence 0 is an 
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interior point of the spectrum of the restriction of T to A{F), and TA(F) 
has co-dimension exactly equal to 1 in A (F). Essentially the same construction 
can be carried out on any infinite-dimensional Banach space E; by using an 
arbitrary biorthogonal sequence {bn, fin] in place of {en\ in E and adjusting 
the weights on T and A so that T is still compact and quasi-nilpotent and so 
that TAen — Aen+i. Thus we have the following theorem. 

THEOREM (4.6). If E is an infinite-dimensional Banach space, then there is 
a compact quasi-nilpotent operator T on E and an operator range M in E such 
that T(M) has co-dimension 1 in M, and such that 0 is an interior point of the 
spectrum of the restriction of T to M. 

5. Boundary points of the spectrum. In this section we apply the methods 
of this paper, in particular Theorem (4.1), to the study of the boundary of 
the spectrum of an arbitrary bounded operator T. For simplicity, we normalize 
to the case where 0 is the boundary point of the spectrum. The major result 
in this section is Theorem (5.2), which is a restatement of Theorem 1(C). 
This result, and its dual for null-spaces, is reformulated in Theorem (5.4) as 
a characterization of the poles of a bounded operator. 

We first consider the case where 0 is an isolated point of the spectrum of T. 

THEOREM (5.1). Suppose that T and A are commuting bounded linear operators 
on a Banach space E, that 0 is an isolated point in the spectrum of T, and that P 
is the projection associated with 0. If AP has infinite rank, then 

(A) TA (E) has infinite co-dimension in A (E). 
(B) If TA (E) is closed, then N(A) has infinite co-dimension in N(AT). 

Proof. Let Tr and Ar be the restrictions of T and A, respectively, to P(E). 
Then Tr is quasi-nilpotent, Ar has infinite rank, and Tr and Ar commute. 
Hence, by Theorem (4.2), the range of TrAT has infinite co-dimension in the 
range of Ar. Since P{E) reduces A and TA, this proves (A). If TA has closed 
range, then so does TrAr, so (B) follows from Corollary (4.3). 

The above proof remains valid if T is only a closed operator with 0 in its 
spectrum, since the projection P can be defined in this case, and the restriction 
of T to P(E) is still a bounded quasi-nilpotent operator [23, Theorem 5.7-B, 
p. 299]. 

THEOREM (5.2). Suppose that T is a bounded linear operator on a Banach 
space E and that 0 is a boundary point of the spectrum of T. If 0 is not a pole 
of T, then, for all non-negative integers n, Tn+1{E) has infinite co-dimension 
in r " ( £ ) . 

Proof. Because of Theorem (5.1) (A), we can assume that 0 is a limit of 
boundary points of the spectrum of T. By Theorem (4.1) (A), it will be enough 
to show that 0 is in the spectra of the restrictions of T to each Tn{E). This 
will follow, by an induction on n, from the following lemma. 
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LEMMA (5.3). If T is a bounded operator on a Banach space E and if X is a 
non-zero boundary point of the spectrum of T, then X is in the spectrum of the 
restriction of T to T(E). 

Proof. Let B be the algebra of bounded operators on E which commute 
with T. T has the same spectrum in B as it does as an operator on E, so X — T 
is a topological divisor of zero in B [22, Theorem (1.5.9), p. 22]. Hence there 
is a sequence of bounded operators { Vn\, each of norm 1 and each commuting 
with T, for which lim||(X — T)F n | | = 0. Since l im| | rFw | | = |X| ^ 0, we can 
also assume that there is a positive number d for which all ||2"FW|| > d. 

Define the norm || • ||' on T(E) by j^H' = inf{||#|| : Tx = y). For each V 
in B, let \\V\\f be the operator norm of the restriction of F to T(E); and 
notice that | | 7 | | ' ^ | | r | | | | 7 | | . Hence lim||(X - T)Vn\\' = 0, and we must 
only show that {|| Vn\\'} is bounded away from 0. 

Fix n, and choose \\x\\ < 1 for which | |Fwrx| | > d. Then | | rx | | ' < 1, so 

I W > \\VnTx\\' = \\TVnx\\f = inf{||*|| : Ty = TVnx\. 

But, if \\Ty\\ = \\TVnx\\ > d, then | | 7 n | | ' > ||y|| > d/\\T\\. Since this lower 
bound on || Fn | | ' is independent of n, this completes the proofs of Lemma (5.3) 
and Theorem (5.2). 

It is possible to modify the above proof of Lemma (5.3) in the case that T 
is only a closed operator, and thus prove Theorem (5.2) for closed operators. 
One can combine [23, Theorem 5.1-D, p. 258] with an easy adaptation of 
[22, Theorem (1.4.7), p. 12] to show that bounded operators Vn commuting 
with T can be found for which lim|| Vn{\ — T)\\ = 0, and for which the restric­
tion of each Vn to the closure of the domain of T has norm 1. Thus there is a 
d > 0, independent of n, such that for each sufficiently large n we can find 
an x in the domain of T with ||x|| < 1 and || Vnx\\ > d. The rest of the proof 
of Lemma (5.3) requires only minor modifications. 

In Theorem (5.4), below, we reformulate Theorem (5.2), and its dual for 
null-spaces, as a characterization of those points in the spectrum of a bounded 
operator T which are poles of T. 

THEOREM (5.4). Suppose that T is a bounded linear operator on a Banach 
space E and that 0 is a boundary point of the spectrum of T. Then the following 
are equivalent: 

(A) 0 is an isolated point of the spectrum of T and is a pole of T. 
(B) There is a non-negative integer nfor which 7^+1 (£) has finite co-dimension 

in T»(E). 
(C) There is a non-negative integer nfor which N(Tn) has finite co-dimension 

iV(rn + 1), and there is an m > nfor which Tm(E) is closed. 

Proof. The equivalence of (A) and (B) is just Theorem (5.2). Also, it is 
clear that (A) implies (C). 
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Suppose T satisfies (C). Since the dimension of N(Tm)/N(Tm~1) is no 
greater than the dimension of N(Tn+1 ) /N(Tn) , we can assume that m = n + 1. 
Hence Tn+l(E) is closed, and by restricting to Tn(E) if necessary, we can 
assume Tn(E) is also closed. Then T* satisfies (B), by [7, Theorem IV. 1.2, 
p. 95], so 0 is a pole of T*, and hence also of T. This completes the proof. 

It is not difficult to use the characterization of poles in Theorem (5.4) to 
characterize Riesz operators, meromorphic operators, operators of finite type, 
and similar classes of operators, just as was done by Lay [20, pp. 209-213], 
from his characterizations of poles. Also, Theorem (5.2) and Corollary (5.4), 
when taken together, can be used to obtain sufficient conditions for a point to 
be in the interior of the spectrum (compare [22, pp. 278-279] and [20, pp. 206-
209]). We leave the details of these applications to the reader. 
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