# **GROUPS GENERATED BY TWO PARABOLIC** LINEAR FRACTIONAL TRANSFORMATIONS

# R. C. LYNDON AND J. L. ULLMAN

**0.** Introduction and summary. We are interested in the structure of a group **G** of linear fractional transformations of the extended complex plane that is generated by two parabolic elements A and B, and, particularly, in the question of when such a group **G** is free. We shall, as usual, represent elements of **G** by matrices with determinant 1, which are determined up to change of sign. Two such groups **G** will be conjugate in the full linear fractional group, and hence isomorphic, provided they have, up to a change of sign, the same value of the invariant  $\tau = \text{Trace}(AB) - 2$ . We put aside the trivial case that  $\tau = 0$ , where **G** is abelian. In the study of these groups, two normalizations have proved convenient. Sanov (17) and Brenner (3) took the generators in the form

$$A = \begin{pmatrix} 1 & \mu \\ 0 & 1 \end{pmatrix}$$
 and  $B = \begin{pmatrix} 1 & 0 \\ \mu & 1 \end{pmatrix}$ ,

while Chang, Jennings, and Ree (4) took them in the form

$$A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$
 and  $B = \begin{pmatrix} 1 & 0 \\ \lambda & 1 \end{pmatrix}$ .

These parameters are connected by the relations  $\tau = \mu^2 = 2\lambda$ . We shall reserve the letters  $\tau$ ,  $\mu$ , and  $\lambda$  for this meaning.

Sanov showed that **G** is free for  $\mu = 2$ , and characterized explicitly the matrices representing elements of **G**. From the fact that **G** is free for any  $\mu$  at all, it follows immediately that **G** is free for all transcendental  $\mu$ . Brenner showed that **G** is free provided  $|\mu| \ge 2$ . From this it follows immediately that **G** is free provided  $\mu$  is an algebraic number with an algebraic conjugate  $\mu^*$  such that  $|\mu^*| \ge 2$ . In particular, algebraic numbers  $\mu$  such that **G** is free are dense in the complex plane. Ree (15) has shown that the  $\mu$  for which **G** is not free are dense in the circle  $|\mu| < 1$ , and in a domain in the plane containing the open intervals joining -2 to 2 and  $-i\sqrt{2}$  to  $i\sqrt{2}$ . Hirsch (7) raised the question of which algebraic numbers  $\mu$ , for example with  $-2 < \mu < 2$ , yield free groups **G**. We do not yet know of any rational value of  $\mu$  in this interval for which **G** is free. Brenner's sufficient condition for **G** to be free, that  $|\mu| \ge 2$ , is equivalent to the condition  $|\lambda| \ge 2$ . Chang, Jennings, and Ree improved this to the weaker condition that all of  $|\lambda|$ ,  $|\lambda - 1|$ , and  $|\lambda + 1|$  are at least 1.

Received July 5, 1968 and in revised form January 13, 1969. The authors gratefully acknowledge support of the National Science Foundation, Grants GP-6578 and GP-7264.

Let F be the set of values of  $\lambda$  for which **G** is free, and R the set of values for which **G** is not free. In Corollary 3 we show that  $\lambda \in R$  implies that R is dense in some neighbourhood of  $\lambda$ . It then follows that there is a largest region, say  $F^*$ , contained in F. A region is the closure of an open set, and in this case  $F^*$  is the closure of the interior points of F. The complement of  $F^*$ , say  $R^*$ , is the smallest open region containing R. An open region is the interior of a region, and in this case,  $R^*$  is the interior of the closure of R.

In §1 we further improve results aimed at determining  $F^*$ , in particular we improve on the result of Chang, Jennings, and Ree, weakening their condition in two independent directions.

In § 2 we examine values of  $\lambda$  which are not free, making several additions to known results. It should be remarked that the largest known region in  $F^*$  and the largest known open region in  $R^*$  do not exhaust the complex plane: a substantial part of the annulus  $\frac{1}{2} \leq |\lambda| < 2$  remains in doubt. The known results are summarized in a diagram which follows the statement of Theorem 4. Section 3 contains a few tentative observations about the structure of **G** for real  $\lambda$ .

1. Groups that are free. In proving their result, Chang, Jennings, and Ree used an instance of a classical argument, which Ford (5) called "the method of combination" and Fricke and Klein (6) called "the method of composition". Macbeath (12) formulated a general statement of this argument. After stating Macbeath's result in a slightly different formulation, which we have proved and used elsewhere (11), we restate and reprove the result of Chang, Jennings, and Ree.

THEOREM 1 (Macbeath). Let **G** be a group of permutations of an infinite set  $\Omega$ . Let **G** be generated by two of its subgroups **A** and **B**, at least one of which has order greater than 2. Let  $\Gamma$  and  $\Delta$  be disjoint non-empty subsets of  $\Omega$ . Suppose now that  $1 \neq A \in \mathbf{A}$  implies  $A \Gamma \subseteq \Delta$  and  $1 \neq B \in \mathbf{B}$  implies  $B\Delta \subseteq \Gamma$ . Then **G** is the free product of its subgroups **A** and **B**.

A proof is given in (11).

If S is any set in the extended complex plane, we write  $S^N$  for the interior of the complement of S. Note that if S is an open region (interior of its own closure), then  $S^N$  also is an open region, and  $(S^N)^N = S$ .

COROLLARY 1. Let  $\lambda$  be any complex number, and let **G** be the group of linear fractional transformations of the complex plane  $\Omega$  generated by the two elements

$$A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \text{ and } B = \begin{pmatrix} 1 & 0 \\ \lambda & 1 \end{pmatrix}.$$
$$J = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \text{ and } T = JBJ.$$

Let

Let  $\Gamma$  be an open region in  $\Omega$ , neither empty nor all of  $\Omega$ , and let  $\Sigma = J\Gamma^N$ . Now **G** is a free group, freely generated by A and B, provided that

(1)  $A^k \Gamma \cap \Gamma = \emptyset$  for all  $k \neq 0$ ,

(2)  $T^k \Sigma \cap \Sigma = \emptyset$  for all  $k \neq 0$ .

To prove this, let  $\Delta = \Gamma^N$ . Then (2) is equivalent to (2'):  $B^k \Delta \cap \Delta = \emptyset$  for all  $k \neq 0$ . Now (1) implies that, for  $k \neq 0$ , the open set  $A^k \Gamma$  is contained in the complement  $\tilde{\Gamma}$  of  $\Gamma$ , hence in the interior  $\Delta$  of  $\tilde{\Gamma}$ . Similarly, (2') implies that  $B^k \Delta \subset \Gamma$  for  $k \neq 0$ .

THEOREM 2 (Chang, Jennings, and Ree). Let  $\lambda$  be a complex number lying in none of the open discs of radius 1 with centres -1, 0, +1. Then the group **G** generated by

 $A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \quad and \quad B = \begin{pmatrix} 1 & 0 \\ \lambda & 1 \end{pmatrix}$ 

is a free group, freely generated by A and B.

We proceed by making choices for the sets  $\Gamma$ ,  $\Delta$ , and  $\Sigma$  in Corollary 1. We choose for  $\Gamma$  the set  $|\operatorname{Re} z| < 1$ . The set  $\Gamma^N$  then consists of the set  $\Delta_1$ ,  $\operatorname{Re} z > 1$ , and  $\Delta_2$ ,  $\operatorname{Re} z < -1$ , so that  $\Delta = \Delta_1 \cup \Delta_2$ . The set  $\Sigma = J\Delta = J\Delta_1 \cup J\Delta_2 = \Sigma_1 \cup \Sigma_2$ , where  $\Sigma_1$  is the disc  $|z - \frac{1}{2}| < \frac{1}{2}$ , and  $\Sigma_2$  is the disc  $|z + \frac{1}{2}| < \frac{1}{2}$ . It is immediate that (1) is satisfied for this choice of  $\Gamma$ , and (3) will be satisfied if the discs  $\Sigma_1$  and  $\Sigma_2$  are disjoint from the translated discs  $T^k\Sigma_1$  and  $T^k\Sigma_2$  for all  $k \neq 0$ . Now all of these discs have radius  $\frac{1}{2}$  and centres of the form  $k\lambda \pm \frac{1}{2}$ . The condition that all these centres are at least a distance one apart is precisely the hypothesis of the theorem.

THEOREM 3. Let K be the convex hull of the set consisting of the circle |z| = 1 together with the two points  $z = \pm 2$ . If the complex number  $\lambda$  is not in the interior of K, then G, as above, is freely generated by A and B.

Let  $\Sigma$  be, as before, the region bounded by the two circles  $C_1$  and  $C_2$  of radius  $\frac{1}{2}$  with centres  $\pm \frac{1}{2}$ , and let  $\lambda$  satisfy the hypothesis of Theorem 2. Then we know that  $T^k \Sigma \cap \Sigma = \emptyset$  for all  $k \neq 0$ . For arbitrary  $u \neq 0$ , let

$$U = \begin{pmatrix} u & 0 \\ 0 & 1 \end{pmatrix},$$

and let

$$\Sigma^* = U\Sigma$$
 and  $T^* = UTU^{-1} = \begin{pmatrix} 1 & u\lambda \\ 0 & 1 \end{pmatrix}$ .

It follows that  $T^{*k}\Sigma^* \cap \Sigma^* = \emptyset$  for all  $k \neq 0$ . Let  $\Delta^* = J\Sigma^*$  and  $\Gamma^* = (\tilde{\Delta}^*)_i$ . The group  $G^*$  generated by A and

$$JT^*J = \begin{pmatrix} 1 & 0\\ u\lambda & 1 \end{pmatrix}$$

will be free provided  $A^k \Gamma^* \cap \Gamma^* = \emptyset$  for all  $k \neq 0$ .

Now  $\Gamma^*$  is an oblique strip bounded by the two parallel lines  $L_1 = JUC_1$ and  $L_2 = JUC_2$ , symmetric in the origin. The desired condition will hold provided  $L_1$  passes through the point +1 and hence  $L_2$  passes through -1. If L is the line Re z = 1, then  $C_1 = JL$ , and  $L_1 = JUJL = VL$  for

$$V = JUJ = \begin{pmatrix} u^{-1} & 0\\ 0 & 1 \end{pmatrix}$$

Now +1 on VL is equivalent to  $V^{-1}(+1) = u$  lying on L, that is, to Re u = 1.

This shows that if  $\lambda$  satisfies the hypothesis of Theorem 2, then **G** is free for all  $\lambda_1 = u\lambda$ , where *u* ranges over the line Re u = 1; equivalently, **G** is free for all  $\lambda_1$  lying on the line through  $\lambda$  that is perpendicular to the line from  $\lambda$ through the origin. With this, the conclusion of Theorem 3 follows immediately from that of Theorem 2.

THEOREM 4. Let  $\lambda$  be a complex number such that  $|\lambda \pm \frac{1}{2}i| \ge \frac{1}{2}$  and  $|\lambda \pm 1| \ge 1$ . Then **G**, defined as above, is freely generated by A and B.

Before beginning the proof, we offer a comment and an illustrative figure. First, we remark that the set of  $\lambda$  for which **G** is free is symmetric with respect to reflection in both the real and the imaginary axes. It is immediate that if **G** is free for a complex number  $\lambda$  it is also free for the complex conjugate  $\tilde{\lambda}$  of  $\lambda$ . Furthermore, replacing  $\lambda$  by  $-\lambda$  has the effect of replacing the generators A and B for **G** by the generators A and  $B^{-1}$ , and thus does not affect the question of whether **G** is free on the given generators. In view of this symmetry, we may confine our figure to the first quadrant.

In the figure, the region  $F_1$  consists of those  $\lambda$  with  $|\lambda| \geq 2$ , for which Brenner showed that **G** is free. The result of Chang, Jennings, and Ree, shows that **G** is free also for  $\lambda$  in the additional region  $F_2$ . Theorems 3 and 4 show that, further, **G** is free for  $\lambda$  in the additional regions  $F_3$  and  $F_4$ . By way of contrast, the quarter disc R is an open set in which values of  $\lambda$  for which **G** is not free are dense. Among the radial spines emanating from R (which will be described in Theorem 5) along which values of  $\lambda$  for which **G** is not free are dense, are the segment of the real axis from 0 to +2 and the segment of the imaginary axis from 0 to +i.

The plan of the proof is as follows. In view of earlier remarks, we may suppose that  $\lambda$  lies inside the open curvilinear triangular region  $F_4$ . We start as in the proof of Theorem 2 by taking  $\Gamma$  to be the strip |Re z| < 1 and  $\Sigma$  to be  $J\Gamma^N$ . For these choices, (1) holds but (2) fails, with  $\Sigma$  overlapping  $T^{-1}\Sigma$  and  $T\Sigma$ . To restore (2) we replace  $\Sigma$  by a smaller set  $\Sigma^1$ . Now, however,  $\Gamma^1 = J\Sigma^{1N}$  is larger than  $\Gamma$ , and (1) fails, with  $\Gamma^1$  overlapping  $A^{-1}\Gamma^1$  and  $A\Gamma^1$ . To restore (1) we replace  $\Gamma^1$  by a smaller set  $\Gamma^2$ . Now  $\Sigma^2 = J\Gamma^{2N}$  is larger than  $\Sigma^1$ , but we find that, nonetheless, (2) remains valid. The conclusion now follows from Corollary 1 applied to  $\Gamma^2$  and  $\Sigma^2$ .

In the proof we assume that  $\lambda$  is in  $F_4$ . We also use the fact that both  $|\lambda|$  and Im  $\lambda$  attain their minima on the closure  $\overline{F}_4$  of  $F_4$  at the lowest vertex, (2 + 4i)/5, whence we have  $|\lambda| > 2/\sqrt{5}$  and Im  $\lambda > 4/5$ .



To begin the proof we repeat that  $\Gamma$ , defined by  $|\operatorname{Re} z| < 1$ , satisfies condition (1). As in the proof of Theorem 2,  $\Sigma = J\Gamma^N$  is the union of two discs  $\Sigma_1$  and  $\Sigma_2$  of radius  $\frac{1}{2}$  and with centres at  $-\frac{1}{2}$  and  $+\frac{1}{2}$ . Now  $T^k\Sigma_1$  and  $\Sigma_2$  have centres  $-\frac{1}{2} + k\lambda$  and  $+\frac{1}{2}$ , and will be disjoint provided their centres are at a distance  $|k\lambda - 1| \ge 1$ . But it is clear geometrically that the hypotheses  $|\lambda - 1| > 1$  and  $\operatorname{Re} \lambda > 0$  imply that  $|k\lambda - 1| > 1$  for all  $k \ne 0$ . Similarly,  $T^k\Sigma_i$  and  $\Sigma_i$  will be disjoint provided  $|k\lambda| \ge 1$ . Since  $|\lambda| > 2/\sqrt{5} > \frac{1}{2}$ , this will be the case provided  $|k| \ge 2$ . It follows that, if we form  $\Sigma^1$  from  $\Sigma$  by deleting the closures of  $\Sigma_1 \cap T^{-1}\Sigma_1$  and  $\Sigma_2 \cap T\Sigma_2$ , then  $\Sigma^1$  will satisfy condition (2).

From the definition of  $\Sigma^1$ , it follows that  $\Gamma^1 = J\Sigma^{1N}$  is the union of  $\Gamma_1{}^1 = \Gamma_1 \cup JT^{-1}\Sigma_1$  and  $\Gamma_1{}^2 = \Gamma_2 \cup JT\Sigma_2$ . Examination shows that  $JT\Sigma_2$  lies in the fourth quadrant, while  $JT^{-1}\Sigma_1$  lies in the second quadrant. When we have shown, in the next paragraph, that the common diameter of these two discs is less than two, it will follow that  $A^k\Gamma^1 \cap \Gamma^1 = \emptyset$  for  $|k| \ge 2$ , and also that

 $\Gamma^1 \cap A \Gamma^1 = \Gamma^1 \cap AJT^{-1}\Sigma_1 = P_2$  and  $\Gamma^1 \cap A^{-1}\Gamma^1 = \Gamma^1 \cap A^{-1}JT\Sigma_2 = P_1$ .

The boundary of  $T\Sigma_2$  is the circle  $C: |z - v| = \frac{1}{2}$ , where  $v = \lambda + \frac{1}{2}$ . Thus  $JT\Sigma_1$  has boundary JC with equation  $|1/z - v| = \frac{1}{2}$ , or  $|z| = 2|v| \cdot |z - 1/v|$ . Generally, for h > 0, the circle |z - a| = h|z - b| has diameter

$$d = \left| \frac{2h(a-b)}{h^2 - 1} \right| \,.$$

Thus JC has diameter

$$d = \left|\frac{4}{4|v^2|-1}\right| \,.$$

Since  $v = \lambda + \frac{1}{2}$  with  $\operatorname{Re} \lambda > 0$ , we have  $|v| > \frac{1}{2}$ , and the denominator is positive. Thus d < 2 is equivalent to  $|v^2| > \frac{3}{4}$ . Since  $|v^2| = |\lambda|^2 + \operatorname{Re} \lambda + \frac{1}{4}$ , it suffices that  $|\lambda|^2 > \frac{1}{2}$ , which follows from  $|\lambda| > 2/\sqrt{5}$ .

It is immediate from the foregoing that  $\Gamma^2 = \Gamma^1 - (\bar{P}_1 \cup \bar{P}_2)$  will satisfy (1). To complete the proof, it remains to show that  $\Sigma^2 = J\Gamma^{2N}$  satisfies condition (2). From the definition of  $\Gamma^2$  it follows that  $\Sigma^2 = \Sigma^1 \cup D_1 \cup D_2$ , where  $D_1 = JA^{-1}JT\Sigma_2$  and  $D_2 = JAJT^{-1}\Sigma_1$ . We know already that  $T^k\Sigma^1 \cap \Sigma^1 = \emptyset$  for  $k \neq 0$ , whence it suffices to show that  $D_1$  and  $D_2$  are disjoint from  $T^k\Sigma^2$  for  $k \neq 0$ . By symmetry, it is enough to show that  $D_1$  is disjoint from  $T^k\Sigma^2$  for  $k \neq 0$ . If k < 0, then  $T^k\Sigma^2$  lies in the lower half plane, and is disjoint from  $D_1$ , which lies in the upper half plane. It remains to show  $D_1$  disjoint from  $T^k\Sigma^2$  for k > 0.

We have noted that  $D_1$  lies in the upper half plane. Also,  $D_1$  meets  $\Sigma_1$ , which lies entirely in the left half plane. Therefore, to show that  $D_1$  lies entirely in the second quadrant, it suffices to show that the boundary of  $D_1$ does not meet Y, the imaginary axis. If C is the boundary of  $T\Sigma_2$ , then  $D_1$  has boundary  $JA^{-1}JC$ , and the condition  $JA^{-1}JC \cap Y = \emptyset$  is equivalent to the condition  $C \cap JAJY = \emptyset$ . Now JY = Y, whence AJY = AY is the line Re z = 2, and JAJY is the circle  $|z - \frac{1}{4}| = \frac{1}{4}$ . Since C is the circle with centre  $\lambda - \frac{1}{2}$  and radius  $\frac{1}{2}$ , it suffices to show that the distance  $|\lambda - \frac{1}{4}|$  between the centres exceeds  $\frac{3}{4}$ , the sum of the radii. For this it is easily verified that the minimum value of  $|\lambda - \frac{1}{4}|$  on  $\overline{F}_4$  is attained at the vertex (2 + 4i)/5, where it exceeds  $\frac{3}{4}$ .

We have shown that  $D_1$  lies in the left half plane. By symmetry,  $D_2$  lies in the right half plane. Since  $\Sigma_{2^1}$ , as a subset of  $\Sigma_2$ , lies in the right half plane, so does  $\Sigma_{2^2} = \Sigma_{2^1} \cup D_2$ , and with it  $T^k \Sigma_{2^2}$  for all k > 0. Thus  $D_1 \cap T^k \Sigma_{2^2} = \emptyset$  for all k > 0.

We must show that  $D_1 \cap T^k \Sigma_1^2 = \emptyset$  for all k > 0. Since  $\Sigma_1^2 = \Sigma_1^1 \cup D_1$ and  $\Sigma_1^1 \subset \Sigma_1$ , this splits into showing that  $D_1 \cap T^k \Sigma_1 = \emptyset$  and  $D_1 \cap T^k D_1 = \emptyset$ for all k > 0. We begin by showing that  $D_1 \cap T \Sigma_1 = \emptyset$ . Let

$$U = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix};$$

then  $A = U^2$ ,  $T\Sigma_2 = UT\Sigma_1$ , and  $D_1 = JU^{-2}JUT\Sigma_1$ . Setting

$$W = JU^{-2}JU = \begin{pmatrix} 1 & 1 \\ -2 & -1 \end{pmatrix},$$

we must show that  $WT\Sigma_1 \cap T\Sigma_1 = \emptyset$ . Now W is an involution with fixed points  $p, p' = (-1 \pm i)/2$ . Since  $T\Sigma_1$  has centre  $\lambda - \frac{1}{2}$  and radius  $\frac{1}{2}$ , the hypothesis that  $|\lambda - \frac{1}{2}i| > \frac{1}{2}$  implies that p does not lie in  $T\Sigma_1$ . Let E be the disc with the same centre as  $T\Sigma_1$  and with p on its boundary B; then it suffices to show that  $WE \cap E = \emptyset$ . Since W is a non-Euclidean half turn about p, B and WB are externally tangent at p, and it suffices to show that WE is the finite region bounded by WB, that is, that  $\infty$  is not in WE. Since  $\operatorname{Im} \lambda > \frac{1}{2}$ , the centre  $\lambda - \frac{1}{2}$  of E lies above the horizontal line through p, and therefore is nearer to p, on its boundary, than to  $-\frac{1}{2}$ . Thus  $-\frac{1}{2}$  is not in E, and  $W(-\frac{1}{2}) = \infty$  is not in WE.

To show that  $D_1 \cap T^k \Sigma_1 = \emptyset$  for k > 1, it suffices to observe that  $T \Sigma_1$  lies above the common tangent line H separating E from WE, and that, since Im  $\lambda > 0$ ,  $T^k \Sigma_1$  will lie above H for all  $k \ge 1$ , while  $D_1 \subset WE$  will lie below H.

To complete the proof we must show that  $D_1 \cap T^k D_1 = \emptyset$  for all k > 0. This amounts to showing that  $D_1$  has diameter  $d < |\lambda|$ . From the fact that  $D_1 = JA^{-1}JT\Sigma_2$  and our knowledge of  $T\Sigma_2$ , we conclude that the boundary of  $D_1$  has an equation of the form  $|z + \frac{1}{2}| = 2|\lambda| \cdot |z + \frac{1}{2} + \frac{1}{4}\lambda|$ . A formula used earlier gives  $d = 1/|4r^2 - 1|$ , where  $r = |\lambda|$ . Since  $r > \frac{1}{2}$ , we have  $d = 1/(4r^2 - 1)$ , and the condition d > r becomes  $1 < 4r^3 - r$ , or that  $f(r) = 4r^3 - r - 1$  be positive. It is routine to check that this is true for all  $r > 2/\sqrt{5}$ . This completes the proof of Theorem 4.

**2.** Points where G is not free. We remark that, for  $\mu \neq 0$ , if G is not freely generated by

$$A = \begin{pmatrix} 1 & \mu \\ 0 & 1 \end{pmatrix}$$
 and  $B = \begin{pmatrix} 1 & 0 \\ \mu & 1 \end{pmatrix}$ ,

then **G** is not a free group. For it is a special case of a well-known result that if a free group is generated by two elements but not freely, then it has rank less than two, and hence is abelian. But, for  $\mu \neq 0$ ,

$$AB = \begin{pmatrix} 1 + \mu^2 & \mu \\ \mu & 1 \end{pmatrix}$$

is not equal to

$$BA = \begin{pmatrix} 1 & \mu \\ \mu & 1 + \mu^2 \end{pmatrix}.$$

The following theorem is about groups G that are not free. This theorem and Corollary 3 are slight extensions of results of Ree (15).

THEOREM 5. Let  $\mu_0$  be a complex number such that  ${\mu_0}^{2^n} = -4$  for some positive integer n. Then values of  $\mu$  for which the group **G** generated by

$$A = \begin{pmatrix} 1 & \mu \\ 0 & 1 \end{pmatrix} \quad and \quad B = \begin{pmatrix} 1 & 0 \\ \mu & 1 \end{pmatrix}$$

is not free are dense on the line segment joining  $\mu_0$  to the origin.

The proof consists in showing that, for a dense set of values of  $\mu$  on the

described segment, a certain commutator has finite order. Let T be any unimodular matrix and  $T' = [A, T] = ATA^{-1}T^{-1}$ . We write

$$T = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

and calculate the entries of

$$T' = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}$$

in terms of those of T. Now,

$$AT = \begin{pmatrix} 1 & \mu \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a + c\mu & b + d\mu \\ c & d \end{pmatrix}$$

and

$$A^{-1}T^{-1} = \begin{pmatrix} 1 & -\mu \\ 0 & 1 \end{pmatrix} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \begin{pmatrix} d+c\mu & -b-a\mu \\ -c & a \end{pmatrix},$$

whence, using ad - bc = 1,

$$T' = \begin{pmatrix} 1 + ac\mu + c^2\mu^2 & * \\ c^2\mu & 1 - ac\mu \end{pmatrix}.$$

We see, in particular, that  $c' = c^2 \mu$ , whence  $c' \mu = (c\mu)^2$ , and that T' has trace  $t' = 2 + c^2 \mu^2 = 2 + c'$ .

Define  $T_n$  recursively by taking

$$T_0 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
 and  $T_{n+1} = [A, T_n].$ 

Note that, although  $T_0$  need not belong to **G**, we have  $T_1 = A T_0 A^{-1} T_0^{-1} = AB$ , so that  $T_n$  is in **G** for all  $n \ge 1$ . Let

$$T_n = \begin{pmatrix} a_n & b_n \\ c_n & d_n \end{pmatrix}$$
 and  $t_n = \operatorname{Tr} T_n$ .

Now  $c_0 = 1$  and  $c_{n+1}\mu = (c_n\mu)^2$  implies that  $c_n\mu = \mu^{2^n}$ , whence  $t_n = 2 + c_n\mu = 2 + \mu^{2^n}$ .

Suppose that  $\mu = r\mu_0$ , where  ${\mu_0}^{2^n} = -4$  and  $0 \le r \le 1$ . Then  $t_n = 2 - 4r^{2^n}$ . If  $t_n = 2\cos\theta$ , for  $\theta$  a rational multiple of  $\pi$ , then  $T_n$  has finite order. Now numbers  $t = 2\cos\theta$  for  $\theta$  a rational multiple of  $\pi$  are dense in the interval [-2, +2]. Since the map carrying r into  $t_n$  is a homeomorphism from the interval [0, 1] onto [-2, 2], it follows that the values of r for which **G** is not free are dense in the interval [0, 1]. This completes the proof of the theorem.

We remark that Ree has shown that the two open segments joining -2 to 2 and (1 + i) to -(1 + i) arising in Theorem 5 are contained in a connected set that is open in the topology of the plane, and in which the values of  $\mu$  for which **G** is not free are dense.

1395

COROLLARY 2 (Ree). Values of  $\mu$  for which G is not free are dense in the unit disc.

COROLLARY 3. Let R' be the set of  $\mu$  for which **G** is not free. If  $\mu_0 \in R'$ , then a neighbourhood of  $\mu_0$  lies in  $\overline{R'}$ .

*Proof.* We treat  $\mu$  as an indeterminate. If  $\mu_0 \in R'$ , then there is a matrix  $\binom{*}{p_{21}(\mu)}$  \*) generated by A and B, such that  $p_{21}(\mu)$  is not the zero polynomial, and that  $p_{21}(\mu_0) = 0$ . Using this matrix for  $T_0$  in the proof of Theorem 5, we find that  $t_n = 2 + (\mu p_{21}(\mu))^{2^n}$ . The set where  $|\mu p_{21}(\mu)| < 1$ , say D, is an open set containing  $\mu_0$ . If  $\mu' \in D$ , then in every neighbourhood of  $\mu'$  there is some value, say  $\mu''$ , and a value of n, such that  $t_n = 2 \cos \theta$  for  $\theta$  a rational multiple of  $\pi$ . Thus  $T_n$  has finite order, and  $\mu'' \in R'$ . This completes the proof.

*Remark.* For the extreme values of  $\mu$ , satisfying  $\mu^{2^n} = -4$ , **G** is free provided n = 1 or n = 2, but **G** need not be free for such  $\mu$  if n = 3.

If n = 1, then  $\mu^2 = -4$ , whence  $2\lambda = \mu^2 = -4$ , and  $\lambda = -2$ . If n = 2, then  $\mu^4 = -4$ ,  $\mu^2 = \pm 2i$ ,  $2\lambda = \mu^2 = \pm 2i$ , and  $\lambda = \pm i$ . That **G** is free for such  $\mu$  follows from Theorem 1.

Let n = 3. Four of the roots of  $\mu^8 = -4$ , including that with smallest angle, satisfy the equation  $\mu^4 - 2\mu^2 + 2 = 0$ . We show that **G** is not free for  $\mu$  satisfying this equation. More explicitly, we note that

$$T_3 = [A, [A, B]] = A (ABA^{-1}B^{-1})A^{-1}(BAB^{-1}A^{-1})$$

is conjugate to  $S = [A^{-1}, B][A, B]$ . Write

$$A = \begin{pmatrix} 1 & \alpha \\ 0 & 1 \end{pmatrix}$$
 and  $B = \begin{pmatrix} 1 & 0 \\ \beta & 1 \end{pmatrix}$ .

Then

$$AB = \begin{pmatrix} 1 + \alpha\beta & \alpha \\ \beta & 1 \end{pmatrix}, \quad A^{-1}B^{-1} = \begin{pmatrix} 1 + \alpha\beta & -\alpha \\ -\beta & 1 \end{pmatrix},$$

and

$$[A, B] = \begin{pmatrix} 1 + \alpha\beta + \alpha^2\beta^2 & -\alpha^2\beta \\ \alpha\beta^2 & 1 - \alpha\beta \end{pmatrix}.$$

Now

$$S = [A^{-1}, B][A, B] = \begin{pmatrix} 1 - \mu^2 + \mu^4 & -\mu^3 \\ * & * \end{pmatrix} \begin{pmatrix} * & -\mu^3 \\ * & 1 - \mu^2 \end{pmatrix} = \begin{pmatrix} * & b \\ * & * \end{pmatrix},$$

where  $b = -\mu^3(2 - 2\mu^2 + \mu^4) = 0$ . That **G** is not free now follows from the fact that the affine group stabilizing a point in  $PSL_2(\mathbf{C})$  is metabelian. More explicitly, computation shows that

$$B' = SBS^{-1} = \begin{pmatrix} 1 & 0\\ \nu & 1 \end{pmatrix}$$

for some  $\nu$ , whence B' commutes with B.

We remark that the solution of  $\mu^8 = -4$  with smallest angle yields  $\lambda = \frac{1}{2}(1+i)$ , well away from the free regions discussed in § 1.

1397

The method used above can be given a more general formulation; this raises some interesting questions, but has not enabled us to gain much additional information. For this, we again view  $\mu$  as an indeterminate. Then any word  $W(\mu) = A^{a_1}B^{b_1} \dots A^{a_n}B^{b_n}$  is given by a matrix whose entries are polynomials in  $\mu$  with coefficients depending on  $a_1, b_1, \dots, a_n, b_n$ . Write

$$W(\mu) = \begin{pmatrix} 1 + p_{11}(\mu) & p_{12}(\mu) \\ p_{21}(\mu) & 1 + p_{22}(\mu) \end{pmatrix}.$$

It is easy to see, for example writing  $A = I + \mu E_{12}$  and  $B = I + \mu E_{21}$ , that  $p_{12}(\mu) = c_1\mu + c_3\mu^3 + \ldots + c_{2n-1}\mu^{2n-1}$ , an odd polynomial, where each coefficient  $c_{2k+1}$  is the sum of all products  $a_{i_1}b_{j_1} \ldots a_{i_k}b_{j_k}a_{i_{k+1}}$  where the factors are, in order, a subsequence of the sequence  $a_1, b_1, \ldots, a_n, b_n$ . We note also that if W is a non-trivial reduced word, that is, if n > 0 and all  $a_i, b_j \neq 0$ , then  $p_{12}$  is a non-constant polynomial with leading coefficient

$$c_{2n-1} = a_1 b_1 \dots b_{n-1} a_n$$

The remaining  $p_{ij}$  are analogous.

PROPOSITION 1. A complex number  $\mu$  determines a group G that is not free if and only if  $\mu$  is a root of some polynomial p(x) determined by a sequence  $a_1, b_1, \ldots, a_n, b_n$  of non-zero integers in the following manner:

$$p(x) = \sum c_{2k+1} x^{2k+1}$$

odd, where each  $c_{2k+1} = \sum a_{i_1}b_{j_1} \dots a_{i_k}b_{j_k}a_{i_{k+1}}$ , sum over all

$$i_1 \leq j_1 < i_2 \leq j_2 < \ldots \leq j_k < i_{k+1}.$$

If **G** is not free, then for some non-trivial reduced W we have  $W(\mu) = I$ , and hence  $p_{12}(\mu) = 0$ . Conversely, if  $p_{12}(\mu) = 0$  for some non-trivial  $p_{12}$ , hence for some W that is not a power of B, we have

$$W(\mu) = \begin{pmatrix} * & 0 \\ * & * \end{pmatrix},$$

and, as before,  $B' = WBW^{-1}$  commutes with B.

We next apply the method indicated above to find a few more points for which G is not free.

PROPOSITION 2. G is not free if  $\mu = \sqrt{(2/n)}$  or  $\mu = \sqrt[4]{(2/n)}$  for some positive integer n.

To see this, note that if the trace  $t(\mu)$  of  $W = A^{a_1}B^{b_1} \dots A^{a_n}B^{b_n}$  vanishes, then  $W^2 = 1$  and (assuming always W reduced and non-trivial) **G** is not free. If n = 1, then  $t(\mu) = 2 + a_1b_1\mu^2$  with roots  $\mu = \pm \sqrt{(2/a_1b_1)}$ . If n = 2, then  $t(\mu) = 2 + k\mu^2 + c\mu^4$ , where  $c = a_1a_2b_1b_2$  and  $k = (a_1 + a_2)(b_1 + b_2)$ . To make k = 0 take  $a_2 = -a_1$ ; then  $t(\mu)$  has as roots the fourth roots of  $2/a_1^2b_2b_3$ . The first half of the above proposition is contained in a more general result.

PROPOSITION 3. If  $\mu$  determines a group **G** that is not free, then so does  $\mu' = \mu \sqrt{(2/n)}$  for every non-zero integer n.

This is equivalent to the assertion that if  $\lambda$  determines a group **G** that is not free, then so does  $\lambda' = \lambda/n$ . But this follows from the fact that any relation between

$$A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \text{ and } B' = B^n = \begin{pmatrix} 1 & 0 \\ n\lambda & 1 \end{pmatrix}$$

is a fortiori a relation between A and B.

Finally we explore the case, for n = 3, where W is periodic.

PROPOSITION 4. If  $\omega^6 = +1$ , then points where  $W = A^{-1}B^{-2}A^{-1}BA^2B$  has finite order are dense on the line segment from  $\omega$  to the origin. If  $\omega^6 = -1$ , the same is true for  $W = AB^{-2}ABA^{-2}B$ .

Let  $W = A^{a_1}B^{b_1} \dots B^{b_3}$ . To make the coefficient of  $\mu^2$  in  $t(\mu)$  vanish, we take  $a_1 + a_2 + a_3 = 0$ . Now calculation shows that  $t(\mu) = 2 + k\mu^4 + c\mu^6$  with  $k = -a_2^{2b_1}b_2 - a_1^{2b_1}b_3 - a_3^{2b_2}b_3$  and  $c = \prod a_i \prod b_i$ . To make k = 0, we choose  $a_1, a_2, b_2, b_3 = 1$  and  $a_3 = b_1 = -2$ . Then  $t(\mu) = 2 + 4\mu^6$ , and  $t(\mu)$  ranges from +2 to -2 as  $\mu^6$  ranges from 0 to -1. Changing the signs of the  $a_i$  gives similarly  $t(\mu) = 2 - 4\mu^6$ .

**3.** Structure of groups **G** for real  $\mu$ . From (3) we know that **G** is free for  $|\mu| \ge 2$ . As noted, it follows that **G** is free if  $\mu$  is transcendental or is algebraic with an algebraic conjugate  $\mu'$  such that  $|\mu'| \ge 2$ . We know of no real  $\mu$  not falling under one of the above heads for which **G** is free. It is well known (see 9) that the only discontinuous **G** for  $-2 < \mu < +2$  are essentially the Hecke groups, which, although not free, are free products of cyclic groups. (From this it follows that no **G**, for  $-2 < \mu < +2$  can be shown free by Macbeath's method, using for  $\Gamma$  and  $\Delta$  regions in the plane under its natural topology.) After examining the groups just mentioned, we find a few rational values of  $\mu$ , with  $|\mu| < 2$ , for which we can show that **G** is not free; but we have not been able to settle even the case that  $\mu = 7/4$ .

For certain values of  $\mu$ , the group **G** generated by

$$A = \begin{pmatrix} 1 & \mu \\ 0 & 1 \end{pmatrix}$$
 and  $B = \begin{pmatrix} 1 & 0 \\ \mu & 1 \end{pmatrix}$ ,

although not free, is a free product of cyclic groups. It is well known that, for  $\mu = 1$ , the two transvections A and B generate the unimodular group,  $\mathbf{G} = \mathrm{PSL}_2(\mathbf{Z})$ , and that this group is the free product of the cyclic groups generated by the two elements

$$J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

1398

of order 2 and

$$S = AJ = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$$

of order 3. For other values of  $\mu$ , the element J need not belong to **G**, and it is profitable to study the larger group **H** obtained by adjoining J to **G**. Since  $B = JA^{-1}J$ , the group **H** is generated by

$$A = \begin{pmatrix} 1 & \mu \\ 0 & 1 \end{pmatrix}$$
 and  $J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ .

Among these groups, for  $\mu$  real, the only groups acting discontinuously (on the upper half plane) are known to be the Hecke groups, where  $\mu = 2 \cos \theta$ ,  $\theta$  a rational multiple of  $\pi$ , together with those for  $|\mu| \ge 2$ .

A standard proof that **H** is discontinuous also reveals the structure of **H** as a free product; for example, one can recognize **H** as the conformal subgroup of the Coxeter group generated by reflections in the sides of the hyperbolic triangle with vertices  $\infty$ , *i*, and  $e^{2\pi i/q}$ . We indicate here a proof based on Macbeath's lemma.

THEOREM 6. Let H be the group of linear fractional transformations generated by

$$A = \begin{pmatrix} 1 & \mu \\ 0 & 1 \end{pmatrix}$$
 and  $J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ ,

where  $\mu = 2\cos(p/q)\pi$  for p and q relatively prime integers, q > 2. Then **H** is the free product of the two cyclic groups generated by J, of order 2, and the other by

$$S = AJ = \begin{pmatrix} \mu & -1 \\ 1 & 0 \end{pmatrix},$$

of order q.

First, it is clear that J and S generate **H**. Now  $\mu = \zeta + \zeta^{-1}$ , where  $\zeta$  is a primitive *q*th root of unity. Since all primitive *q*th roots of unity are algebraic conjugates, **H** will be isomorphic to the group obtained by replacing  $\zeta$  by the special choice  $\zeta = e^{\pi t/q}$ . Now S, as well as J, satisfies the special hypothesis (of having minimal angle of rotation) of the theorem in (**11**, § 5). Moreover, SJ = A has the real fixed point  $\infty$ , whence it follows by that theorem that **H** is the free product of the groups generated by J and by S.

THEOREM 7. Let  $\mathbf{G}$  be the group generated by

$$A = \begin{pmatrix} 1 & \mu \\ 0 & 1 \end{pmatrix}$$
 and  $B = \begin{pmatrix} 1 & 0 \\ \mu & 1 \end{pmatrix}$ ,

for  $\mu$  as above. If q is odd, then **G** coincides with **H**, as above. If q = 2n, even, then **G** is a proper subgroup of **H**, and is the free product of two cyclic groups generated by A, of infinite order, and by  $AB^{-1} = S^2$ , of order n.

We verify that A = SJ,  $B = S^{-1}J$ , and  $AB^{-1} = S^2$ . If S has odd order, it is contained in the group generated by  $S^2$ , whence S is in **G** and also J = SBis in **G**, and it follows that **G** = **H**. Suppose now that q = 2n. Then  $(AB^{-1})^n = 1$ , and it remains to show that A and B satisfy no relation that is not a consequence of this one.

For this it will suffice to show that if  $W = A^{a_1}B^{b_1} \dots B^{b_t}$  is a non-trivial reduced word  $(t > 0 \text{ and all } a_i, b_i \neq 0)$  that cannot be shortened by use of the relation  $(AB^{-1})^n = 1$ , then  $W \neq 1$ . We suppose then that W = 1, and yet that W does not contain any part  $(AB^{-1})^n$ ,  $(B^{-1}A)^n$ ,  $(BA^{-1})^n$ , or  $(A^{-1}B)^n$ ; from this assumption we shall draw a contradiction. Form  $W_1$  from W by making the literal substitutions:  $A \to SJ$ ,  $A^{-1} \to JS^{-1}$ ,  $B \to S^{-1}J$ ,  $B^{-1} \to JS$ , and without making any cancellations in the resulting word. It is immediate that  $W_1$  will contain no part JJJ, and, from the fact that W was reduced, that  $W_1$  will contain no part  $SS^{-1}$ ,  $S^{-1}S$ ,  $SJJS^{-1}$  or  $S^{-1}JJS$ . Let  $W_2$  be obtained from  $W_1$  by deleting all parts JJ. Then  $W_2$  will contain no part JJ,  $SS^{-1}$ , or  $S^{-1}S$ . If  $W_2$  contains no part  $S^q$  or  $S^{-q}$ , then  $W_2$  is the normal form for a nontrivial element in the free product **H**, contrary to our assumption that W = 1. We may suppose then that  $W_2$  contains such a part, and, by symmetry, that  $W_2$  contains a part  $S^q$ . Inspection shows that a sequence of q consecutive etters S in  $W_2$  can arise only from a part of  $W_1$  of the form

$$(JS)(SJ)(JS)\ldots(JS)(SJ),$$

and hence from a part  $(B^{-1}A)^n$  of W. But this contradicts our assumption on W, completing the proof of the theorem.

Let  $\mathbf{G}(\mu)$  be generated by A and B, for  $\mu = 2\cos(p/q)\pi$ ,  $(p, q) = 1, q \ge 3$ . From our knowledge of  $\mathbf{G}(\mu)$ , as a free product, it is easy to see that, if hk > 1 (except hk = 2 and q = 3),  $A^h$  and  $B^k$  generate a free subgroup  $\mathbf{G}'$  of  $\mathbf{G}(\mu)$ , conjugate to  $\mathbf{G}(\mu')$ , where  $\mu' = \sqrt{(hk)} \mu$ . However, this gives us no new information, since  $\mu'$  has a conjugate  $\mu_0' = \sqrt{(hk)} 2\cos(\pi/q)$  with  $|\mu_0'| \ge 2$ .

In considering the groups **G** defined by  $\mu$  as above, it suffices to study those with  $\mu = 2 \cos(\pi/q)$ , q > 0. We have excluded the case q = 1, which gives Sanov's group,  $\mu = 2$ . We have excluded also the case q = 2, where  $\mu = 0$  and **G** is trivial. For q = 3 we have  $\mu = 1$ , and **G** is the unimodular group. For q = 4, we have  $\mu = \sqrt{2}$ ; it is easy to obtain an explicit description of this group.

**PROPOSITION 5.** The group  $\mathbf{G}$  generated by

$$A = \begin{pmatrix} 1 & \sqrt{2} \\ 0 & 1 \end{pmatrix} \text{ and } B = \begin{pmatrix} 1 & 0 \\ \sqrt{2} & 1 \end{pmatrix}$$

consists of all

$$T = \begin{pmatrix} a & b\sqrt{2} \\ c\sqrt{2} & d \end{pmatrix},$$

for a, b, c, and d integers satisfying ad - 2bc = 1.

That every element T of **G** has this form follows from the fact that the diagonal elements in  $W(\mu)$  are even polynomials in  $\mu$ , while the off-diagonal elements are odd polynomials. To show that every such T belongs to **G**, we first verify that, if  $a, c \neq 0$ , then, by a modified division algorithm, |a| + |c| will be diminished in passing to one of  $A^{\pm 1}T$  or  $B^{\pm 1}T$ . It remains to consider the case that a = 0 or c = 0. However, a = 0 contradicts ad - 2bc = 1. If c = 0, then ad = 1; we may suppose that a = d = 1, and

$$T = \begin{pmatrix} 1 & b\sqrt{2} \\ 0 & 1 \end{pmatrix} = A^b,$$

The next case, q = 5, has been studied from a somewhat different point of view by Rosen (16) and Leutbecher (10).

We conclude with some fragmentary remarks about the structure of **G** for rational  $\mu$ . These groups, for  $\mu = 1/p$ , p a prime, have been studied by Ihara (8), and by Mennicke (13), who showed that **G** is the full unimodular group over the ring  $R_p$  of rationals with denominator a power of p. There is some reason to suppose that, for general  $\mu$ , the polynomials  $p_{12}^{W}(\mu)$  associated with words W will not tend to have common roots without good reason, for example unless  $W_1$  and  $W_2$  are in the normal closure of a third word  $W_3$ . One might expect then that the groups under consideration if not free might be free products of groups of a simple nature, perhaps with amalgamation. Since the present paper was submitted, the paper of Behr (1) has come to our attention, in which it is proved, *inter alia*, that **G**, for  $\mu = 1/p$ , p a prime, is finitely presented, as well as the paper of Behr and Mennicke (2) in which a finite presentation is obtained. However, we have not been able to derive from their presentation any insight into the structure of **G**.

The group **G** for  $\mu = 1/p$  of course contains the unimodular group, and therefore satisfies the two defining relations for the unimodular group when expressed in terms of the generators A and B of **G**. In the case  $\mu = \frac{1}{2}$ , we have shown that **G** satisfies other relations that are not consequences of these two. The argument consists in first observing that if **G** were defined by these two relations alone, it would be the result of adjoining a square root A (in the sense of Neumann (14)) to a certain element of the unimodular group **U**, and, in that case, all involutions of **G** would be conjugates of those in **U**. However, by calculation, we find an involution of the form AX, with X in **U**, which cannot possibly be a conjugate of any element of **U**.

In this connection we remark that we have shown (with H. Stark (oral communication) supplying the proof of an elementary lemma from number theory) that for  $\mu = 1/p$ , and p prime, the group **G** has exactly two conjugacy classes of involutions if p is of the form p = 4k + 3, and exactly one conjugacy class otherwise.

Any relation among the generators of **G** for a given value of  $\mu$  carries with it a relation for  $\mu/n$ , n an arbitrary integer. Thus, in seeking such relations,

we are led to examine values  $1 < \mu < 2$ . Let  $\mu = 3/2$ , and define  $W_0 = I$ ,  $W_1 = A^{a_1}W_0$ ,  $W_2 = B^{b_1}W_1$ ,  $W_3 = A^{a_2}W_2$ , and so forth, for non-zero integers  $a_1, b_1, a_2, \ldots$ . We seek to choose these integers in such a way that

$$W_n = \begin{pmatrix} * & 0 \\ * & * \end{pmatrix}$$

for some n > 0. It will then follow as before that  $B' = W_n^{-1}BW_n$  commutes with B, and hence that **G** is not free.

Examination of the second columns of the  $W_i$  shows that this reduces to the following problem. Given  $\mu$ , to find integers  $h_1, h_2, \ldots$  such that the recursive definition

$$x_0 = 0, \quad x_1 = 1, \quad x_{n+2} = x_n + h_{n+1}\mu x_{n+1}$$

leads to some  $x_n = 0$ , n > 0. The method of choosing the  $h_i$  always to minimize  $|x_{n+2}|$  works for  $\mu = 3/2$ , 4/3, 5/3, 5/4, but does not seem to work for  $\mu = 7/4$ . We summarize our results for these cases.

PROPOSITION 6. If  $\mu = 3/2$ , 4/3, 5/3, 5/4, then **G** is not free. Indeed, if we let  $B' = W^{-1}BW$ , then for each value of  $\mu$  above there is an appropriate choice of W such that the corresponding B' will commute with B, thus yielding a relationship. For  $\mu = 3/2$  the choice of  $W = A^2B^{-2}AB^{-1}A$  yields  $B' = B^{2^6}$ ; for  $\mu = 3/4$ , the choice of  $W = A^{-18}B^2AB^{-1}A$  yields  $B' = B^{3^8}$ ; for  $\mu = 5/3$  the choice of  $W = A^{18}B^{-2}ABA^2B^{11}A^2B^{-1}AB^{-1}A$  yields  $B' = B^{2^{20}}$ ; for  $\mu = 5/4$  the choice of  $W = A^{-8}B^2A^5B^{-3}A^2B^{-1}A$  yields  $B' = B^{4^{10}}$ .

We note also that, for  $\mu = 3/2$ , **G** is contained in the principal congruence group **U**(3) over  $R_2$ , and contains  $\begin{pmatrix} 8 & 0 \\ 0 & 1/8 \end{pmatrix}$ ; but it does not appear to coincide with **U**(3). We repeat that  $\mu = 7/4$  is the simplest case of rational  $\mu$  where we cannot decide whether **G** is free.

We state a final result concerning rational values of  $\mu$  for which **G** is not free.

PROPOSITION 7. If  $\mu = p/(p^2 + 1)$ , p a positive integer, then  $A^{h_3}B^{h_2}A = W$ , with  $h_2 = -(p^2 + 2)$ ,  $h_3 = -(p^2 + 1)^2$ , has the form  $(* )^0$ . Thus **G** is not free for any of these values of  $\mu$ .

## References

- H. Behr, Über die endliche Definierbarkeit verallgemeinerter Einheitengruppen, J. Reine Angew. Math. 211 (1962), 123-135.
- H. Behr and J. Mennicke, A presentation of the groups PSL(2, p), Can. J. Math. 20 (1968), 1432–1438.
- 3. J. L. Brenner, Quelques groupes libres de matrices, C.R. Acad. Sci. Paris 241 (1955), 1689-1691.
- 4. B. Chang, S. A. Jennings, and R. Ree, On certain matrices which generate free groups, Can. J. Math. 10 (1958), 279-284.
- 5. L. R. Ford, Automorphic functions, 2nd ed. (Chelsea, New York, 1951).
- 6. R. Fricke and F. Klein, Vorlesungen über die Theorie der Automorphen Functionen. I (Teubner, Leipzig, 1897).
- 7. K. A. Hirsch, Review of (1), MR 17, #824.

1402

- 8. Y. Ihara, Algebraic curves mod p and arithmetic groups, Proc. Sympos. Pure Math. Vol. 9, pp. 265–272 (Amer. Math. Soc., Providence, Rhode Island, 1968).
- 9. A. W. Knapp, Doubly generated Fuchsian groups, Michigan Math. J. 15 (1968), 289-304.
- 10. A. Leutbecher, Über die Heckeschen Gruppen  $G(\lambda)$ , Abh. Math. Sem. Univ. Hamburg 31 (1967), 199-205.
- 11. R. C. Lyndon and J. L. Ullman, Pairs of real 2-by-2 matrices that generate free products, Michigan Math. J. 15 (1968), 161–166.
- 12. A. M. Macbeath, *Packings, free products and residually finite groups, Proc. Cambridge* Philos. Soc. 59 (1963), 555-558.
- 13. J. Mennicke, On Ihara's modular group, Inventiones Math. 4 (1967), 202-228.
- 14. B. H. Neumann, Adjunction of elements to groups, J. London Math. Soc. 18 (1943), 4-11.
- 15. R. Ree, On certain pairs of matrices which do not generate a free group, Can. Math. Bull. 4 (1961), 49-52.
- 16. D. Rosen, An arithmetic characterization of the parabolic points of  $G(2 \cos \pi/5)$ , Proc. Glasgow Math. Assoc. 6 (1963), 88–96.
- L. N. Sanov, A property of a representation of a free group, Dokl. Akad. Nauk SSSR 57 (1947), 657–659.

The University of Michigan, Ann Arbor, Michigan