GROUPS GENERATED BY TWO PARABOLIC LINEAR FRAGTIONAL TRANSFORMATIONS

R. C. LYNDON AND J. L. ULLMAN

0. Introduction and summary. We are interested in the structure of a group \mathbf{G} of linear fractional transformations of the extended complex plane that is generated by two parabolic elements A and B, and, particularly, in the question of when such a group \mathbf{G} is free. We shall, as usual, represent elements of \mathbf{G} by matrices with determinant 1 , which are determined up to change of sign. Two such groups \mathbf{G} will be conjugate in the full linear fractional group, and hence isomorphic, provided they have, up to a change of sign, the same value of the invariant $\tau=\operatorname{Trace}(A B)-2$. We put aside the trivial case that $\tau=0$, where \mathbf{G} is abelian. In the study of these groups, two normalizations have proved convenient. Sanov (17) and Brenner (3) took the generators in the form

$$
A=\left(\begin{array}{cc}
1 & \mu \\
0 & 1
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{ll}
1 & 0 \\
\mu & 1
\end{array}\right),
$$

while Chang, Jennings, and Ree (4) took them in the form

$$
A=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{ll}
1 & 0 \\
\lambda & 1
\end{array}\right)
$$

These parameters are connected by the relations $\tau=\mu^{2}=2 \lambda$. We shall reserve the letters τ, μ, and λ for this meaning.

Sanov showed that \mathbf{G} is free for $\mu=2$, and characterized explicitly the matrices representing elements of \mathbf{G}. From the fact that \mathbf{G} is free for any μ at all, it follows immediately that \mathbf{G} is free for all transcendental μ. Brenner showed that \mathbf{G} is free provided $|\mu| \geqq 2$. From this it follows immediately that \mathbf{G} is free provided μ is an algebraic number with an algebraic conjugate μ^{*} such that $\left|\mu^{*}\right| \geqq 2$. In particular, algebraic numbers μ such that \mathbf{G} is free are dense in the complex plane. Ree (15) has shown that the μ for which \mathbf{G} is not free are dense in the circle $|\mu|<1$, and in a domain in the plane containing the open intervals joining -2 to 2 and $-i \sqrt{ } 2$ to $i \sqrt{ } 2$. Hirsch (7) raised the question of which algebraic numbers μ, for example with $-2<\mu<2$, yield free groups \mathbf{G}. We do not yet know of any rational value of μ in this interval for which \mathbf{G} is free. Brenner's sufficient condition for \mathbf{G} to be free, that $|\mu| \geqq 2$, is equivalent to the condition $|\lambda| \geqq 2$. Chang, Jennings, and Ree improved this to the weaker condition that all of $|\lambda|,|\lambda-1|$, and $|\lambda+1|$ are at least 1.

[^0]Let F be the set of values of λ for which \mathbf{G} is free, and R the set of values for which \mathbf{G} is not free. In Corollary 3 we show that $\lambda \in R$ implies that R is dense in some neighbourhood of λ. It then follows that there is a largest region, say F^{*}, contained in F. A region is the closure of an open set, and in this case F^{*} is the closure of the interior points of F. The complement of F^{*}, say R^{*}, is the smallest open region containing R. An open region is the interior of a region, and in this case, R^{*} is the interior of the closure of R.

In § 1 we further improve results aimed at determining F^{*}, in particular we improve on the result of Chang, Jennings, and Ree, weakening their condition in two independent directions.

In § 2 we examine values of λ which are not free, making several additions to known results. It should be remarked that the largest known region in F^{*} and the largest known open region in R^{*} do not exhaust the complex plane: a substantial part of the annulus $\frac{1}{2} \leqq|\lambda|<2$ remains in doubt. The known results are summarized in a diagram which follows the statement of Theorem 4. Section 3 contains a few tentative observations about the structure of \mathbf{G} for real λ.

1. Groups that are free. In proving their result, Chang, Jennings, and Ree used an instance of a classical argument, which Ford (5) called "the method of combination" and Fricke and Klein (6) called "the method of composition". Macbeath (12) formulated a general statement of this argument. After stating Macbeath's result in a slightly different formulation, which we have proved and used elsewhere (11), we restate and reprove the result of Chang, Jennings, and Ree.

Theorem 1 (Macbeath). Let \mathbf{G} be a group of permutations of an infinite set Ω. Let \mathbf{G} be generated by two of its subgroups \mathbf{A} and \mathbf{B}, at least one of which has order greater than 2 . Let Γ and Δ be disjoint non-empty subsets of Ω. Suppose now that $1 \neq A \in \mathbf{A}$ implies $A \Gamma \subseteq \Delta$ and $1 \neq B \in \mathbf{B}$ implies $B \Delta \subseteq \Gamma$. Then \mathbf{G} is the free product of its subgroups \mathbf{A} and \mathbf{B}.

A proof is given in (11).
If S is any set in the extended complex plane, we write S^{N} for the interior of the complement of S. Note that if S is an open region (interior of its own closure), then S^{N} also is an open region, and $\left(S^{N}\right)^{N}=S$.

Corollary 1. Let λ be any complex number, and let \mathbf{G} be the group of linear fractional transformations of the complex plane Ω generated by the two elements

$$
A=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{ll}
1 & 0 \\
\lambda & 1
\end{array}\right)
$$

Let

$$
J=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \text { and } \quad T=J B J
$$

Let Γ be an open region in Ω, neither empty nor all of Ω, and let $\Sigma=J \Gamma^{N}$. Now \mathbf{G} is a free group, freely generated by A and B, provided that
(1) $A^{k} \Gamma \cap \Gamma=\emptyset$ for all $k \neq 0$,
(2) $T^{k} \Sigma \cap \Sigma=\emptyset$ for all $k \neq 0$.

To prove this, let $\Delta=\Gamma^{N}$. Then (2) is equivalent to (2^{\prime}): $B^{k} \Delta \cap \Delta=\emptyset$ for all $k \neq 0$. Now (1) implies that, for $k \neq 0$, the open set $A^{k} \Gamma$ is contained in the complement $\tilde{\Gamma}$ of Γ, hence in the interior Δ of $\tilde{\Gamma}$. Similarly, (2^{\prime}) implies that $B^{k} \Delta \subset \Gamma$ for $k \neq 0$.

Theorem 2 (Chang, Jennings, and Ree). Let λ be a complex number lying in none of the open discs of radius 1 with centres $-1,0,+1$. Then the group \mathbf{G} generated by

$$
A=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{ll}
1 & 0 \\
\lambda & 1
\end{array}\right)
$$

is a free group, freely generated by A and B.
We proceed by making choices for the sets Γ, Δ, and Σ in Corollary 1. We choose for Γ the set $|\operatorname{Re} z|<1$. The set Γ^{N} then consists of the set $\Delta_{1}, \operatorname{Re} z>1$, and $\Delta_{2}, \operatorname{Re} z<-1$, so that $\Delta=\Delta_{1} \cup \Delta_{2}$. The set $\Sigma=J \Delta=$ $J \Delta_{1} \cup J \Delta_{2}=\Sigma_{1} \cup \Sigma_{2}$, where Σ_{1} is the disc $\left|z-\frac{1}{2}\right|<\frac{1}{2}$, and Σ_{2} is the disc $\left|z+\frac{1}{2}\right|<\frac{1}{2}$. It is immediate that (1) is satisfied for this choice of Γ, and (3) will be satisfied if the discs Σ_{1} and Σ_{2} are disjoint from the translated discs $T^{k} \Sigma_{1}$ and $T^{k} \Sigma_{2}$ for all $k \neq 0$. Now all of these discs have radius $\frac{1}{2}$ and centres of the form $k \lambda \pm \frac{1}{2}$. The condition that all these centres are at least a distance one apart is precisely the hypothesis of the theorem.

Theorem 3. Let K be the convex hull of the set consisting of the circle $|z|=1$ together with the two points $z= \pm 2$. If the complex number λ is not in the interior of K, then \mathbf{G}, as above, is freely generated by A and B.

Let Σ be, as before, the region bounded by the two circles C_{1} and C_{2} of radius $\frac{1}{2}$ with centres $\pm \frac{1}{2}$, and let λ satisfy the hypothesis of Theorem 2. Then we know that $T^{k} \Sigma \cap \Sigma=\emptyset$ for all $k \neq 0$. For arbitrary $u \neq 0$, let

$$
U=\left(\begin{array}{ll}
u & 0 \\
0 & 1
\end{array}\right)
$$

and let

$$
\Sigma^{*}=U \Sigma \quad \text { and } \quad T^{*}=U T U^{-1}=\left(\begin{array}{rr}
1 & u \lambda \\
0 & 1
\end{array}\right)
$$

It follows that $T^{* k} \Sigma^{*} \cap \Sigma^{*}=\emptyset$ for all $k \neq 0$. Let $\Delta^{*}=J \Sigma^{*}$ and $\Gamma^{*}=\left(\tilde{\Delta}^{*}\right)_{i}$. The group G^{*} generated by A and

$$
J T^{*} J=\left(\begin{array}{ll}
1 & 0 \\
u \lambda & 1
\end{array}\right)
$$

will be free provided $A^{k} \Gamma^{*} \cap \Gamma^{*}=\emptyset$ for all $k \neq 0$.

Now Γ^{*} is an oblique strip bounded by the two parallel lines $L_{1}=J U C_{1}$ and $L_{2}=J U C_{2}$, symmetric in the origin. The desired condition will hold provided L_{1} passes through the point +1 and hence L_{2} passes through -1 . If L is the line $\operatorname{Re} z=1$, then $C_{1}=J L$, and $L_{1}=J U J L=V L$ for

$$
V=J U J=\left(\begin{array}{cc}
u^{-1} & 0 \\
0 & 1
\end{array}\right)
$$

Now +1 on $V L$ is equivalent to $V^{-1}(+1)=u$ lying on L, that is, to $\operatorname{Re} u=1$.
This shows that if λ satisfies the hypothesis of Theorem 2 , then \mathbf{G} is free for all $\lambda_{1}=u \lambda$, where u ranges over the line $\operatorname{Re} u=1$; equivalently, \mathbf{G} is free for all λ_{1} lying on the line through λ that is perpendicular to the line from λ through the origin. With this, the conclusion of Theorem 3 follows immediately from that of Theorem 2.

Theorem 4. Let λ be a complex number such that $\left|\lambda \pm \frac{1}{2} i\right| \geqq \frac{1}{2}$ and $|\lambda \pm 1| \geqq 1$. Then \mathbf{G}, defined as above, is freely generated by A and B.

Before beginning the proof, we offer a comment and an illustrative figure. First, we remark that the set of λ for which \mathbf{G} is free is symmetric with respect to reflection in both the real and the imaginary axes. It is immediate that if \mathbf{G} is free for a complex number λ it is also free for the complex conjugate $\tilde{\lambda}$ of λ. Furthermore, replacing λ by $-\lambda$ has the effect of replacing the generators A and B for \mathbf{G} by the generators A and B^{-1}, and thus does not affect the question of whether \mathbf{G} is free on the given generators. In view of this symmetry, we may confine our figure to the first quadrant.

In the figure, the region F_{1} consists of those λ with $|\lambda| \geqq 2$, for which Brenner showed that \mathbf{G} is free. The result of Chang, Jennings, and Ree, shows that \mathbf{G} is free also for λ in the additional region F_{2}. Theorems 3 and 4 show that, further, \mathbf{G} is free for λ in the additional regions F_{3} and F_{4}. By way of contrast, the quarter disc R is an open set in which values of λ for which \mathbf{G} is not free are dense. Among the radial spines emanating from R (which will be described in Theorem 5) along which values of λ for which \mathbf{G} is not free are dense, are the segment of the real axis from 0 to +2 and the segment of the imaginary axis from 0 to $+i$.

The plan of the proof is as follows. In view of earlier remarks, we may suppose that λ lies inside the open curvilinear triangular region F_{4}. We start as in the proof of Theorem 2 by taking Γ to be the strip $|\operatorname{Re} z|<1$ and Σ to be $J \Gamma^{N}$. For these choices, (1) holds but (2) fails, with Σ overlapping $T^{-1} \Sigma$ and $T \Sigma$. To restore (2) we replace Σ by a smaller set Σ^{1}. Now, however, $\Gamma^{1}=J \Sigma^{1 N}$ is larger than Γ, and (1) fails, with Γ^{1} overlapping $A^{-1} \Gamma^{1}$ and $A \Gamma^{1}$. To restore (1) we replace Γ^{1} by a smaller set Γ^{2}. Now $\Sigma^{2}=J \Gamma^{2 N}$ is larger than Σ^{1}, but we find that, nonetheless, (2) remains valid. The conclusion now follows from Corollary 1 applied to Γ^{2} and Σ^{2}.

In the proof we assume that λ is in F_{4}. We also use the fact that both $|\lambda|$ and $\operatorname{Im} \lambda$ attain their minima on the closure \bar{F}_{4} of F_{4} at the lowest vertex, $(2+4 i) / 5$, whence we have $|\lambda|>2 / \sqrt{ } 5$ and $\operatorname{Im} \lambda>4 / 5$.

To begin the proof we repeat that Γ, defined by $|\operatorname{Re} z|<1$, satisfies condition (1). As in the proof of Theorem $2, \Sigma=J \Gamma^{N}$ is the union of two discs Σ_{1} and Σ_{2} of radius $\frac{1}{2}$ and with centres at $-\frac{1}{2}$ and $+\frac{1}{2}$. Now $T^{k} \Sigma_{1}$ and Σ_{2} have centres $-\frac{1}{2}+k \lambda$ and $+\frac{1}{2}$, and will be disjoint provided their centres are at a distance $|k \lambda-1| \geqq 1$. But it is clear geometrically that the hypotheses $|\lambda-1|>1$ and $\operatorname{Re} \lambda>0$ imply that $|k \lambda-1|>1$ for all $k \neq 0$. Similarly, $T^{k} \Sigma_{i}$ and Σ_{i} will be disjoint provided $|k \lambda| \geqq 1$. Since $|\lambda|>2 / \sqrt{ } 5>\frac{1}{2}$, this will be the case provided $|k| \geqq 2$. It follows that, if we form Σ^{1} from Σ by deleting the closures of $\Sigma_{1} \cap T^{-1} \Sigma_{1}$ and $\Sigma_{2} \cap T \Sigma_{2}$, then Σ^{1} will satisfy condition (2).

From the definition of Σ^{1}, it follows that $\Gamma^{1}=J \Sigma^{1 N}$ is the union of $\Gamma_{1}{ }^{1}=\Gamma_{1} \cup J T^{-1} \Sigma_{1}$ and $\Gamma_{1}{ }^{2}=\Gamma_{2} \cup J T \Sigma_{2}$. Examination shows that $J T \Sigma_{2}$ lies in the fourth quadrant, while $J T^{-1} \Sigma_{1}$ lies in the second quadrant. When we have shown, in the next paragraph, that the common diameter of these two discs is less than two, it will follow that $A^{k} \Gamma^{1} \cap \Gamma^{1}=\emptyset$ for $|k| \geqq 2$, and also that
$\Gamma^{1} \cap A \Gamma^{1}=\Gamma^{1} \cap A J T^{-1} \Sigma_{1}=P_{2}$ and $\Gamma^{1} \cap A^{-1} \Gamma^{1}=\Gamma^{1} \cap A^{-1} J T \Sigma_{2}=P_{1}$.
The boundary of $T \Sigma_{2}$ is the circle $C:|z-v|=\frac{1}{2}$, where $v=\lambda+\frac{1}{2}$. Thus $J T \Sigma_{1}$ has boundary $J C$ with equation $|1 / z-v|=\frac{1}{2}$, or $|z|=2|v| \cdot|z-1 / v|$. Generally, for $h>0$, the circle $|z-a|=h|z-b|$ has diameter

$$
d=\left|\frac{2 h(a-b)}{h^{2}-1}\right| .
$$

Thus $J C$ has diameter

$$
d=\left|\frac{4}{4\left|v^{2}\right|-1}\right| .
$$

Since $v=\lambda+\frac{1}{2}$ with $\operatorname{Re} \lambda>0$, we have $|v|>\frac{1}{2}$, and the denominator is positive. Thus $d<2$ is equivalent to $\left|v^{2}\right|>\frac{3}{4}$. Since $\left|v^{2}\right|=|\lambda|^{2}+\operatorname{Re} \lambda+\frac{1}{4}$, it suffices that $|\lambda|^{2}>\frac{1}{2}$, which follows from $|\lambda|>2 / \sqrt{ }$.

It is immediate from the foregoing that $\Gamma^{2}=\Gamma^{1}-\left(\bar{P}_{1} \cup \bar{P}_{2}\right)$ will satisfy (1). To complete the proof, it remains to show that $\Sigma^{2}=J \Gamma^{2 N}$ satisfies condition (2). From the definition of Γ^{2} it follows that $\Sigma^{2}=\Sigma^{1} \cup D_{1} \cup D_{2}$, where $D_{1}=J A^{-1} J T \Sigma_{2}$ and $D_{2}=J A J T^{-1} \Sigma_{1}$. We know already that $T^{k} \Sigma^{1} \cap \Sigma^{1}=\emptyset$ for $k \neq 0$, whence it suffices to show that D_{1} and D_{2} are disjoint from $T^{k} \Sigma^{2}$ for $k \neq 0$. By symmetry, it is enough to show that D_{1} is disjoint from $T^{k} \Sigma^{2}$ for $k \neq 0$. If $k<0$, then $T^{k} \Sigma^{2}$ lies in the lower half plane, and is disjoint from D_{1}, which lies in the upper half plane. It remains to show D_{1} disjoint from $T^{k} \Sigma^{2}$ for $k>0$.

We have noted that D_{1} lies in the upper half plane. Also, D_{1} meets Σ_{1}, which lies entirely in the left half plane. Therefore, to show that D_{1} lies entirely in the second quadrant, it suffices to show that the boundary of D_{1} does not meet Y, the imaginary axis. If C is the boundary of $T \Sigma_{2}$, then D_{1} has boundary $J A^{-1} J C$, and the condition $J A^{-1} J C \cap Y=\emptyset$ is equivalent to the condition $C \cap J A J Y=\emptyset$. Now $J Y=Y$, whence $A J Y=A Y$ is the line $\operatorname{Re} z=2$, and $J A J Y$ is the circle $\left|z-\frac{1}{4}\right|=\frac{1}{4}$. Since C is the circle with centre $\lambda-\frac{1}{2}$ and radius $\frac{1}{2}$, it suffices to show that the distance $\left|\lambda-\frac{1}{4}\right|$ between the centres exceeds $\frac{3}{4}$, the sum of the radii. For this it is easily verified that the minimum value of $\left|\lambda-\frac{1}{4}\right|$ on \bar{F}_{4} is attained at the vertex $(2+4 i) / 5$, where it exceeds $\frac{3}{4}$.
We have shown that D_{1} lies in the left half plane. By symmetry, D_{2} lies in the right half plane. Since $\Sigma_{2}{ }^{1}$, as a subset of Σ_{2}, lies in the right half plane, so does $\Sigma_{2}{ }^{2}=\Sigma_{2}{ }^{1} \cup D_{2}$, and with it $T^{k} \Sigma_{2}{ }^{2}$ for all $k>0$. Thus $D_{1} \cap T^{k} \Sigma_{2}{ }^{2}=\emptyset$ for all $k>0$.

We must show that $D_{1} \cap T^{k} \Sigma_{1}{ }^{2}=\emptyset$ for all $k>0$. Since $\Sigma_{1}{ }^{2}=\Sigma_{1}{ }^{1} \cup D_{1}$ and $\Sigma_{1}{ }^{1} \subset \Sigma_{1}$, this splits into showing that $D_{1} \cap T^{k} \Sigma_{1}=\emptyset$ and $D_{1} \cap T^{k} D_{1}=\emptyset$ for all $k>0$. We begin by showing that $D_{1} \cap T \Sigma_{1}=\emptyset$. Let

$$
U=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

then $A=U^{2}, T \Sigma_{2}=U T \Sigma_{1}$, and $D_{1}=J U^{-2} J U T \Sigma_{1}$. Setting

$$
W=J U^{-2} J U=\left(\begin{array}{rr}
1 & 1 \\
-2 & -1
\end{array}\right)
$$

we must show that $W T \Sigma_{1} \cap T \Sigma_{1}=\emptyset$. Now W is an involution with fixed points $p, p^{\prime}=(-1 \pm i) / 2$. Since $T \Sigma_{1}$ has centre $\lambda-\frac{1}{2}$ and radius $\frac{1}{2}$, the hypothesis that $\left|\lambda-\frac{1}{2} i\right|>\frac{1}{2}$ implies that p does not lie in $T \Sigma_{1}$. Let E be the
disc with the same centre as $T \Sigma_{1}$ and with p on its boundary B; then it suffices to show that $W E \cap E=\emptyset$. Since W is a non-Euclidean half turn about p, B and $W B$ are externally tangent at p, and it suffices to show that $W E$ is the finite region bounded by $W B$, that is, that ∞ is not in $W E$. Since $\operatorname{Im} \lambda>\frac{1}{2}$, the centre $\lambda-\frac{1}{2}$ of E lies above the horizontal line through p, and therefore is nearer to p, on its boundary, than to $-\frac{1}{2}$. Thus $-\frac{1}{2}$ is not in E, and $W\left(-\frac{1}{2}\right)=\infty$ is not in $W E$.

To show that $D_{1} \cap T^{k} \Sigma_{1}=\emptyset$ for $k>1$, it suffices to observe that $T \Sigma_{1}$ lies above the common tangent line H separating E from $W E$, and that, since $\operatorname{Im} \lambda>0, T^{k} \Sigma_{1}$ will lie above H for all $k \geqq 1$, while $D_{1} \subset W E$ will lie below H.

To complete the proof we must show that $D_{1} \cap T^{k} D_{1}=\emptyset$ for all $k>0$. This amounts to showing that D_{1} has diameter $d<|\lambda|$. From the fact that $D_{1}=J A^{-1} J T \Sigma_{2}$ and our knowledge of $T \Sigma_{2}$, we conclude that the boundary of D_{1} has an equation of the form $\left|z+\frac{1}{2}\right|=2|\lambda| \cdot\left|z+\frac{1}{2}+\frac{1}{4} \lambda\right|$. A formula used earlier gives $d=1 /\left|4 r^{2}-1\right|$, where $r=|\lambda|$. Since $r>\frac{1}{2}$, we have $d=1 /\left(4 r^{2}-1\right)$, and the condition $d>r$ becomes $1<4 r^{3}-r$, or that $f(r)=4 r^{3}-r-1$ be positive. It is routine to check that this is true for all $r>2 / \sqrt{ } 5$. This completes the proof of Theorem 4 .
2. Points where \mathbf{G} is not free. We remark that, for $\mu \neq 0$, if \mathbf{G} is not freely generated by

$$
A=\left(\begin{array}{cc}
1 & \mu \\
0 & 1
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{cc}
1 & 0 \\
\mu & 1
\end{array}\right)
$$

then \mathbf{G} is not a free group. For it is a special case of a well-known result that if a free group is generated by two elements but not freely, then it has rank less than two, and hence is abelian. But, for $\mu \neq 0$,

$$
A B=\left(\begin{array}{cc}
1+\mu^{2} & \mu \\
\mu & 1
\end{array}\right)
$$

is not equal to

$$
B A=\left(\begin{array}{cc}
1 & \mu \\
\mu & 1+\mu^{2}
\end{array}\right)
$$

The following theorem is about groups \mathbf{G} that are not free. This theorem and Corollary 3 are slight extensions of results of Ree (15).

Theorem 5. Let μ_{0} be a complex number such that $\mu_{0}{ }^{2 n}=-4$ for some positive integer n. Then values of μ for which the group \mathbf{G} generated by

$$
A=\left(\begin{array}{ll}
1 & \mu \\
0 & 1
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{ll}
1 & 0 \\
\mu & 1
\end{array}\right)
$$

is not free are dense on the line segment joining μ_{0} to the origin.
The proof consists in showing that, for a dense set of values of μ on the
described segment, a certain commutator has finite order. Let T be any unimodular matrix and $T^{\prime}=[A, T]=A T A^{-1} T^{-1}$. We write

$$
T=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

and calculate the entries of

$$
T^{\prime}=\left(\begin{array}{ll}
a^{\prime} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right)
$$

in terms of those of T. Now,

$$
A T=\left(\begin{array}{ll}
1 & \mu \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
a+c \mu & b+d \mu \\
c & d
\end{array}\right)
$$

and

$$
A^{-1} T^{-1}=\left(\begin{array}{cc}
1 & -\mu \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)=\left(\begin{array}{cc}
d+c \mu & -b-a \mu \\
-c & a
\end{array}\right),
$$

whence, using $a d-b c=1$,

$$
T^{\prime}=\left(\begin{array}{cc}
1+a c \mu+c^{2} \mu^{2} & * \\
c^{2} \mu & 1-a c \mu
\end{array}\right)
$$

We see, in particular, that $c^{\prime}=c^{2} \mu$, whence $c^{\prime} \mu=(c \mu)^{2}$, and that T^{\prime} has trace $t^{\prime}=2+c^{2} \mu^{2}=2+c^{\prime}$.

Define T_{n} recursively by taking

$$
T_{0}=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right) \quad \text { and } T_{n+1}=\left[A, T_{n}\right] .
$$

Note that, although T_{0} need not belong to \mathbf{G}, we have $T_{1}=A T_{0} A^{-1} T_{0}{ }^{-1}=A B$, so that T_{n} is in \mathbf{G} for all $n \geqq 1$. Let

$$
T_{n}=\left(\begin{array}{cc}
a_{n} & b_{n} \\
c_{n} & d_{n}
\end{array}\right) \quad \text { and } \quad t_{n}=\operatorname{Tr} T_{n}
$$

Now $c_{0}=1$ and $c_{n+1} \mu=\left(c_{n} \mu\right)^{2}$ implies that $c_{n} \mu=\mu^{2^{n}}$, whence $t_{n}=2+c_{n} \mu=$ $2+\mu^{2^{n}}$.

Suppose that $\mu=r \mu_{0}$, where $\mu_{0^{2}}=-4$ and $0 \leqq r \leqq 1$. Then $t_{n}=2-4 r^{2^{n}}$. If $t_{n}=2 \cos \theta$, for θ a rational multiple of π, then T_{n} has finite order. Now numbers $t=2 \cos \theta$ for θ a rational multiple of π are dense in the interval $[-2,+2]$. Since the map carrying r into t_{n} is a homeomorphism from the interval $[0,1]$ onto $[-2,2]$, it follows that the values of r for which \mathbf{G} is not free are dense in the interval $[0,1]$. This completes the proof of the theorem.

We remark that Ree has shown that the two open segments joining -2 to 2 and $(1+i)$ to $-(1+i)$ arising in Theorem 5 are contained in a connected set that is open in the topology of the plane, and in which the values of μ for which \mathbf{G} is not free are dense.

Corollary 2 (Ree). Values of μ for which \mathbf{G} is not free are dense in the unit disc.

Corollary 3. Let R^{\prime} be the set of μ for which \mathbf{G} is not free. If $\mu_{0} \in R^{\prime}$, then a neighbourhood of μ_{0} lies in $\overline{R^{\prime}}$.

Proof. We treat μ as an indeterminate. If $\mu_{0} \in R^{\prime}$, then there is a matrix $\left(p_{21}^{*}(\mu) \quad{ }_{*}^{*}\right)$ generated by A and B, such that $p_{21}(\mu)$ is not the zero polynomial, and that $p_{21}\left(\mu_{0}\right)=0$. Using this matrix for T_{0} in the proof of Theorem 5 , we find that $t_{n}=2+\left(\mu p_{21}(\mu)\right)^{2^{n}}$. The set where $\left|\mu p_{21}(\mu)\right|<1$, say D, is an open set containing μ_{0}. If $\mu^{\prime} \in D$, then in every neighbourhood of μ^{\prime} there is some value, say $\mu^{\prime \prime}$, and a value of n, such that $t_{n}=2 \cos \theta$ for θ a rational multiple of π. Thus T_{n} has finite order, and $\mu^{\prime \prime} \in R^{\prime}$. This completes the proof.

Remark. For the extreme values of μ, satisfying $\mu^{2^{n}}=-4, \mathbf{G}$ is free provided $n=1$ or $n=2$, but \mathbf{G} need not be free for such μ if $n=3$.

If $n=1$, then $\mu^{2}=-4$, whence $2 \lambda=\mu^{2}=-4$, and $\lambda=-2$. If $n=2$, then $\mu^{4}=-4, \mu^{2}= \pm 2 i, 2 \lambda=\mu^{2}= \pm 2 i$, and $\lambda= \pm i$. That \mathbf{G} is free for such μ follows from Theorem 1 .

Let $n=3$. Four of the roots of $\mu^{8}=-4$, including that with smallest angle, satisfy the equation $\mu^{4}-2 \mu^{2}+2=0$. We show that \mathbf{G} is not free for μ satisfying this equation. More explicitly, we note that

$$
T_{3}=[A,[A, B]]=A\left(A B A^{-1} B^{-1}\right) A^{-1}\left(B A B^{-1} A^{-1}\right)
$$

is conjugate to $S=\left[A^{-1}, B\right][A, B]$. Write

$$
A=\left(\begin{array}{cc}
1 & \alpha \\
0 & 1
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{ll}
1 & 0 \\
\beta & 1
\end{array}\right)
$$

Then

$$
A B=\left(\begin{array}{cc}
1+\alpha \beta & \alpha \\
\beta & 1
\end{array}\right), \quad A^{-1} B^{-1}=\left(\begin{array}{cc}
1+\alpha \beta & -\alpha \\
-\beta & 1
\end{array}\right)
$$

and

$$
[A, B]=\left(\begin{array}{cc}
1+\alpha \beta+\alpha^{2} \beta^{2} & -\alpha^{2} \beta \\
\alpha \beta^{2} & 1-\alpha \beta
\end{array}\right)
$$

Now

$$
S=\left[A^{-1}, B\right][A, B]=\left(\begin{array}{cc}
1-\mu^{2}+\mu^{4} & -\mu^{3} \\
* & *
\end{array}\right)\left(\begin{array}{cc}
* & -\mu^{3} \\
* & 1-\mu^{2}
\end{array}\right)=\left(\begin{array}{cc}
* & b \\
* & *
\end{array}\right),
$$

where $b=-\mu^{3}\left(2-2 \mu^{2}+\mu^{4}\right)=0$. That \mathbf{G} is not free now follows from the fact that the affine group stabilizing a point in $\mathrm{PSL}_{2}(\mathbf{C})$ is metabelian. More explicitly, computation shows that

$$
B^{\prime}=S B S^{-1}=\left(\begin{array}{ll}
1 & 0 \\
\nu & 1
\end{array}\right)
$$

for some ν, whence B^{\prime} commutes with B.
We remark that the solution of $\mu^{8}=-4$ with smallest angle yields $\lambda=\frac{1}{2}(1+i)$, well away from the free regions discussed in $\S 1$.

The method used above can be given a more general formulation; this raises some interesting questions, but has not enabled us to gain much additional information. For this, we again view μ as an indeterminate. Then any word $W(\mu)=A^{a_{1}} B^{b_{1}} \ldots A^{a_{n}} B^{b_{n}}$ is given by a matrix whose entries are polynomials in μ with coefficients depending on $a_{1}, b_{1}, \ldots, a_{n}, b_{n}$. Write

$$
W(\mu)=\left(\begin{array}{cc}
1+p_{11}(\mu) & p_{12}(\mu) \\
p_{21}(\mu) & 1+p_{22}(\mu)
\end{array}\right) .
$$

It is easy to see, for example writing $A=I+\mu E_{12}$ and $B=I+\mu E_{21}$, that $p_{12}(\mu)=c_{1} \mu+c_{3} \mu^{3}+\ldots+c_{2 n-1} \mu^{2 n-1}$, an odd polynomial, where each coefficient $c_{2 k+1}$ is the sum of all products $a_{i_{1}} b_{j_{1}} \ldots a_{i_{k}} b_{j_{k}} a_{i_{k+1}}$ where the factors are, in order, a subsequence of the sequence $a_{1}, b_{1}, \ldots, a_{n}, b_{n}$. We note also that if W is a non-trivial reduced word, that is, if $n>0$ and all $a_{i}, b_{j} \neq 0$, then p_{12} is a non-constant polynomial with leading coefficient

$$
c_{2 n-1}=a_{1} b_{1} \ldots b_{n-1} a_{n} .
$$

The remaining $p_{i j}$ are analogous.
Proposition 1. A complex number μ determines a group \mathbf{G} that is not free if and only if μ is a root of some polynomial $p(x)$ determined by a sequence $a_{1}, b_{1}, \ldots, a_{n}, b_{n}$ of non-zero integers in the following manner:

$$
p(x)=\sum c_{2 k+1} x^{2 k+1}
$$

odd, where each $c_{2 k+1}=\sum a_{i_{1}} b_{j_{1}} \ldots a_{i_{k}} b_{j_{k}} a_{i_{k+1}}$, sum over all

$$
i_{1} \leqq j_{1}<i_{2} \leqq j_{2}<\ldots \leqq j_{k}<i_{k+1}
$$

If \mathbf{G} is not free, then for some non-trivial reduced W we have $W(\mu)=I$, and hence $p_{12}(\mu)=0$. Conversely, if $p_{12}(\mu)=0$ for some non-trivial p_{12}, hence for some W that is not a power of B, we have

$$
W(\mu)=\left(\begin{array}{ll}
* & 0 \\
* & *
\end{array}\right)
$$

and, as before, $B^{\prime}=W B W^{-1}$ commutes with B.
We next apply the method indicated above to find a few more points for which \mathbf{G} is not free.

Proposition 2. G is not free if $\mu=\sqrt{ }(2 / n)$ or $\mu=\sqrt[4]{ }(2 / n)$ for some positive integer n.

To see this, note that if the trace $t(\mu)$ of $W=A^{a_{1}} B^{b_{1}} \ldots A^{a_{n}} B^{b_{n}}$ vanishes, then $W^{2}=1$ and (assuming always W reduced and non-trivial) \mathbf{G} is not free. If $n=1$, then $t(\mu)=2+a_{1} b_{1} \mu^{2}$ with roots $\mu= \pm \sqrt{ }\left(2 / a_{1} b_{1}\right)$. If $n=2$, then $t(\mu)=2+k \mu^{2}+c \mu^{4}$, where $c=a_{1} a_{2} b_{1} b_{2}$ and $k=\left(a_{1}+a_{2}\right)\left(b_{1}+b_{2}\right)$. To make $k=0$ take $a_{2}=-a_{1}$; then $t(\mu)$ has as roots the fourth roots of $2 / a_{1}{ }^{2} b_{2} b_{3}$.

The first half of the above proposition is contained in a more general result.
Proposition 3. If μ determines a group \mathbf{G} that is not free, then so does $\mu^{\prime}=\mu \sqrt{ }(2 / n)$ for every non-zero integer n.

This is equivalent to the assertion that if λ determines a group \mathbf{G} that is not free, then so does $\lambda^{\prime}=\lambda / n$. But this follows from the fact that any relation between

$$
A=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right) \quad \text { and } \quad B^{\prime}=B^{n}=\left(\begin{array}{ll}
1 & 0 \\
n \lambda & 1
\end{array}\right)
$$

is a fortiori a relation between A and B.
Finally we explore the case, for $n=3$, where W is periodic.
Proposition 4. If $\omega^{6}=+1$, then points where $W=A^{-1} B^{-2} A^{-1} B A^{2} B$ has finite order are dense on the line segment from ω to the origin. If $\omega^{6}=-1$, the same is true for $W=A B^{-2} A B A^{-2} B$.

Let $W=A^{a_{1}} B^{b_{1}} \ldots B^{b_{3}}$. To make the coefficient of μ^{2} in $t(\mu)$ vanish, we take $a_{1}+a_{2}+a_{3}=0$. Now calculation shows that $t(\mu)=2+k \mu^{4}+c \mu^{6}$ with $k=-a_{2}{ }^{2} b_{1} b_{2}-a_{1}{ }^{2} b_{1} b_{3}-a_{3}{ }^{2} b_{2} b_{3}$ and $c=\prod a_{i} \Pi b_{i}$. To make $k=0$, we choose $a_{1}, a_{2}, b_{2}, b_{3}=1$ and $a_{3}=b_{1}=-2$. Then $t(\mu)=2+4 \mu^{6}$, and $t(\mu)$ ranges from +2 to -2 as μ^{6} ranges from 0 to -1 . Changing the signs of the a_{i} gives similarly $t(\mu)=2-4 \mu^{6}$.
3. Structure of groups \mathbf{G} for real μ. From (3) we know that \mathbf{G} is free for $|\mu| \geqq 2$. As noted, it follows that \mathbf{G} is free if μ is transcendental or is algebraic with an algebraic conjugate μ^{\prime} such that $\left|\mu^{\prime}\right| \geqq 2$. We know of no real μ not falling under one of the above heads for which \mathbf{G} is free. It is well known (see $\mathbf{9}$) that the only discontinuous \mathbf{G} for $-2<\mu<+2$ are essentially the Hecke groups, which, although not free, are free products of cyclic groups. (From this it follows that no \mathbf{G}, for $-2<\mu<+2$ can be shown free by Macbeath's method, using for Γ and Δ regions in the plane under its natural topology.) After examining the groups just mentioned, we find a few rational values of μ, with $|\mu|<2$, for which we can show that \mathbf{G} is not free; but we have not been able to settle even the case that $\mu=7 / 4$.

For certain values of μ, the group \mathbf{G} generated by

$$
A=\left(\begin{array}{ll}
1 & \mu \\
0 & 1
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{ll}
1 & 0 \\
\mu & 1
\end{array}\right)
$$

although not free, is a free product of cyclic groups. It is well known that, for $\mu=1$, the two transvections A and B generate the unimodular group, $\mathbf{G}=\operatorname{PSL}_{2}(\mathbf{Z})$, and that this group is the free product of the cyclic groups generated by the two elements

$$
J=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)
$$

of order 2 and

$$
S=A J=\left(\begin{array}{rr}
1 & -1 \\
1 & 0
\end{array}\right)
$$

of order 3 . For other values of μ, the element J need not belong to \mathbf{G}, and it is profitable to study the larger group \mathbf{H} obtained by adjoining J to \mathbf{G}. Since $B=J A^{-1} J$, the group \mathbf{H} is generated by

$$
A=\left(\begin{array}{lr}
1 & \mu \\
0 & 1
\end{array}\right) \quad \text { and } \quad J=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)
$$

Among these groups, for μ real, the only groups acting discontinuously (on the upper half plane) are known to be the Hecke groups, where $\mu=2 \cos \theta$, θ a rational multiple of π, together with those for $|\mu| \geqq 2$.

A standard proof that \mathbf{H} is discontinuous also reveals the structure of \mathbf{H} as a free product; for example, one can recognize \mathbf{H} as the conformal subgroup of the Coxeter group generated by reflections in the sides of the hyperbolic triangle with vertices ∞, i, and $e^{2 \pi i / q}$. We indicate here a proof based on Macbeath's lemma.

Theorem 6. Let \mathbf{H} be the group of linear fractional transformations generated by

$$
A=\left(\begin{array}{ll}
1 & \mu \\
0 & 1
\end{array}\right) \quad \text { and } \quad J=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)
$$

where $\mu=2 \cos (p / q) \pi$ for p and q relatively prime integers, $q>2$. Then \mathbf{H} is the free product of the two cyclic groups generated by J, of order 2 , and the other by

$$
S=A J=\left(\begin{array}{rr}
\mu & -1 \\
1 & 0
\end{array}\right)
$$

of order q.
First, it is clear that J and S generate \mathbf{H}. Now $\mu=\zeta+\zeta^{-1}$, where ζ is a primitive q th root of unity. Since all primitive q th roots of unity are algebraic conjugates, \mathbf{H} will be isomorphic to the group obtained by replacing ζ by the special choice $\zeta=e^{\pi i / q}$. Now S, as well as J, satisfies the special hypothesis (of having minimal angle of rotation) of the theorem in (11, §5). Moreover, $S J=A$ has the real fixed point ∞, whence it follows by that theorem that \mathbf{H} is the free product of the groups generated by J and by S.

Theorem 7. Let \mathbf{G} be the group generated by

$$
A=\left(\begin{array}{cc}
1 & \mu \\
0 & 1
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{ll}
1 & 0 \\
\mu & 1
\end{array}\right)
$$

for μ as above. If q is odd, then \mathbf{G} coincides with \mathbf{H}, as above. If $q=2 n$, even, then \mathbf{G} is a proper subgroup of \mathbf{H}, and is the free product of two cyclic groups generated by A, of infinite order, and by $A B^{-1}=S^{2}$, of order n.

We verify that $A=S J, B=S^{-1} J$, and $A B^{-1}=S^{2}$. If S has odd order, it is contained in the group generated by S^{2}, whence S is in \mathbf{G} and also $J=S B$ is in \mathbf{G}, and it follows that $\mathbf{G}=\mathbf{H}$. Suppose now that $q=2 n$. Then $\left(A B^{-1}\right)^{n}=1$, and it remains to show that A and B satisfy no relation that is not a consequence of this one.

For this it will suffice to show that if $W=A^{a_{1}} B^{b_{1}} \ldots B^{b_{t}}$ is a non-trivial reduced word ($t>0$ and all $a_{i}, b_{i} \neq 0$) that cannot be shortened by use of the relation $\left(A B^{-1}\right)^{n}=1$, then $W \neq 1$. We suppose then that $W=1$, and yet that W does not contain any part $\left(A B^{-1}\right)^{n},\left(B^{-1} A\right)^{n},\left(B A^{-1}\right)^{n}$, or $\left(A^{-1} B\right)^{n}$; from this assumption we shall draw a contradiction. Form W_{1} from W by making the literal substitutions: $A \rightarrow S J, A^{-1} \rightarrow J S^{-1}, B \rightarrow S^{-1} J, B^{-1} \rightarrow J S$, and without making any cancellations in the resulting word. It is immediate that W_{1} will contain no part $J J J$, and, from the fact that W was reduced, that W_{1} will contain no part $S S^{-1}, S^{-1} S, S J J S^{-1}$ or $S^{-1} J J S$. Let W_{2} be obtained from W_{1} by deleting all parts $J J$. Then W_{2} will contain no part $J J, S S^{-1}$, or $S^{-1} S$. If W_{2} contains no part S^{q} or S^{-q}, then W_{2} is the normal form for a nontrivial element in the free product \mathbf{H}, contrary to our assumption that $W=1$. We may suppose then that W_{2} contains such a part, and, by symmetry, that W_{2} contains a part S^{q}. Inspection shows that a sequence of q consecutive etters S in W_{2} can arise only from a part of W_{1} of the form

$$
(J S)(S J)(J S) \ldots(J S)(S J)
$$

and hence from a part $\left(B^{-1} A\right)^{n}$ of W. But this contradicts our assumption on W, completing the proof of the theorem.

Let $\mathbf{G}(\mu)$ be generated by A and B, for $\mu=2 \cos (p / q) \pi,(p, q)=1, q \geqq 3$. From our knowledge of $\mathbf{G}(\mu)$, as a free product, it is easy to see that, if $h k>1$ (except $h k=2$ and $q=3$), A^{h} and B^{k} generate a free subgroup \mathbf{G}^{\prime} of $\mathbf{G}(\mu)$, conjugate to $\mathbf{G}\left(\mu^{\prime}\right)$, where $\mu^{\prime}=\sqrt{ }(h k) \mu$. However, this gives us no new information, since μ^{\prime} has a conjugate $\mu_{0}^{\prime}=\sqrt{ }(h k) 2 \cos (\pi / q)$ with $\left|\mu_{0}{ }^{\prime}\right| \geqq 2$.

In considering the groups \mathbf{G} defined by μ as above, it suffices to study those with $\mu=2 \cos (\pi / q), q>0$. We have excluded the case $q=1$, which gives Sanov's group, $\mu=2$. We have excluded also the case $q=2$, where $\mu=0$ and \mathbf{G} is trivial. For $q=3$ we have $\mu=1$, and \mathbf{G} is the unimodular group. For $q=4$, we have $\mu=\sqrt{ } 2$; it is easy to obtain an explicit description of this group.

Proposition 5. The group \mathbf{G} generated by

$$
A=\left(\begin{array}{cc}
1 & \sqrt{ } 2 \\
0 & 1
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{cc}
1 & 0 \\
\sqrt{ } 2 & 1
\end{array}\right)
$$

consists of all

$$
T=\left(\begin{array}{cc}
a & b \sqrt{ } 2 \\
c \sqrt{ } 2 & d
\end{array}\right)
$$

for a, b, c, and d integers satisfying $a d-2 b c=1$.

That every element T of \mathbf{G} has this form follows from the fact that the diagonal elements in $W(\mu)$ are even polynomials in μ, while the off-diagonal elements are odd polynomials. To show that every such T belongs to \mathbf{G}, we first verify that, if $a, c \neq 0$, then, by a modified division algorithm, $|a|+|c|$ will be diminished in passing to one of $A^{ \pm 1} T$ or $B^{ \pm 1} T$. It remains to consider the case that $a=0$ or $c=0$. However, $a=0$ contradicts $a d-2 b c=1$. If $c=0$, then $a d=1$; we may suppose that $a=d=1$, and

$$
T=\left(\begin{array}{cc}
1 & b \sqrt{ } 2 \\
0 & 1
\end{array}\right)=A^{b}
$$

in \mathbf{G}.
The next case, $q=5$, has been studied from a somewhat different point of view by Rosen (16) and Leutbecher (10).

We conclude with some fragmentary remarks about the structure of \mathbf{G} for rational μ. These groups, for $\mu=1 / p, p$ a prime, have been studied by Ihara (8), and by Mennicke (13), who showed that \mathbf{G} is the full unimodular group over the ring R_{p} of rationals with denominator a power of p. There is some reason to suppose that, for general μ, the polynomials $p_{12}{ }^{W}(\mu)$ associated with words W will not tend to have common roots without good reason, for example unless W_{1} and W_{2} are in the normal closure of a third word W_{3}. One might expect then that the groups under consideration if not free might be free products of groups of a simple nature, perhaps with amalgamation. Since the present paper was submitted, the paper of $\operatorname{Behr}(\mathbf{1})$ has come to our attention, in which it is proved, inter alia, that \mathbf{G}, for $\mu=1 / p, p$ a prime, is finitely presented, as well as the paper of Behr and Mennicke (2) in which a finite presentation is obtained. However, we have not been able to derive from their presentation any insight into the structure of \mathbf{G}.

The group \mathbf{G} for $\mu=1 / p$ of course contains the unimodular group, and therefore satisfies the two defining relations for the unimodular group when expressed in terms of the generators A and B of \mathbf{G}. In the case $\mu=\frac{1}{2}$, we have shown that \mathbf{G} satisfies other relations that are not consequences of these two. The argument consists in first observing that if \mathbf{G} were defined by these two relations alone, it would be the result of adjoining a square root A (in the sense of Neumann (14)) to a certain element of the unimodular group \mathbf{U}, and, in that case, all involutions of \mathbf{G} would be conjugates of those in U. However, by calculation, we find an involution of the form $A X$, with X in \mathbf{U}, which cannot possibly be a conjugate of any element of \mathbf{U}.

In this connection we remark that we have shown (with H. Stark (oral communication) supplying the proof of an elementary lemma from number theory) that for $\mu=1 / p$, and p prime, the group \mathbf{G} has exactly two conjugacy classes of involutions if p is of the form $p=4 k+3$, and exactly one conjugacy class otherwise.

Any relation among the generators of \mathbf{G} for a given value of μ carries with it a relation for $\mu / n, n$ an arbitrary integer. Thus, in seeking such relations,
we are led to examine values $1<\mu<2$. Let $\mu=3 / 2$, and define $W_{0}=I$, $W_{1}=A^{a_{1}} W_{0}, W_{2}=B^{b_{1}} W_{1}, W_{3}=A^{a_{2}} W_{2}$, and so forth, for non-zero integers $a_{1}, b_{1}, a_{2}, \ldots$. We seek to choose these integers in such a way that

$$
W_{n}=\left(\begin{array}{ll}
* & 0 \\
* & *
\end{array}\right)
$$

for some $n>0$. It will then follow as before that $B^{\prime}=W_{n}^{-1} B W_{n}$ commutes with B, and hence that \mathbf{G} is not free.

Examination of the second columns of the W_{i} shows that this reduces to the following problem. Given μ, to find integers h_{1}, h_{2}, \ldots such that the recursive definition

$$
x_{0}=0, \quad x_{1}=1, \quad x_{n+2}=x_{n}+h_{n+1} \mu x_{n+1}
$$

leads to some $x_{n}=0, n>0$. The method of choosing the h_{i} always to minimize $\left|x_{n+2}\right|$ works for $\mu=3 / 2,4 / 3,5 / 3,5 / 4$, but does not seem to work for $\mu=7 / 4$. We summarize our results for these cases.

Proposition 6. If $\mu=3 / 2,4 / 3,5 / 3,5 / 4$, then \mathbf{G} is not free. Indeed, if we let $B^{\prime}=W^{-1} B W$, then for each value of μ above there is an appropriate choice of W such that the corresponding B^{\prime} will commute with B, thus yielding a relationship. For $\mu=3 / 2$ the choice of $W=A^{2} B^{-2} A B^{-1} A$ yields $B^{\prime}=B^{2^{6}} ;$ for $\mu=3 / 4$, the choice of $W=A^{-18} B^{2} A B^{-1} A$ yields $B^{\prime}=B^{3^{8}}$; for $\mu=5 / 3$ the choice of $W=A^{18} B^{-2} A B A^{2} B^{11} A^{2} B^{-1} A B^{-1} A$ yields $B^{\prime}=B^{20} ;$ for $\mu=5 / 4$ the choice of $W=A^{-8} B^{2} A^{5} B^{-3} A^{2} B^{-1} A$ yields $B^{\prime}=B^{4^{10}}$.

We note also that, for $\mu=3 / 2, \mathbf{G}$ is contained in the principal congruence group $\mathbf{U}(3)$ over R_{2}, and contains $\left(\begin{array}{cc}8 \\ 0 & 1 / 8\end{array}\right)$; but it does not appear to coincide with $\mathbf{U}(3)$. We repeat that $\mu=7 / 4$ is the simplest case of rational μ where we cannot decide whether \mathbf{G} is free.

We state a final result concerning rational values of μ for which \mathbf{G} is not free.
Proposition 7. If $\mu=p /\left(p^{2}+1\right)$, p a positive integer, then $A^{h_{3}} B^{h_{2}} A=W$, with $h_{2}=-\left(p^{2}+2\right), h_{3}=-\left(p^{2}+1\right)^{2}$, has the form $\left(\begin{array}{c}* \\ * \\ *\end{array}\right)$. Thus \mathbf{G} is not free for any of these values of μ.

References

1. H. Behr, Über die endliche Definierbarkeit verallgemeinerter Einheitengruppen, J. Reine Angew. Math. 211 (1962), 123-135.
2. H. Behr and J. Mennicke, A presentation of the groups PSL(2, p), Can. J. Math. 20 (1968), 1432-1438.
3. J. L. Brenner, Quelques groupes libres de matrices, C.R. Acad. Sci. Paris 241 (1955), 1689-1691.
4. B. Chang, S. A. Jennings, and R. Ree, On certain matrices which generate free groups, Can. J. Math. 10 (1958), 279-284.
5. L. R. Ford, Automorphic functions, 2nd ed. (Chelsea, New York, 1951).
6. R. Fricke and F. Klein, Vorlesungen über die Theorie der Automorphen Functionen. I (Teubner, Leipzig, 1897).
7. K. A. Hirsch, Review of (1), MR 17, \#824.
8. Y. Ihara, Algebraic curves $\bmod p$ and arithmetic groups, Proc. Sympos. Pure Math. Vol. 9, pp. 265-272 (Amer. Math. Soc., Providence, Rhode Island, 1968).
9. A. W. Knapp, Doubly generated Fuchsian groups, Michigan Math. J. 15 (1968), 289-304.
10. A. Leutbecher, Über die Heckeschen Gruppen $G(\lambda)$, Abh. Math. Sem. Univ. Hamburg 31 (1967), 199-205.
11. R. C. Lyndon and J. L. Ullman, Pairs of real 2-by-2 matrices that generate free products, Michigan Math. J. 15 (1968), 161-166.
12. A. M. Macbeath, Packings, free products and residually finite groups, Proc. Cambridge Philos. Soc. 59 (1963), 555-558.
13. J. Mennicke, On Ihara's modular group, Inventiones Math. 4 (1967), 202-228.
14. B. H. Neumann, Adjunction of elements to groups, J. London Math. Soc. 18 (1943), 4-11.
15. R. Ree, On certain pairs of matrices which do not generate a free group, Can. Math. Bull. 4 (1961), 49-52.
16. D. Rosen, An arithmetic characterization of the parabolic points of $G(2 \cos \pi / 5)$, Proc. Glasgow Math. Assoc. 6 (1963), 88-96.
17. L. N. Sanov, A property of a representation of a free group, Dokl. Akad. Nauk SSSR 57 (1947), 657-659.

The University of Michigan, Ann Arbor, Michigan

[^0]: Received July 5, 1968 and in revised form January 13, 1969. The authors gratefully acknowledge support of the National Science Foundation, Grants GP-6578 and GP-7264.

