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Abstract
Word order is one of the most important grammatical devices and the basis for language understanding.
However, as one of the most popular NLP architectures, Transformer does not explicitly encode word
order. A solution to this problem is to incorporate position information by means of position encod-
ing/embedding (PE). Although a variety of methods of incorporating position information have been
proposed, the NLP community is still in want of detailed statistical researches on position information
in real-life language. In order to understand the influence of position information on the correlation
between words in more detail, we investigated the factors that affect the frequency of words and word
sequences in large corpora. Our results show that absolute position, relative position, being at one of
the two ends of a sentence and sentence length all significantly affect the frequency of words and word
sequences. Besides, we observed that the frequency distribution of word sequences over relative position
carries valuable grammatical information. Our study suggests that in order to accurately capture word–
word correlations, it is not enough to focus merely on absolute and relative position. Transformers should
have access to more types of position-related information which may require improvements to the current
architecture.
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1. Introduction
Transformer (Vaswani et al. 2017), a fully connected self-attention architecture, is a core module
of recent neural network language models. By utilizing the idea of convolutional neural net-
work (CNN) (LeCun et al. 1995) and self-attention, Transformers significantly reduced the time
complexity during model training and gained improved parallel performance. However, the self-
attention mechanism is insensitive to the order of the input sequence (i.e., it is an operation
on sets, Pham et al. 2020). That is, for input sequences with same constituent words but differ-
ent orders, Transformers produce same predictions. Word order is one of the basic grammatical
devices of natural language and an important method of meaning representation. To endow the
model with word order awareness, Transformers are reinforced with position information by
means of position encoding/embedding (PE) to discriminate input sequences of different orders.

To date, although a variety of methods for incorporating position information into
Transformers have been proposed (see Wang and Chen 2020; Dufter, Schmitt, and Schütze 2021
for a review), most of these methods are proposed based on researchers’ intuition. It is, therefore,
reasonable to ask: how can position information be encoded in a principled way?
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Developing a workable method of PE for Transformers is a tricky attempt with superficial sim-
plicity. In our following analysis, we first try to understand what it means for models to have the
position information of words. After that, we explore what kind of position-related information
should be factored into the architecture of the Transformer.

The practical success of recent neural network language models can simply be attributed to
the utilization of co-occurrence relations between words. The purpose of incorporating position
information is to enable models to discriminate sentences with same constituent words but differ-
ent permutations of words (failing to do so results in bag-of-words models). For a specific model,
word sequences of different permutations should be assigned different probabilities. If the per-
mutation of words does not affect the frequency of a word sequence, then the input of position
information is meaningless.

Then, what kind of position-related factors do affect the frequency of word sequences? Absolute
position? Relative position? Or some other factors? Theoretically speaking, all position-related
factors should be considered in the further improvement of Transformers’ PE architectures.

To answer this question, we provide a detailed analysis of the position of language units. An
“axiom” of all neural network language models is the idea of the distributional hypothesis: “words
which are similar in meaning occur in similar contexts” (Harris 1954). Therefore, to discriminate
word sequences of different permutations is, in essence, to identify the context in which a focus
word occurs. Or, in other words, to model the context.

Context is a complicated concept with broad senses (Hess, Foss, and Carroll 1995; Otten and
Van Berkum 2008), involving both syntax and semantics. Context has its influence locally within
a sentence and globally between words separated by long distances (Schenkel, Zhang, and Zhang
1993; Ebeling and Pöschel 1994; Alvarez-Lacalle et al. 2006; Altmann, Cristadoro, and Degli
Esposti 2012). Meanwhile, context is affected by either preceding or following language units.
Even messages that are not linguistically encoded have their influence on a context. As a result, to
model the context quantitatively or include all contextual information in a single model is a chal-
lenging task. In this regard, richer and more comprehensive context information is thus essential
to the further improvement of language models. Therefore, it is arguable that the development of
language models can be seen, to some extent, as the development of context models.

A feasible but oversimplified approach to model the context of a focus word is to identify words
before and after it. Among the most popular models following this fashion are statistical models
like N-gram (Jelinek 1997; Rosenfeld 2000; Zhai 2008), latent semantic analysis (LSA) (Deerwester
et al. 1990), and static neural network word embeddings like Word2Vec (Mikolov et al. 2013) and
GloVe (Pennington, Socher, and Manning 2014). However, these models have their limitations.
For example, N-gram models take into consideration only n− 1 words before the word to be
predicted; models like Word2Vec and GloVe are bag-of-words models. With the advent of self-
attention mechanism in neural network language models, the context window has been expanded
to full sentence and even beyond. Compared with the previous context models, the self-attention
mechanism models context implicitly as it does not discriminate words in different positions.
Transformers thus need word position information as input.

We consider position information to be an essential ingredient of context. A neural network
language model reinforced with position-related information can predict the probability of words,
sentences, and even texts more accurately and thus better represent the meaning of linguistic
units. Therefore, we believe that all position-related information that affects the output probability
should be considered in the modeling of PE.

To incorporate more position-related information, some studies provide language models with
syntactic structures (such as dependency trees, Wang et al. 2019a), only to deliver marginal
improvements in downstream tasks. Therefore, a detailed analysis of factors that affect the
probability of word sequences is needed.

In this study, we first examined the position-related factors that affect the frequency of
words, such as absolute position and sentence length. This effort provides guidance to the
development of absolute position encoding/embedding (APE) schemas. We then focused on
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factors that influence the frequency of bigrams, which will guide the development of relative
position encoding/embedding (RPE) schemas. Finally, with the study of the co-occurrence fre-
quency of the nominative and genitive forms of English personal pronouns, we observed that the
frequency distribution of these bigrams over relative position carry meaningful linguistic knowl-
edge, which suggests that a more complex input method of position information may bring us
extra grammatical information.

Although our research focus merely on the position distribution of unigrams and bigrams, the
conclusion we made can provide a basis for studying the relationships between multiple words,
since more intricate relationships among more words can be factored into multiple two-word
relationships. For example, dependency parsing treats the multi-word relationships in a sentence
(as a multi-word sequence) as a set of two-word relationships: each sentence is parsed into a
set of dependency relations and each dependency relationship is a two-word relation between
a dependent word and its head word (Liu 2008, 2010).

2. Position encoding/embedding
Methods for incorporating position information introduced in previous researches can be sub-
sumed under two categories: plain-text-based methods and structured-text-based methods. The
former does not require any processing of input texts, while the latter analyzes the structures of
input texts.

Before further analysis, we distinguish between two concepts: position encoding and position
embedding. Strictly speaking, position encoding refers to fixed position representation (such as
sinusoidal position encoding), while position embedding refers to learned position representa-
tion. Although these two concepts are used interchangeably in many studies, we make a strict
distinction between the two in this study.

2.1. Plain-text-based position encoding/embedding
In previous researches, Transformer-based language models are fed with absolute and relative
position of words. These two types of information are further integrated into models in two
ways: fixed encoding and learned embedding. APE focuses on the linear position of a word in
a sentence, while RPE deals with the difference between the linear position of two words in a sen-
tence. Current studies have not observed significant performance differences between the two PE
schemas (Vaswani et al. 2017). However, we believe that the linguistic meaning of the two is differ-
ent. Absolute position schema specifies the order of words in a sentence. It is a less robust schema
as the linear positions are subject to noise: the insertion of even a single word with little seman-
tic impact to a sentence will alter the positions of neighboring words. Neural network language
models fed with absolute positions are expected to derive the relative positions between words on
its own. Relative position schema, on the other hand, specifies word–word relationships. It can
be used to model the positional relationships within chunks, which are considered the building
blocks of sentences. Conceivably, the relative positions between words that make up chunks are
thus stable. There are also differences in how the models implement absolute and relative posi-
tion schemas. By APE, WE (word embedding) and PE are summed dimension-wise to produce
the final embedding of the input layer, while by RPE, position information is added to attention
matrices (V and K) independent of word embeddings, which is formalized as (Wang et al. 2021):

APE :
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The fixed position encoding encodes position information with a fixed function, while the
learned position embeddings are obtained as the product of model training.

In what follows, we offer a brief introduction to the four above-mentioned PE methods.

2.1.1. Absolute position encoding
APEs (Vaswani et al. 2017) are determined in the input layer then summedwith word embeddings.
With this schema, absolute positions are encoded with sinusoidal functions:

PE(pos,2i) = sin
(
pos/10, 0002i/dmodel

)
PE(pos,2i+1) = cos

(
pos/10, 0002i/dmodel

)
(2)

where pos refer to the absolute position of a word and dmodel is the dimension of input features,
i ∈ [0, d/2].

Yan et al. (2019) showed that the inner product of two sinusoidal position encodings obtained
by this schema is only related to the relative position between these two positions. That is, this
schema enables the model to derive relative positions between words from sinusoidal position
encoding. In other words, with the position encodings by this method, models have the potential
to perceive the distances between words. In addition, the inner product of two position encodings
decreases with the increasing relative position between two words. This suggests that the corre-
lation between words weakens as the relative position increases. However, they also pointed out
that these two seemingly good properties can be broken in actual computation. Meanwhile, the
conditional probability pt|pt−r = pt|pt+r of this encoding schema is nondirectional, which can be
a disadvantage in many NLP tasks such as NER.

2.1.2. Relative position encoding
Motivated by the position encoding by Vaswani et al. (2017), Wei et al. (2019) proposed their RPE
method as:

aij[2k]= sin
(
(j− i)/

(
10, 000

2.k
dz
))

aij[2k+ 1]= cos
(
(j− i)/

(
10, 000

2.k
dz
))

(3)

where i and j refer to the linear position of two words in a sentence, and the definitions of dz and
k are the same as the definitions of dmodel and i in Equation (2).

A same sinusoidal RPE method is used by Yan et al. (2019):

Rt−j =
[
. . . sin

(
t − j

10, 0002i/dk

)
cos
(

t − j
10, 0002i/dk

)
. . .

]T
(4)

with extended attention algorithm which lends direction and distance awareness to the
Transformer. The sinusoidal RPE gains its advantage over sinusoidal APE not only with its
direction awareness but also with its generalizability which allows the model to process longer
sequences unseen in training data.

2.1.3. Absolute position embedding
Fully learnable absolute position embeddings (APEs) are first proposed by Gehring et al. (2017) to
model word positions in convolutional Seq2Seq architectures. By this method, the input element
representations are calculated with:

e= (
w1 + p1, . . . ,wm + pm

)
(5)
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where pm is a position embedding of the same size as word embedding wm at position m. The
position embeddings and word embeddings are of same dimension but learned independently.
pm is not subject to additional restrictions from wm other than dimensionality. Both embeddings
are initialized independently by sampling from a zero-meanGaussian distribution whose standard
deviation is 0.1.

2.1.4. Relative position embedding
Shaw, Uszkoreit, and Vaswani (2018) proposed a relative position embedding schema which mod-
els the input text as a labeled, directed, and fully connected graph. The relative positions between
words are modeled as learnable matrices, and the schema is of direction awareness. The relative
position between position i and j is defined as:

aKij =wK
clip(j−i,k)

aVij =wV
clip (j−i,k)

clip(x, k)=max(−k, min(k, x))

(6)

where k is the maximum relative position, and wK and wV are the learned relative position
representations.

2.2. Structured-text-based position encoding/embedding
The purpose of feeding a model position information is to enable it to make better use of the
context. The sentence structure undoubtedly contains more contextual information and is more
direct and accurate than simple position at distinguishing word meaning.

Wang et al. (2019b) proposed a structural position representations (SPRs) method which
encodes the absolute distance between words in dependency trees with sinusoidal APE and
learned RPE; Shiv andQuirk (2019) proposed an alternative absolute tree position encoding (TPE)
which differs from that ofWang et al. (2019b) as it encodes the paths of trees rather than distances;
Zhu et al. (2019) proposed a novel structure-aware self-attention approach by which relative posi-
tions between nodes in abstract meaning representation (AMR) graphs are inputted to the model
to better model the relationships between indirectly connected concepts; Schmitt et al. (2020)
showed their definition of RPEs in a graph based on the lengths of shortest paths. Although above
methods input structurally analyzed texts to models thus offer richer positional information, the
results achieved are not satisfactory.

3. Materials andmethods
How should the properties of PE be studied? We argue that the purpose of incorporating PE is to
enable a model to identify the word–word correlation change brought about by the change in rela-
tive position between words. And there is a close relationship between the word–word correlation
and the co-occurrence probability of words.

Since the Transformer’s self-attention matrix (each row or column corresponds to a distinct
word) represents the correlations between any two words in a sentence, in this paper, we
investigate the correlations between words by examining the frequency distributions of word
sequences consisting of two words. According to Vaswani et al. (2017), a self-attention matrix is
calculated as:

Attention (Q,K,V)= softmax

(
QKT√
dk

)
V ,K =WkI,Q=WqI,V =WvI (7)
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where Q is the query matrix, and K and V are the key and value matrices, respectively. d is the
dimension of the input token embedding, and I is the input matrix.

In the calculation of attention, a query vector q (as a component vector of matrix Q) obtained
by transforming the embedding of an input word wi is multiplied by ks of all words in the sen-
tence, regardless of whether the k comes before or after it. Therefore, the correlation between wi
and other words is bidirectional. In other words, with attention mechanism, the context of wi is
modeled from both directions. Therefore, we need to model this bidirectional correlation in our
research.

3.1. Representation of inter-word correlation
Based on the analysis in the previous section, we use k-skip-n-gram model to examine the
co-occurrence probability of words. In the field of computational linguistics, a traditional k-skip-
n-gram is a set of subsequences of length n in a text, where tokens in the word sequence are
separated by up to k tokens (Guthrie et al. 2006). It is a generalization of the n-gram model
as the continuity of a word sequence is broken. Formally, for word sequence w1w2 · · ·wm, a
k-skip-n-gram is defined as:

k-skip-n-gram :=
⎧⎨
⎩wi1 ,wi2 , · · · ,win ,

n∑
j=1

ij − ij−1 < k

⎫⎬
⎭ (8)

For example, in sentence “context is a complicated concept with broad senses,” the set of 3-
skip-bigram starting at “context” includes: “context is,” “context a,” “context complicated,” . . .,
“context concept.” Compared with n-gram, the k-skip-n-gram model can capture more com-
plicated relationships between words, such as grammatical patterns and world knowledge. For
instance, in the above example, “context is a concept,” a 1-skip-4-gram, clearly captures a piece of
world knowledge.

For the sake of clarity and conciseness, in what follows, we give definitions of several terms
used in this study.

We use the combinations of the two words that make up the k-skip-bigram and their relative
positions in the original text to denote the subsequences they form. For example, in sentence
“Jerry always bores Tom,” we use “Jerry Tom (3)” to denote a subsequence containing “Jerry” and
“Tom” along with their relative position 3. Similarly, in sentence “Tom and Jerry is inarguably
one of the most celebrated cartoons of all time,” we use “Jerry Tom (–2)” to denote a subsequence
containing “Jerry” and “Tom" along with their relative position –2.

All k-skip-bigrams with the same two constituent words but different skip-distance (k) are
collectively referred to in this work as a string composed of these two words. That is, the string
refers to a collection of k-skip-bigram instances. So, with the example in the previous paragraph,
we use “Jerry Tom” to refer to a collection of two bigrams, that is “Jerry Tom”= {“Jerry Tom
(3)”, “Jerry Tom (–2)”}. Further, we abbreviate the term “k-skip-bigram” as “bigram” to refer to
k-skip-bigrams with all skips.

3.2. In-sentence positions and sub-corpora of equal sentence lengths
Modeling the position of language units (words and k-skip-n-grams) properly in sentences is
an essential step for our study: First, it is a prerequisite for the investigation of frequency–
position relationship of language units; second, since grammatical relationships can be perceived
as connections between words, knowing the positions of words is therefore important for the
understanding of their grammatical relationships (exemplary studies on this topic concerning
dependency direction and distance can be seen in Liu 2008 and 2010). Despite this importance,
modeling of position is often overlooked given its superficial simplicity.
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Studies in psychology show that the probability of words occurring at two ends of sentences is
significantly different from the probability of words appearing in themiddle positions of sentences
(i.e., the serial-position effect, as detailed in Hasher 1973; Ebbinghaus 2013). Therefore, our model
of position should consider not only the absolute position of language units but also whether they
occur at two ends of sentences. Apart from that, chunks as word sequences in sentences are of great
linguistic significance. A chunk refers to words that always occur together with fixed structural
relationships such as collocations and specific grammatical structure (e.g., “if. . .then. . .”). Chunks
play an important role in humans’ understanding of natural language as people infer themeanings
of sentences based on known chunks. The position of a chunk in a sentence is relatively free, but
the relative positions between words within it are fixed. Therefore, our model of position factors
in the relative positions between words to better capture the grammatical information carried by
chunks.

Based on the above analysis, we see that to study the relationship between the position and
the frequency of language units, a model of position should consider following factors: (1) the
absolute position of language units; (2) the relative position between words; and (3) whether a
language unit occurs at one of the two ends of a sentence. We use natural numbers to mark the
absolute position of words and integers (both positive and negative) to mark the relative positions
between words. Words at the beginning of sentences can be marked with natural numbers. For
example, we use 1, 2, 3 to mark the first, second, and third positions in the beginning of a sentence.
However, we cannot use definite natural numbers to mark the position of words or bigrams at
the end of sentences of different lengths. And, in sentences of different lengths, even if words or
bigrams have the same absolute position, their positions relative to the sentences are different. For
example, in a sentence of length 5, the third position is at the middle of the sentence, while in a
sentence of length 10, the third position is at the beginning of the sentence. Therefore, the absolute
positions of language units should not be perceived equally.

We follow the procedure below to address this problem: first, sentences in the original cor-
pus U (which consists of sentences of varying lengths) are divided into sub-corpora according to
sentence length, which is formulated as:

U =
L⋃
l=1

Ul, ∀ s ∈ Ul, |s| = l (9)

where Ul stands for the sub-corpus of sentence length l, |s| is the length of sentence s, and L
is the number of sub-corpora, that is, the length of the longest sentences in the original cor-
pus. Following this procedure, in each sub-corpus, when investigating the relationship between
the frequency and the position of language units, the absolute positions marked with same natu-
ral number can be perceived equally, and the ending positions of sentences can be marked with
integers of same meanings.

In the remainder of this paper, when examining the relationship between the frequency and
position of language units in a sub-corpus, we use 1, 2, 3 and –1, –2, –3 to denote the first
three positions at the beginning of sentences and the last three positions at the end of sentences,
respectively.

3.3. Corpora and language units of interest
In this study, we examine the relationship between the frequency and the position of a word or
a bigram within the range of a single sentence because most constraints imposed on a word or
a bigram are imposed only by neighboring words or bigrams in the same sentence. Therefore, a
corpus as a collection of sentences is ideal for our following experiments. Leipzig English News
Corpus (Goldhahn, Eckart, and Quasthoff 2012) from 2005 to 2016 contains 10 million sen-
tences and 198 million symbols and is the corpus of choice for our experiments. As a collection
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of sentences of varying lengths, the corpus meets our needs and the size of the corpus helps to
alleviate the problem of data sparsity.

3.3.1. Preprocessing of the corpus
In the preprocessing stage, we excluded all sentences containing non-English words and removed
all punctuation marks. We also replaced all numbers in the corpus with “0” as we believe that
the effect of differences in numbers on the co-occurrence probability of words in a sentence is
negligible. After that, all words in the corpus are lower-cased.

3.3.2. Sentences to be examined
Most of the short sentences are elliptical ones, lacking typical sentential structures. Besides, the
number of very long or very short sentences is fractional, which makes the statistical results based
on them unreliable. Therefore, in this study, our statistical tests are performed on sentences of
moderate lengths (from 5 to 36). Only sub-corpora with over 100,000 sentences are considered in
following experiments.

3.3.3. Language units of interest
The relative frequency of a language unit is the maximum likelihood estimation of the probability
of that unit. Therefore, for a language unit of total occurrence lower than 10, if the counting error
of that language unit is 1, then the error in the probability estimation for that language unit is
at least 10%. Therefore, to keep the estimation error lower than 10%, we consider only language
units with frequency higher than 10.

It should be noticed that, with this criterion, only a small fraction of words and bigrams are
qualified for our experiments. This procedure not only guarantees the reliability of our results, but
it also resembles the training procedure of neural network languagemodels. Since the frequency of
most of the words are very low in any training corpus (cf. Zipf’s law, Zipf 1935 and 1949), feeding
the models (e.g., BERT, Devlin et al. 2018, GPT, Radford et al. 2018) with these words directly will
encounter the under-training problem. Therefore, neural network language models are trained
on n-graphs obtained by splitting low-frequency words (i.e., tokenization). A detailed analysis of
tokenization methods is beyond the scope of our research; in this study, we focus our attention on
frequent language units.

4. Results
In this section, we first present the results that demonstrate the relationship between position-
related information and the frequency of words and bigrams. This first stage study provides clues
for the study of the relationship between word co-occurrences and their positions. The statis-
tical approach we take determines that our results will only be accurate for frequent words or
bigrams. We therefore filter out words or bigrams with few occurrences. Nevertheless, in the final
part of this section, for both frequent and infrequent words and bigrams, we show the statistical
results about the relationship between their position and frequency to have some knowledge of
the statistical properties in low-frequency context.

4.1. The influence of position-related factors on word frequency
Based on the analysis in Section 3, we determine fw(n, l): the relative frequency of word w in each
sub-corpus of length l with the following formula:

fw(n, l)=
∑

s∈Ul
Ns(n)(w)

|Ul| · l , l= 1, 2, · · · L, n= 1, 2, · · · l (10)
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Figure 1. The position–frequency distribution of top-3 most populated word clusters on length 15 sentences.

where |Ul| is the number of sentences in sub-corpus Ul, the product |Ul| · l refers to the number
of words in sub-corpus Ul, and Ns(n)(w) is a binary function denoting whether word w occurs at
position n in sentence s= s1s2 · · · sn, which is formalized as:

Ns(n)(w)=
⎧⎨
⎩ 1, if s(n)=w

0, others
(11)

We use Equation (10) to determine the word frequency separately in each sub-corpus (Ul) because
the number of absolute positions varies with sentence length.

4.1.1. The joint influence of position-related factors on word frequency
In Section 3.2, we have briefly analyzed several factors that could affect the frequency of language
units, they are: (1) the absolute positions of words or bigrams; (2) the relative position between
words; and (3) whether a word or a bigram occurs at two ends of a sentence. In this section, we
perform statistical analyses to determine whether the influence of these factors on word frequency
is statistically significant.

We observe that words under investigation exhibit distinct position–frequency distribution
patterns. To find possible regularities in these patterns, we cluster words according to the patterns
of their position–frequency distributions (relative frequency in this case). Figure 1 illustrates the
position–frequency distribution of the top-3 most populated clusters on length 15 sentences (the
sentence length with most sentences in our corpora), where the frequencies of each cluster is
obtained by averaging the frequencies of all words in that cluster. From Figure 1, we observe that
the frequencies of words at two ends of sentences deviate significantly from the general patterns
in the middle of the sentences.

In addition, we use multiple linear regression to model the relationship between word fre-
quency and position-related factors, including sentence length and absolute position. To produce
more reliable results, we make careful selection of words. A word is eligible for this experiment
if it appears in more than 10 sub-corpora and the average of its frequencies (the maximum fre-
quency excluded) in all positions in the sub-corpora is greater than 10. There are 3931 words that
meet this criterion. Selected words are then examined of their position–frequency relationship by
predicting the relative word frequency f (n, l) (obtained by Equation (10)) with model:

f (n, l)= α0 + α1l+ α2n+ α3b1 + α4b2 + α5b3 + α6d1 + α7d2 + α8d3 (12)
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where l represents sentence length and n stands for the absolute position of the word in the sen-
tence. b1, b2, and b3 refer to the first three positions at the beginning of the sentence, while d1,
d2, and d3 represent the last three positions at the end of the sentence. For example, if a word
occurs at the first place of the sentence, then b1 = 1, b2 = b3 = d1 = d2 = d3 = n= 0. α0 . . . α8 are
the coefficients of the regression model.

We applied this model (Equation (12)) to all words selected and came up with following results:
The regression models of 98.3% of the words are of p< 0.05 in F-test. The average R2 of models
of selected words is 0.6904±0.1499 (the error term is standard deviation, same in the follow-
ing sections); the percentages of models with p< 0.05 in t-test on eight independent variables
are 73.11%, 72.87%, 91.43%, 74.26%, 65.94%, 69.22%, 80.82%, and 88.25%, respectively, with an
average of 76.97%±8.46%.

The above results show that about 69% of the variance in word frequency is determined by these
position-related factors we considered. The frequency of about 77% of the words is significantly
affected by these factors. The third position at the beginning of a sentence affects the least (about
66% of the words), while the first position at the beginning of a sentence affects the most (over
90% of the words) which is followed by the last position at the end of a sentence.

The F-test and t-test results of the model described in Equation (12) suggest that the position-
related independent variables significantly influence the frequency of words. In what follows, to
dive deeper into the influence of individual factors, we single out each factor to investigate it’s
influence on word frequency.

4.1.2. The influence of sentence length on word frequency
Is the frequency of a word affected by the length of the sentence it occurs in? Or, is there a dif-
ference in the probability of a word appearing in shorter sentences versus longer sentences? To
answer this question, we calculate the frequency of words in each sub-corpus. To counter the
influence of the number of sentences in each sub-corpus on word frequency, we evaluate pw(l):
the relative frequency of word w, that is, the absolute frequency of word w divided by the number
of sentences of length l with following formula:

pw(l)=
∑

s∈Ul

∑l
n=1 Ns(n)(w)

|Ul| · l , l= 1, 2, · · · L (13)

where |Ul| is the number of sentences in sub-corpus Ul. With this formula, we accumulate
the number of the occurrences of word w in all absolute positions. The remaining variables in
Equation (13) have the same meanings as the corresponding variables in Equation (10).

Figure 2 illustrates the relationship between the relative frequency pw(l) and sentence length
for six words. We can see from the figure that words exhibit different sentence length–frequency
relationships: the relative frequency of some words show positive correlation with sentence length,
while the opposite is true for other words; some words demonstrate linear-like sentence length–
frequency relationship, while others show quadratic-like relationship.

For the reliability of our results, in the following statistical analysis, we consider only sub-
corpora with enough sentences, ranging from 5 to 36 in length. A word occurring over 10 times
in each sub-corpus is eligible for this experiment. There are 21,459 words that meet this criterion.

We use quadratic polynomial regression to examine the relationship between word fre-
quency and sentence length. The mean coefficient of determination R2 of resulting models is
0.4310±0.2898; We use the sign of Pearson’s correlation coefficient to roughly estimate the influ-
ence of sentence length on word frequency and observed that the Pearson’s r of 58.92% of the
words are positive.

In summary, relative word frequency is thus significantly correlated with sentence length.
When other variables disregarded, sentence length alone account for 43% of the variability of
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Figure 2. The relationship between sentence length and word frequency.

Figure 3. The relationship between absolute position and word frequency.

the word frequency, and the relative frequency of about 60% of the words increases with sentence
length.

4.1.3. The influence of absolute position on word frequency
In this section, we investigate the effect of absolute position on word frequency. Figure 3 illus-
trates the relationship between the frequency of “said” and “in” and their absolute positions in
sentences. It can be seen in the figure that curves at two ends of sentences are significantly different
from curves at middle positions. The frequency curves of some words (e.g., “said”) head down-
ward at the beginning of sentences followed by a sharp rise at ending positions, while the curves
of other words (e.g., “in”) rise at the beginning positions followed by a downward trend at end-
ing positions. However, the curves of both kinds of words stretch smoothly in middle positions.
Besides, for each selected word, similar position–frequency curves are observed over sub-corpora
of different sentence lengths. The frequency of words f Ul

w (n) are calculated as:

f Ul
w (n)=

∑
s∈Ul

Ns(n)(w), k ∈ [1, 2, · · · l] (14)

where the variables at the right-hand side of the equation are of the same meanings as in
Equation (10).
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Figure 4. Quadratic polynomial regression with outlier detection.

Based on our observation of the relationship between the frequency of words and their absolute
positions, we test for outliers when examining the relationship between the frequency and the
absolute position of words with following procedure:

Step 1. In each sub-corpus Ul, we examine the relationship between the frequency of words
(calculated with Equation (14)) and their absolute positions by quadratic polynomial
regression;

Step 2. Based on the results in Step 1, we calculate the standard deviation of the residual between
the word frequency predicted by the model and the observed frequency;

Step 3. If the difference between the observed and predicted frequency of a word at a position
is three times greater than the standard deviation obtained in Step 2, we consider the
frequency of the word at that position to be an outlier and exclude it from the regression
in the next step;

Step 4. After outliers being removed, we rerun the polynomial regression and calculate the
Pearson correlation coefficient on the remaining data.

The final results obtained from the whole procedure includes the outliers detected in Step 3
and the regression results in Step 4.

Taking the word frequency of “run” in sub-corpus U15 as an example, the main idea of the
procedure is to determine whether the data points to be detected fall between the upper and lower
curves demonstrated in Figure 4. If it does not fall in-between, it is considered an outlier.

For the reliability of the results in this experiment, we select sentences and words following the
criteria detailed in Section 3.3.3. The experiment is performed based on the selected 3947 words
with following results: the mean R2 of the polynomial regression is 0.3905±0.07027; the percent-
age of Pearson’s correlation coefficient greater than 0 is 61.95%. As for outlier test, 4.96%±5.39%
of the words at position 0, 1.57%±1.45% at position 1, 0.92%±0.8% at position 2, 0.6%±0.46%
at position -3, 4.62%±3.84% at position -2, and 12.55%±1.25% at position -1 are outliers with an
average of 4.20%±0.72%.

In summary, over 4% of the frequencies at two ends of sentences deviate from the overall pat-
tern of frequency distribution of middle positions. Besides, 39.05% of the variance in the word
frequency is caused by absolute position, and the frequency of 62% of the words increases with
their absolute position.
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Figure 5. The relationship between relative position and bigram frequency in length 15 sub-corpora.

In the section to follow, we investigate the position-related factors that affect the frequency of
bigrams. We do this first by briefly discussing the possible factors may influence the frequency of
bigrams and developing a formula to calculate bigram frequency. We then study the influence of
these factors with statistical methods.

4.2. The influence of position-related factors on bigram frequency
We use bigram to model the co-occurrence frequency of two-word sequences to better under-
stand the correlation between any two words modeled by self-attention mechanism. From a
linguistic point of view, there are semantic and syntactic correlations between words in a sen-
tence, which are reflected as beyond-random-level co-occurrence probability of words. Intuitively,
this high co-occurrence probability caused by correlations can be modeled with relative positions
between words. For example, “between A and B” is an expression where “between” and “and”
should have a higher-than-chance co-occurrence probability when the relative position is 2. As
for “if. . .then. . .,” “if” and “then” won’t co-occur quite often when the relative position is small
(e.g., 1, 2 or 3). Some bigrams (such as “what about”) occur more frequently at the beginning
rather than the end of sentences. Also, some bigram, such as “and then,” should appear more
frequently in longer sentences than in shorter ones. We believe that following position-related
factors influence the frequency of a bigram: (1) the relative position of the two words that make
up a bigram; (2) the absolute position of a bigram in a sentence; (3) whether a bigram occurs at the
beginning or the end of a sentences; and (4) the sentence length. Therefore, we determine the rel-
ative frequency of a bigram frw1,w2

(k, n, l) consisting of wordw1 andw2 in sentences s= s1s2 · · · sn
at position n and n+ k with the following formula:

frw1,w2 (k, n, l)=
∑

s∈Ul
Ns(n),s(n+k) (w1,w2)

|Ul|
l= 1, 2, · · · L, n= 1, 2, · · · l− 1, k= 1, 2, · · · l− n

(15)

where Ul is the sub-corpus consisting of sentences of length l; Nsn,sn+k(w1,w2) is a binary function
which indicates whether word w1 and w2 appear at position n and n+ k in sentence s, which is
formalized as:

Ns(n),s(n+k) (w1,w2) =
⎧⎨
⎩ 1, if s(n)=w1 and s(n+ k)=w2

0, others
(16)

Figure 5 illustrates the frequency distributions of four bigrams over absolute positions in sub-
corpusU15, where the relative position of each bigram is –2. The dotted lines in Figure 5 represent
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the predicted bigram frequencies by linear regression.We observe that the patterns of position and
frequency distributions of bigrams are similar to that of words: regular patterns of distribution in
middle positions and idiosyncratic patterns at both ends of sentences.

4.2.1. The joint influence of position-related factors on bigram frequency
To determine whether the frequency of a bigram is influenced by position-related factors, we use
multiple linear regression models to examine the relationship between bigram frequency and fol-
lowing position-related factors: (1) sentence length; (2) relative position; and (3) absolute position;
(4) whether a bigram occurs at the beginning or the end of sentences. If the model fits the data
well, we consider the frequency of a bigram is influenced by these factors.

For each bigram, we perform a multiple linear regression which predicts fr (the relative fre-
quency of a bigram) to examine the influence of these position-related factors on the frequency of
bigrams:

fr = α0 + α1l+ α2n+ α3k+ α4b1 + α5b2 + α6b3 + α7d1 + α8d2 + α9d3 (17)

where l is the sentence length, n refers to the absolute position of a bigram, and k is the relative
position. The remaining coefficients and variables on the right-hand side of Equation (17) are of
the same meanings as those in Equation (12).

For the reliability of our results, in the following statistical analysis, we select sentences and
bigrams following the criteria detailed in Section 3.3.3. With 4172 selected bigrams, we arrived at
following results of multiple linear regression:

The mean coefficient of determination R2 of 4172 regression models is 0.5589±0.2318; the
p-values of 99.59% bigram models are lower than 0.05 in F-test; The percentage of models with
p< 0.05 in t-tests of 10 parameters are 89.85%, 72.51%, 67.50%, 63.97%, 87.56%, 78.12%, 61.12%,
72.89%, 81.77%, and 88.27%, respectively, with an average of 76.35%±9.86%.

The result that 99.59% of bigram’s regression models are with p-values less than 0.05 in F-
test indicates that the linear regression models are valid, and the frequency of almost all selected
bigrams are significantly affected by these position-related factors. The result of coefficients of
determination indicates that nearly 56% of the variance in frequency is due to these position-
related factors.

The frequencies of about 76% of bigrams are significantly influenced by these factors, among
which the first position at the beginning of a sentence and the last position at the end of a sentence
affect more bigrams than other coefficients which is similar to the case of word frequency.

In what follows, to dive deeper into the influence of individual factors, we single out each factor
to investigate it’s influence on bigram frequency.

4.2.2. The influence of sentence length on bigram frequency
To study the relationship between the frequency of bigrams and the length of sentences where the
bigrams occur, we examine the frequency of bigrams in sub-corpora with following formula:

frw1,w2 (l)=
∑

s∈Ul

∑l−1
n=1

∑l−n
k=1 Ns(n),s(n+k) (w1,w2)

|Ul| · (l− 1)! , l= 1, 2, · · · L (18)

The variables in Equation (18) are of the same meanings as those in Equation (15); |Ul| · (l− 1)!
in denominator is the number of bigrams can be extracted from sub-corpus Ul. This formula is
derived by accumulating n and k in Equation (15).

Figure 6 illustrates diverse patterns of frequency distribution for six bigrams over sentence
lengths, calculated with Equation (18). From the figure, we observe both rising and falling curves
with varying rate of change.
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Figure 6. The relationship between sentence length and bigram frequency.

Based on Equation (18), we examined the relationship between the frequency fr of bigrams
and length l of sentences with quadratic polynomial regression. For the reliability of results, we
select sentences of length 6 to 36. The mean coefficient of determination of resulting models is
0.7631±0.2355. As for the linear correlation between bigram-frequency and sentence length, the
Pearson’s rs of 60.68% of the bigrams are greater than 0. That is, when other variables disregarded,
about 76% of the variability in bigram frequency is caused by variation of sentence length, and the
frequency of about 61% of the bigrams increases with the sentence length.

4.2.3. The influence of relative position on bigram frequency
Long-distance decay (i.e., as the relative position between words extends, the strength of cor-
relation between words decreases accordingly) is considered a desirable property of current PE
schemas (Yan et al. 2019). In this study, we investigate this property in detail.

To study the relationship between the relative position and frequency of bigrams, we first need
to specify our calculation method of bigram frequency. We care only the relationship between
the relative position of bigrams and their frequency and dispense with other factors. Therefore,
we accumulate the variables n and l in Equation (15) and keep only the variable k to obtain the
marginal distribution of frw1,w2

. And we model the relationship between frw1,w2
and k with this

marginal distribution. Relative position (distance) k is restricted by sentence lengths, for exam-
ple, bigram “if then (4)” (i.e., the “. . . if X X X then . . .” pattern) occur only in sentences of
lengths greater than 5. Therefore, the maximum relative position k is l− 1 in a sentence of length
l. Obviously, the smaller the value of k, the more sentences contain the k-skip-bigram. To can-
cel out the influence of the number of sentences available, we divide the absolute frequency of a
bigram with the number of sentences containing that bigram:

frw1,w2 (k)=
∑

s∈U
(∑|s|−k

n=1 Ns(n),s(n+k) (w1,w2)
)

/(|s| − k)∑L
l=k+1 |Ul|

(19)

where all right-hand-side variables are of the same meanings as those in Equation (15).
Figure 7 illustrates the relationship between the frequency of four bigrams and their relative

position. It can be seen in the figure that the frequencies of the bigrams are affected by relative
positions: bigram frequencies at shorter relative positions differ significantly from those at longer
relative positions.
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Figure 7. The relationship between relative position and bigram frequency.

With the same method used in Section 4.1.3, we examined the relationship between the fre-
quency of bigrams fr and relative position k with quadratic polynomial regression and performed
outlier detection at the same time.

The results of the regression analysis are as follows: the mean R2 of the models is
0.5357±0.2561, and the Pearson’s rs between fr and k of 33.33% of the bigrams are greater than 0.
Besides, 47.72% of the outliers are observed at relative position k= 1, followed by 17.63% at k= 2,
5.31% at k= 3 and less than 5% at remaining relative positions.

That is, when other variables disregarded, about 54% of the variability of bigram frequency is
explained by the relative position variation. The frequency of about one-third of bigrams increases
with the increasing relative position. Besides, for nearly half of the bigrams, their frequency at rel-
ative position k= 1 deviates significantly from the overall pattern of their frequency distribution
at other relative positions.

Some studies pay attention to the symmetry of positional embedding, and a property indicates
that the relationship between two positions is symmetric. Wang et al. (2021) claim that BERT with
APE does not show any direction awareness as its position embeddings are nearly symmetrical. In
the next section, we therefore take a statistical approach to study the symmetry in our corpora.

4.2.4. The symmetry of frequency distributions of bigrams over relative position
Symmetry here can be interpreted in this paper as the fact that swapping the positions of two
words in a bigram does not cause a significant change in their co-occurrence frequency. We can
statistically define the symmetry as:

E(p(k)− p(−k))= 0 (20)

where p(k) is the probability of a bigram at relative position k and E(·) is the mathematical
expectation.

For a bigram consisting of words A and B, we call it symmetric if, for any value of k, the prob-
ability of its occurrence in form “A X1X2 · · · Xk B” is equal to the probability of its occurrence in
form “B Y1Y2 · · · Yk A” in sentences. Intuitively, if words A and B are not correlated in sentences,
they can randomly occur at any position, so their co-occurrence frequency should be symmetric
over relative positions. However, word order of an expression is an important semantic device
which cannot be reversed without changing the meaning of the expression. If two constituent
words of a bigram are associated, then there should exist a special relative position. That is, the
frequency distribution of a bigram over relative position should be asymmetric.
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Figure 8. Relative position–frequency distribution of three bigramwith different degrees of symmetry.

According to Equation (20), if the frequency distribution of a bigram over relative positions is
symmetric, then frw1,w2

(k)− frw1,w2
(−k) (k> 0) should be small. Therefore, we conduct pairwise

statistical tests on the distributions frw1,w2
(k) and frw1,w2

(−k) with following procedure:
For all selected bigrams (w1,w2), we first test the normality of frw1,w2

(k) and frw1,w2
(−k), if both

of them follow normal distribution, we then perform paired-sample t-test on them. Otherwise, we
turn to Wilcoxon matched-pairs signed rank test.

The test result shows that 10.31% of the bigrams are of p-value greater than 0.05, indicating that
frw1,w2

(k) and frw1,w2
(−k) are not significantly different. In other words, the frequency distribu-

tion over relative position of around 90% of the selected frequent bigrams can not be considered
symmetric.

To measure the degree of symmetry of the frequency distribution of bigrams over relative
position, we define the symmetry index as:

SyDw1,w2 = 1−
√√√√∑N

k=1
(
frw1,w2 (k)− frw1,w2 (−k)

)2
∑N

k=1
(
frw1,w2 (k)+ frw1,w2 (−k)

)2 (21)

where frw1,w2
(k) is the relative frequency as in Equation (19), andN is the maximum relative posi-

tion. Since there are significantly fewer sentences containing bigrams with larger relative position
than those with lower relative position, we consider only bigrams of relative position lower than
36 for the reliability of our statistical results. Equation (21) measures the proportion of the differ-
ence between two distributions in the sum of the two distributions. The value of symmetry index
ranges from 0 to 1. The closer the symmetry index is to 1, the smaller the difference between the
two distributions; the closer the symmetry index is to 0, the larger the difference between the two
distributions.

Three bigrams with intuitively different degrees of symmetry are shown in Figure 8, and their
symmetry indices are 0.9267, 0.5073, and 0.0121, respectively. As can be seen in the figure, the
symmetry index we defined in Equation (21) matches our intuition of symmetry. In order to reli-
ably investigate the degree of symmetry of the frequency distribution of bigrams, we selected those
frequent bigrams and calculate their symmetry indices with Equation (21). We use frequency as
the criterion of selection: bigrams with frequency over 1000 are selected for our experiment. We
set this threshold frequency based on the following considerations: given the size of the corpus
and lengths of sentences, the relative position between two words in a sentence ranges from -43
to+ 43, that is, there are nearly 100 relative positions. As a rule of thumb, if we expect the mean
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Figure 9. The frequency distribution of bigrams consisting of nominative and genitive variant of English pronouns over
relative position.

frequency of bigrams on each position to be over 10, then the total frequency of each bigram
should be no less than 1000. With this criterion, we obtained 200,000 bigrams.

The result of this experiment shows that the mean symmetry index value of selected bigrams is
0.4647±0.1936. That is, on average, the difference between the frequency of bigrams over positive
and negative relative position account for about 46% of the total frequency.

We also calculated the Pearson correlation coefficients between the symmetry index and the
frequency and the logarithmic frequency of the selected bigrams, with results of 0.0630 and 0.2568,
respectively. The results suggest that the degree of symmetry of a bigram’s frequency distribution
over relative position is weakly but positively correlated with its frequency. The higher the fre-
quency, the higher the degree of symmetry, whichmay be consistent with the fact that the function
words all have high frequency and most of them have no semantic correlation with other words.

In what follows, we show through a case study that the distribution patterns of bigrams over
relative positions contain linguistic information, which, we believe, will inspire the development
of language models which are expected to make better use of linguistic information.

4.2.5. Grammatical information from the distribution patterns of bigrams
According to the distributional hypothesis (Harris 1954), the meaning of a word can be repre-
sented by the context in which it occurs. And the context of a word in a corpus is generally
considered to be a set consisting of all sentences in which the word occurs. Currently, in order
to obtain the contextual representation, one more common approach is to feed the sentences in
this set into a language model one by one. In fact, we can also use another approach: using context
models, such as k-skip-n-gram, to extract relations between the focus word and its context in this
set and then input the extracted relations to a language model. If a language model (e.g., BERT,
GPT, ELMo, Peters et al. 2018) can capture the relationships between words and their contexts,
then the results of applying the two methods should be the same.

In what follows, with a case study, we demonstrate that more linguistic information can be
obtained by a language model if the second method is considered.

We examined the frequency distribution of the bigrams consisting of the nominative and geni-
tive forms of English personal pronouns over relative position and observed that they have similar
patterns of distribution (see Figure 9).

We then calculated paired Pearson’s correlation coefficients between the distribution curves
of the seven pronouns in Figure 9, resulting in a minimum of 0.8393 and a maximum of
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0.9866, with a mean of 0.9414±0.0442. However, when all bigrams considered, the mean value
is 0.1641±0.3876, and the mean of the absolute value of Pearson’s correlation coefficient is
0.3478±0.2372. This result shows the distribution patterns personal-pronoun bigrams over
relative position resemble each other with above-average similarity.

As can be seen in Figure 9, the symmetry indices of the seven bigrams are close to each other,
recording 0.4738, 0.3267, 0.4563, 0.3803, 0.5033, 0.4269, and 0.6282, respectively, with an average
of 0.4565±0.0890.

The result suggests that more grammatical information can be obtained if a Transformer-based
model can organize the self-attention weights of the same bigram scattered overmultiple positions
in the attention matrix into a distribution of attention weights.

The similarity between the distribution patterns shown in Figure 9 also suggests that distribu-
tion patterns contain grammatical information. If the co-occurrence frequency distributions of
bigrams over relative position are fed to or learned spontaneously by neural network language
models, models can thus learn richer grammatical information.

In the next section, we investigate the influence of the absolute position of bigrams on their
frequency in sentences of different lengths.

4.2.6. The influence of absolute position on bigram frequency
Our analysis in Section 4.2 suggests that bigrams have their preferred absolute positions. Next,
we examine the relationship between the frequency and the absolute position of bigrams. We
determine f Ul

w1,w2 (n): the frequency of a bigram consisting of word w1 and w2 in sub-corpus Ul at
position n with:

f Ul
w1,w2 (n)=

∑
s∈Ul

∑
k∈{1,··· ,l−k} Ns(n),s(n+k) (w1,w2)

l− n
(22)

where the variables at the right-hand side of the equation have the same meaning as their corre-
sponding variables in Equation (15). The distribution function f Ul

w1,w2 (n) is derived from a ternary
function frw1,w2

(k, n, l) by fixing l and accumulating k in sub-corpus Ul. The relative position k
that can be accumulated at the absolute position n are 1, 2, . . . , l− n, with a total of l− n values.
The effect of differences in the number of relative positions on the frequency of bigrams is lin-
guistically meaningless and beyond the scope of our study. Therefore, the quotient obtained by
dividing the cumulative result by l− n, which eliminates the effect of the difference in the num-
ber of relative positions on the bigram frequency, is the bigram frequency influenced by absolute
position that we are interested in.

In sentences of different lengths, even bigrams with the same absolute position have different
positions relative to the whole sentence. Therefore, to determine the relationship between the
frequency and the absolute frequency of bigrams in the whole corpus, the examinations are first
conducted in each sub-corpus. Then the number of sentences in each sub-corpus is used as the
weight in the weighted average calculation. This procedure is the same as the examination of the
relationship between the frequency and absolute position of words.

We use quadratic polynomial regression to examine the relationship between the frequency
and absolute position of 19,988 bigrams, followed by outlier detections. The mean R2 of quadratic
polynomial regressionmodels at the middle positions of sentences is 0.4807±0.0815. The percent-
age of outliers at first and last three positions are 4.93%±5.16%, 1.37%±1.17%, 0.41%±0.33%,
2.26%±1.89%, 4.82%±4.00%, and 5.58%±6.19%, respectively, with an average of 3.23%±0.55%.
The mean percentage of outliers at first and last positions is 5.26%±1.00%, that is, the frequency
of over 5% of the bigrams at two ends of sentences in all sub-corpora deviate far from the over-
all distribution patterns. After outliers being removed, for 41.10% of the bigrams, the Pearson
correlation coefficients between the absolute position and frequency of bigrams is greater than
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Figure 10. Position–frequency distribution of words in different frequency bands.

0, indicating that the frequency of about 40% of the bigrams increases as the absolute position
increases.

These results show that the frequencies of some bigrams at the beginning and end of sentences
are significantly different from the overall pattern of their frequency distribution elsewhere in the
sentence. The relationship between the frequency and the position of bigrams can be modeled
with quadratic polynomials. About 48% of the variability of bigram frequency can be accounted
for by the variation of absolute position, and the frequency of around 41% of the bigrams increases
with their absolute position.

For the reliability of our statistical results, in previous experiments, we excluded bigrams and
words which occur on average less than 10 times at each sampling point. This treatment deter-
mines that analyses in previous experiments present conclusions merely hold for frequent words
and bigrams. In the next section, we perform brief statistical analysis on the relationship between
the frequency and the position of words in different frequency bands to gain some knowledge
about the position–frequency distribution of previously excluded words.

4.3. The position distribution of low-frequency words
To obtain consistent position–frequency distributions of low-frequency words is a tricky attempt
due to their sparse occurrence in the corpus. As such, it is unfeasible to count the frequency of a
low-frequency word at every position. As a workaround, we simplify this issue by roughly divid-
ing all positions into three groups, namely the beginning, the middle, and the end of a sentence,
where the beginning refers to the first three positions of a sentence, the end refers to the last three
positions of a sentence, and the middle refers to the rest positions. We then calculate the rela-
tive frequency of each word at these three “positions” and calculate the average of these relative
frequencies for the words within each frequency band separately.

As can be seen in Figure 10, words in lower frequency bands show higher frequency at the
beginning positions of sentences, while there is little difference in the frequency of words in higher
frequency bands at three positions. Words in frequency bands in-between show higher frequency
at the end positions of sentences. That is, words of different chance of occurrence exhibit different
patterns of position distribution. It is thus suggested that the conclusions we made in previous
sections cannot be extrapolated to words or bigrams of lower chance of occurrence.

5. Discussion
In this study, correlations between language units in sentences are modeled as their co-occurrence
frequency. The examination on the correlation between language units is carried out by mul-
tiple linear regression and quadratic polynomial regression. The results show that both word
and bigram frequency have complex relationships with position-related factors. Relative position,
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absolute position (including the beginning and ending positions), and sentence length all have
significant effects on word frequency and bigram frequency. Our results suggest that, when devel-
oping a PE model, it is desirable to explicitly take these factors into account. However, the input
layers of current Transformer-based models have not taken advantage of these factors. Another
idea is to include additional layers after multi-head self-attention layer to give the Transformers
the ability to computationally derive richer position information.

The results of Shaw et al. (2018) and Rosendahl et al. (2019) have shown that models adopt-
ing relative position achieve better performance than absolute position in downstream tasks.
The word order within chunks is fixed and of particular importance, while the order and dis-
tance between chunks are relatively free. Therefore, models based on RPE can directly model
word chunks, while models based on absolute position require further processing. Besides, by
investigating the frequency of bigrams over relative position, our study suggests that patterns
of frequency distribution of bigrams entail rich grammatical information which apparently also
requires further processing to be adequately captured by the current language models.

Our study also revealed that sentence length has a significant influence on the frequency of
words and bigrams. However, sentence length is currently a neglected factor as no currently pop-
ular model encodes sentence lengths explicitly. Takase and Okazaki (2019) achieved improved
performance in a language generation task by incorporating sentence length information explic-
itly, which is an indirect evidence of the usefulness of sentence length.

By comparing 13 variants of position embedding/encoding schemas, Wang et al. (2021) con-
cluded that APEs are more suitable for classification tasks, while relative embeddings perform
better for span prediction tasks. We believe that a model built with a relative positioning schema
can directly encode the correlation between words and is therefore more conducive to span pre-
diction tasks. Absolute positioning schemas do not directly model the correlation between words
and are therefore not good for span prediction tasks. However, classification tasks require global
information of the input text, and absolute positioning schemas obviously encode more global
position information than relative ones.

In named entity recognition (NER) tasks, Yan et al. (2019) proposed a direction- and distance-
aware attentionmechanismwhich improved the task performance. According to the results of our
study, 90% of the bigrams have asymmetric frequency distribution patterns over relative positions;
thus, an awareness of the direction of relative position is necessary as it improves the accuracy of
prediction.

Some studies input the syntactic structures of sentences (e.g., dependency trees, Shiv and Quirk
2019; Wang et al. 2019a) rather than simple positional information to the model, hoping that
neural network language models can make use of the human-labeled grammatical information.
However, this attempt onlymademarginal improvement to task performance. Based on the results
of this study, this problem may be caused by two factors: first, neural network language models
may fail to make good use of syntactic structure information as obtaining syntactic information
from these structures requires additional processing; second, not all kinds of position information
is needed for every task, and more-than-necessary types of position information do not nec-
essarily lead to better performance. Intuitively, the structure of an input sentence can provide
models with more information about the relationship between words. However, according to the
report by Wang et al. (2019a), the improvement brought by incorporating syntactic structure is
only marginal. This result suggests that the model fails to fully utilize the position information
encoded by syntactic structures. Or, in other words, the structural information of sentences is not
as important to models as it is to linguists.

Several works have found linguistic knowledge in neural network language models, such as
subject–verb agreement and reflexive dependencies in BERT’s self-attentionmechanism (Lin, Tan,
and Frank 2019), parse tree distances in BERT (Manning et al. 2020), and singular/plural relation-
ships (Lakretz et al. 2019; Goldberg 2019). However, it is not yet clear in what forms these linguistic
information exist in a corpus and how they are learned by language models. The similarity of the
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frequency distribution of bigrams consisting of the nominative and genitive forms of English pro-
nouns observed in this paper suggests that this linguistic knowledge exists in the pattern of joint
frequency distribution of linguistic units.

By introducing additional interactions between query, key, and relative position embeddings to
self-attentionmechanism, Huang et al. (2020) improved the performance of BERT. According our
results on sentence length, absolute position, and relative position, we speculate that the improved
performance brought by these proposed additional interactions are associated with these position-
related factors. Based on the results of this work and previous studies, a reasonable hypothesis is
that different NLP tasks require different kinds of position information. Although various forms
of position information can be derived from each other, it has not been explicitly reflected in the
models’ architectures.

The results also show that the frequency of words is related to factors including absolute posi-
tion and sentence length and whether they occur at two ends of sentences. In addition to the above
factors, the inter-word relationship is also affected by relative position. Since current neural net-
work language models do not autonomously derive one variable from another, we need to feed the
information explicitly to the model. For example, in sentence “Tom and Jerry is in inarguably one
of the most celebrated cartoons of all time,” according to the conclusion made in this study, mul-
tiple types of information should be explicitly feed into neural network language models: for focus
word “Tom,” we need to explicitly feed all of the following quantities to neural network language
models: its absolute position (encoded as 0); its being at the beginning of the sentence (encoded
as 1, 0, 0); its absence from the end of the sentence (encoded as 0, 0, 0); its relative position from
all other words in the sentence (i.e., –1 from “and”, –2 from “Jerry”, . . ., –13 from “time”) and its
sentence length 14. These factors are not yet considered holistically in recent Transformer-based
architectures.

Our large-corpus-based study suggests that the inter-word relationship is rather complicated.
The co-occurrence frequency of about one-third of the bigrams increases with the relative posi-
tion, while the co-occurrence frequency of other two-thirds take the opposite. That is, it is not
possible to conceive the inter-word relationship with a single law. It is also found in previous
studies that the way sentences are processed by BERT during training will bring about unexpected
properties to sentences. For example,Wang et al. (2021) discovered that over-long sentences when
truncated either at the beginning or the end will endow the APE with the property of translation
invariance. Our study suggests that the truncation procedure systematically affects the precision
of the estimation of the context of word occurrence.

For the reliability of the results, this study focus merely on words or bigrams the occurrence of
which surpass set threshold. The investigation of the position–frequency distribution of words
in different frequency bands suggests that the excluded words of lower chance of occurrence
show different patterns of position distribution from words of higher chance of occurrence. We,
therefore, suggest that the conclusions arrived by studying words and bigrams with more occur-
rences cannot be directly extrapolated to words or bigrams with lower chance of occurrence.
A great proportion of less frequent words are tokenized by current popular neural network lan-
guagemodels into fewWord-pieces. The vocabularies of theseWord-pieces are determined jointly
by tokenization algorithms and downstream tasks, which suggests that the relationship between
the low-frequency words and position-related factors should be studied jointly with tokenization
algorithms and downstream tasks (Park et al. 2020; Vasiu and Potolea 2020).

6. Conclusion
To analyze in detail the position-related factors that affect the correlation between language units,
we studied the relationships between the frequency and the position of words and bigrams.

We first examined the influence of absolute position (including the beginning and ending posi-
tions), relative position, and sentence length on the frequency of language units with multiple
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linear regression models. 98.3% of the models of words have p-values less than 0.05 in F-tests
with a mean R2 of 0.6904±0.1481; 99.59% of the models of bigrams have p-values less than 0.05
in F-tests with a mean R2 of 0.5589±0.2318. The F-test results suggest that the multiple linear
regression models are effective in modeling the relationships between the frequency and position
of words and bigrams. Our results also show that about 70% of the variance in word frequency
and about 56% of the variance in bigram frequency are caused by these position-related factors.

We studied then the influence of single position-related factor on language unit frequency with
quadratic polynomial regression and observed that:

1. The average R2 of the models describing the relationship between word frequency and
sentence length is 0.4310±0.2898. The weighted average R2 of the models representing the rela-
tionship between the absolute position and the frequency of words is 0.3905±0.07027. Besides,
over 3% of the word frequencies at first and last three positions of sentences in all sub-corpora
deviate far from the overall patterns of distribution. Our results also show that the variability
of absolute position and sentence length each account for about 40% of the variation of word
frequency, and the presence of words at two ends of sentences affects the word frequency as well.

2. The average R2 of the quadratic polynomial regression models describing the relationship
between bigram frequency and sentence length is 0.7631±0.2355. The average R2 of the quadratic
polynomial regression models describing the relationship between bigram frequency and relative
position is 0.5357±0.2561. As for the relationship between the frequency and relative position, the
Pearson correlation coefficients of 33.33% of the bigrams are greater than 0. The average R2 of the
polynomial regression models describing the relationship between bigram frequency and abso-
lute position is 0.4807±0.0815. Over 5% of the bigram frequencies at first and last three positions
of sentences in all sub-corpora deviate far from the overall patterns of frequency distributions.
Overall, when examined separately, the variability of absolute position, sentence length and rel-
ative position each account for 76%, 54%, and 48% of the variation of the frequency of bigrams,
and the presence of bigrams at two ends of sentences slightly affects their frequency as well.

3. With paired statistical tests, we examined the symmetry of frequency distribution of bigrams
over positive and negative relative positions. The frequency distribution of 10.31% of the bigrams
are symmetric over positive and negative relative positions.

4. We examined the frequency distributions of bigrams consisting of the nominative and
genitive forms of English personal pronouns over relative position and observed similar pat-
terns of distribution, suggesting that the frequency distributions of bigrams carry grammatical
information.

In conclusion, based on our examinations of the frequency of words and bigrams, we show that
the correlations between words are affected not only by absolute and relative position but also by
sentence length and whether the words occur at two ends of a sentence. However, these factors are
not yet explicitly encoded by current PE architectures.
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