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Abstract. T. Fukui introduced an invariant for theblow-analytic equivalence of real singularities.
For a nondegenerate analytic function (germ) f , he discovered a formula for computing the
one-dimensional invariant, denoted by Að f Þ :¼ A1ð f Þ.We ¢nd a formula for Að f Þ for any f
(real or complex, degenerate or not).We then de¢ne, and characterise, various notions of stability
of Að f Þ, using the formula. For real analytic f , the Fukui invariant with sign is de¢ned, and
computed by a similar formula. In the case where f is an analytic function of two complex
variables, Að f Þ can also be computed using the tree-model of f .
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1. Introduction

Let f : ðKn; 0Þ ! ðK; 0Þ be a given germ of analytic function, K ¼ R or C, not
identically zero. Take any analytic arc

lðtÞ ¼ ðl1ðtÞ; . . . ; lnðtÞÞ: ðK; 0Þ ! ðKn; 0Þ;

where liðtÞ are convergent power series in t, lið0Þ ¼ 0 . As f ðlðtÞÞ is a power series in t,
its order in t, Oð f ðlðtÞÞÞ, is a positive integer, or 1 . We call the set of orders
Að f Þ ¼ fOð f ðlðtÞÞÞg for all choices of l, the Fukui invariant of f . This was introduced
by Fukui [3] as an invariant for the blow-analytic equivalence of singularities de¢ned
in [8]. In his paper, Fukui actually introduced an invariant, Amð f Þ, for each positive
integer m; but he only gave a formula for computing Að f Þ :¼ A1ð f Þ, for
nondegenerate functions f .
We shall give, in Section 3, a formula for computing Að f Þ, for any f , using a

simpli¢cation (desingularisation) of f �1ð0Þ .
The reader is referred to the survey article [4] for more on blow-analyticity.
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Let us exclude a trivial case in the outset. Suppose that f is already a normal
crossing:

f ðx1; . . . ; xnÞ ¼ ðunitÞ xe11 . . . xenn ; eiX 0:

It is easy to see that

Að f Þ ¼
�X

miei j miX 1
�
[ f1g:

From now on, we assume that f is not a normal crossing, whence at least one
exceptional divisor must appear when f is desingularised.
Let N denote the set of positive integers.

PROPERTY 1.1. If c 2 Að f Þ and k 2 N, then kc 2 Að f Þ .

This is clear because Oð f ðlðtkÞÞÞ ¼ kOð f ðlðtÞÞÞ .
It follows from this property that Að f Þ is an in¢nite set (unless f is identically

zero). Let us write

Að f Þ ¼ fa1; a2; . . . ; al; . . .g [ f1g; a1 < a2 < � � � < al < � � � ðl 2 NÞ:

We say that Að f Þ is stably periodic if there exist c; q; d 2 N such that ajþkq ¼ aj þ kd
for cW j < cþ q and k 2 N . The smallest value of q for which this holds is called the
stable period.
We say Að f Þ is stably interval-like if there exist c; d;m 2 N such that

amþi ¼ cþ id; i ¼ 0; 1; 2; . . . .

PROPERTY 1.2.Að f Þ is stably interval-like if and only if there exist s; d;m 2 N such
that amþi ¼ ðsþ iÞd; i ¼ 0; 1; 2; . . . .

This is also clear. By Property 1.1, there exists s 2 N such that cþ sd ¼ 2c . Hence,
c ¼ sd, amþi ¼ ðsþ iÞd .
In case d ¼ 1, we say Að f Þ is stably unit-interval-like.

EXAMPLE 1.3. Let f : ðK2; 0Þ ! ðK; 0Þ, K ¼ R or C, be a polynomial function
de¢ned by f ðx; yÞ ¼ x4 þ y6 . Then

Að f Þ ¼ f4; 6; 8; 12; 13; 14; � � �g [ f1g in the case K ¼ C;

Að f Þ ¼ f4; 6; 8; 12; 16; 18; 20; 24; . . .g [ f1g

¼ 4N [ 6N [ f1g in the case K ¼ R :

In both cases, Að f Þ is stably periodic. In the complex case Að f Þ is stably
unit-interval-like, but in the real case Að f Þ is not even stably interval-like.
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This example gives rise to the following natural questions:

QUESTION 1.4. In either case, is Að f Þ always stably periodic?

QUESTION 1.5. In the complex case, is Að f Þ always stably interval-like?

In Section 3, we shall give a formula to compute the Fukui invariant Að f Þ, using a
simpli¢cation of f �1ð0Þ .
Using the formula for Að f Þ in Section 3, we can answer Question (1.4) in the

positive.
However, the answer to Question 1.5 is ‘No’. An example is given in the next

section. This example leads to the discovery of the characterisation of the stable
interval-likeness in Section 5. We can then see why it is easier for the Fukui invariant
to be stably interval-like in the complex case than in the real case.
In the real case, we de¢ne, in Section 7, some new invariants, which are slightly

better than the Fukui invariant. We call them the Fukui invariants with sign. They
can be computed by a similar formula (Theorem VII).
In the complex two variables case, we shall give another formula (Section 8) to

compute the Fukui invariant, using the tree-model. The notion of tree-model
was introduced in [7]. In Sections 9 and 10, we prove this formula.
The Fukui invariant is a kind of dual to the valuation in algebraic geometry. To be

more precise, let us consider the ‘inner product’

hg; li :¼ OðgðlðtÞÞÞ; l any arc:

If we take a ¢xed l on f �1ð0Þ, and vary g in the function ¢eld of f �1ð0Þ, we get a
valuation. But if we take g to be f , and vary l, we ¢nd Að f Þ .
Some interesting observations, in the case of two complex variables, are as follows.
Suppose f ðx; yÞ is irreducible. LetC denote the germ f �1ð0Þ, and IðC;C 0Þ denote its

intersection multiplicity with any other germ C0 .
Each analytic arc, l, can be identi¢ed with an irreducible curve germ. Hence

Að f Þ ¼ fIðC;C0Þ j C0 irreducibleg:

On the other hand, it is well known in Algebraic Curves that the semigroup

GðCÞ :¼ fIðC;C0Þ j C 0 any germg;

which is obviously generated by Að f Þ, has a conductor, c, so that, in particular, GðCÞ
contains all integers cþ i for all iX 0 . Thus, GðCÞ is stably unit-interval-like in
our sense. Moreover, Að f Þ is also unit-interval-like. This follows from our
Theorem (III.C).
However, if f ðx; yÞ is not irreducible, then Example (2.1) shows that, in general,

Að f Þ need not be stably interval-like.
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2. A Negative Example for Question 1.5

For a positive integer e 2 N, let NX e ¼ fm 2 N j mX eg .

EXAMPLE 2.1. Let f : ðC2; 0Þ ! ðC; 0Þ be a homogeneous polynomial function
de¢ned by

f ðx; yÞ ¼ ðx� yÞ2ðx� 2yÞ3ðx� 3yÞ3ðx� 4yÞ4:

Then Að f Þ ¼ ðð2N [ 3NÞ \NX 12Þ [ f1g . Therefore Að f Þ is not stably
interval-like.
Proof. Let l: ðC; 0Þ ! ðC

2; 0Þ be an analytic arc. Then lðtÞ ¼ ðX ðtÞ;Y ðtÞÞ can be
expressed in the following way:

X ðtÞ ¼ a0tu þ a1tuþ1 þ � � � ; Y ðtÞ ¼ b0tv þ b1tvþ1 þ � � � ;

where a0; b0 6¼ 0 and u; vX 1 . If X � 0 (resp. Y � 0), let u ¼ 1 (resp. v ¼ 1).
In the case l � 0 or X ðtÞ ¼ kY ðtÞ, k ¼ 1; 2; 3; 4, we have Oð f � lÞ ¼ 1 .
We next consider the case where l is not identically zero and X ðtÞ 6¼ kY ðtÞ,

k ¼ 1; 2; 3; 4 . If u < v, then Oð f � lÞ ¼ 12u . Therefore fOð f � lÞ j l with
u < vg ¼ 12N . Similarly we have fOð f � lÞ j l with u > vg ¼ 12N . Thus it remains
to consider the case u ¼ v .

Case I: a0 ¼ b0 . In this case, we have

X ðtÞ � Y ðtÞ ¼ c1twþ1 þ c2twþ2 þ � � � ðc1 6¼ 0;wX uÞ;

X ðtÞ � kY ðtÞ ¼ dktu þ � � � ðdk 6¼ 0; k ¼ 2; 3; 4Þ:

Therefore fOð f � lÞ j lg ¼ f12þ 2p j p 2 Ng:

Case II: a0 ¼ 2b0 . Similarly we have fOð f � lÞ j lg ¼ f12þ 3p j p 2 Ng .
Case III: a0 ¼ 3b0 . We have fOð f � lÞ j lg ¼ f12þ 3p j p 2 Ng .
Case IV: a0 ¼ 4b0 . We have fOð f � lÞ j lg ¼ f12þ 4p j p 2 Ng .
Case V: Otherwise. fOð f � lÞ j lg ¼ 12N .

It follows that

Að f Þ ¼ 12N [ f12þ 2p j p 2 Ng [ f12þ 3p j p 2 Ng [ f1g

¼ ðð2N [ 3NÞ \NX 12Þ [ f1g:

For a ¢nite number of positive integers s1; . . . ; sk, let GCDðs1; . . . ; skÞ denote the
greatest common divisor of them. In case k ¼ 2, we write ðs1; s2Þ ¼ GCDðs1; s2Þ
as usual.
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OBSERVATION 2.2. In Example 2.1, set s1 ¼ 2; s2 ¼ 3; s3 ¼ 3 and s4 ¼ 4 . Then
s ¼ s1 þ s2 þ s3 þ s4 ¼ 12 and GCDðs1; s2; s3; s4Þ ¼ 1 . Note that there is no j,
j ¼ 1; 2; 3; 4, such that ðs; sjÞ ¼ 1 .
Let s1; . . . ; sk be positive integers. Set s ¼ s1 þ � � � þ sk, r ¼ GCDðs1; . . . ; skÞ and

d0 ¼ GCDððs; s1Þ; . . . ; ðs; skÞÞ . Then it is easy to see that r ¼ d0 .

OBSERVATION 2.3. The following conditions are equivalent.

(1) There is j, 1W jW k, such that ðs; sjÞ ¼ r .
(2) There is j, 1W jW k, such that ðs; sjÞ ¼ d0 .

3. A Formula for Að f Þ Using Simpli¢cation

Let f : ðKn; 0Þ ! ðK; 0Þ be an analytic function germ,K ¼ R orC . In [3], Fukui gave
a formula to compute Að f Þ using a toric resolution, in case f is a nondegenerate
function. In this section, we give a formula for Að f Þ in the general case, using
the Hironaka^Bierstone^Milman desingularisation ([1, 2, 5]).
Let X be a complex manifold. By an arc through x 2 X , we mean a complex

analytic mapping l into X of a neighbourhood of 0 2 C such that lð0Þ ¼ x .
LetP: ðX ;EÞ ! ðC

n; 0Þ, E ¼ P�1ð0Þred, be a simpli¢cation of f
�1ð0Þ, namely,P is

a composition of a ¢nite number of blowings up, X is smooth and f �P is a normal
crossing. Here, we call a function normal crossing if it can be locally expressed as a
product of powers of a number of local coordinates. Let D ¼ ð f �PÞ

�1
ð0Þred be

its reduction and D ¼ D1 [ � � � [Ds the decomposition into irreducible components.
Since we are concerned with divisors around E, we may assume that Di \ E 6¼ ;

(i ¼ 1; . . . ; s). For a subset

I ¼ fi1; . . . ; ipg � S ¼ f1; . . . ; sg

of subscripts, let f j1; . . . ; jqg, pþ q ¼ s, denote the complement I in S and put

DI ¼ ðDi1 \ � � � \DipÞ n ðDj1 [ � � � [Djq Þ:

This is a manifold of codimension p (if it is not empty). The family fDI g gives a
strati¢cation of D . We put C ¼ fI : DI \ E 6¼ ;g for a simpli¢cation P . Since
Di \ E 6¼ ;, i 2 S, we have

S
I2C I ¼ S .

Remark 3.1. By choosing a suitable P, we can assume that E is also a normal
crossing divisor. Then E is a union of someDi and if I 2 C and I � J � S, then J 2 C .

Each divisor Di has natural multiplicity mi, which is the multiplicity of f �P at a
generic point of Di . Let us put

OI ð f Þ ¼ ðmi1Nþ � � � þmipNÞ [ f1g;
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for I ¼ ði1; . . . ; ipÞ 2 C . This is nothing but the set of values of the orders of f � l for
various arcs on X through a point of DI \ E .
Next let us consider the real case. Exactly as in the complex case, a simpli¢cation

P: ðXR;ERÞ ! ðRn; 0Þ, ER ¼ P�1ð0Þ, exists by the real desingularisation theorem
[5, 1, 2]. Then we can similarly de¢ne DR ¼ DR

1 [ � � � [DR
s , C

R
� 2S, DR

I

ðI 2 C
R
Þ, the multiplicities mR

i and OI ð f Þ .

Remark 3.2. In the real case, there is a simpli¢cation of the complexi¢cation which
is the composition of a ¢nite number of blowings up with real centres. Then its real
part is a real simpli¢cation and the real hypersurfaces DR and DR

i are, respectively,
the real parts of the complex divisors D and Dj which are invariant with respect
to the auto-conjugation. The multiplicities mR

i of DR
i are equal to mj of the

corresponding complex divisors Dj .

We can write down the Fukui invariant Að f Þ, using OI ð f Þ .

THEOREM I. Let f : ðKn; 0Þ ! ðK; 0Þ be an analytic function germ,K ¼ R orC, and
P be a simpli¢cation of f �1ð0Þ . Then we have Að f Þ ¼

S
I2C OI ð f Þ:

Proof. Obviously we only have to prove that

Að f Þ n f1g ¼
[
I2C

OI ð f Þ n f1g:

Suppose that k 2 Að f Þ n f1g . Then there exists an arc l through 0 2 Kn such that
Oð f � lÞ ¼ k . By the universality of blowing up ([6], De¢nition 1), there exists a
lifting m: U ! X . Let x be the unique intersection point of the image of l and
E, which belongs to an unique DI ðI ¼ fi1; . . . ; ipgÞ . Obviously x 2 E implies
I 2 C . There exists a local coordinate system ðx1; . . . ; xnÞ centered at x such that
f �P ¼ xl11 � � � x

ln
n and m is given by

x1 ¼ a11t a11 þ a12t a12 þ � � � ;

� � �

xn ¼ an1t an1 þ an2t an2 þ � � � ;

at x, where ai1 6¼ 0; 0 < ai1 < ai2 < � � � ; i ¼ 1; . . . ; n . Since the set of nonzero
elements of fl1; . . . ; lng coincides with fmi1 ; . . . ;mipg, we have

k ¼ Oð f � lÞ ¼ Oð f �P � mÞ ¼ a11li1 þ � � � þ an1lin 2 OI ð f Þ:

The converse is now obvious.

COROLLARY II. The Fukui invariant Að f Þ is stably periodic.
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4. A Formula for Að f Þ in the Two Variables Case

Although the formula for the Fukui invariant given in the previous section looks
simple, it is not so easy to compute it in general, for the actual task of ¢nding a
desingularisation of f �1ð0Þ can be horrendous. In the two variables case, however,
we can give a more explicit formula for the Fukui invariant, because in this case
at most two divisors can intersect at a given point.
Let f : ðK2; 0Þ ! ðK; 0Þ be an analytic function germ,K ¼ R orC . As stated in the

introduction, we exclude the case where f is already a normal crossing.
Let us factor f ðx; yÞ into irreducible components

f ðx; yÞ ¼
Yk
j¼1

fjðx; yÞ
sj ;

where fj are irreducible over Kfx; yg . Let P: ðX ;EÞ ! ðK2; 0Þ, E ¼ P�1ð0Þ, be a
simpli¢cation of f �1ð0Þ and E ¼ E1 [ � � � [ EN , where Ei are the irreducible
exceptional divisors. Then the Ei’s together with the strict transforms Zj of
f �1j ð0Þ, 1W jW k, form a normal crossing family of smooth curves in a neighbour-
hood of E .
Let mi denote the multiplicity of Ei, 1W iWN . The multiplicity of Zj is sj,

1W jW k (if Zj is not empty).
There are three kinds of points on E which interest us.
Take any Ei . Then take a generic point Pi on Ei . In terms of our strati¢cation in

Section 3, Pi is a point of the unique one-dimensional stratum contained in Ei . Let

DðPiÞ ¼ miN; DG ¼
[N
i¼1

DðPiÞ:

Next, take any pair ðEi;EjÞ such that Ei \ Ej 6¼ ; . Let Hij denote the point of
intersection. The point Hij is also a stratum of our strati¢cation. De¢ne
DH ¼

S
i;j ðmiNþmjNÞ;where the union is taken over all pairs ði; jÞ, i 6¼ j, with

Ei \ Ej 6¼ ; .
The third kind are those points where the strict transforms Zj meet the exceptional

divisors. Take anyZj . Let EuðjÞ denote the exceptional divisor which meetsZj . De¢ne
DS ¼

Sk
j¼1 ðsjNþmuðjÞNÞ:

THEOREM IIIC. For K ¼ C, Að f Þ ¼ DG [ DH [ DS [ f1g:

EXAMPLE 4.1. Consider f ðx; yÞ ¼ x2 � y4 . In Figure 1, the second component of
each bracket indicates the multiplicity of the divisor. The resolution tree gives:

DðP1Þ ¼ DðP2Þ ¼ 2N; DH ¼ 2Nþ 4N; DS ¼ 4NþN:

Hence, Að f Þ ¼ f2; 4; 5; 6; . . .g [ f1g .
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When K ¼ R, the formula in Theorem IIIC is still valid. However, DS has to be
interpreted properly, because the (real) strict transform Zj is empty if
f �1j ð0Þ ¼ f0g . For instance, x2 þ y2 is desingularised by one blow-up, to
X 2ð1þ Y 2Þ . The real strict transform, de¢ned by 1þ Y 2, is empty. For each fj with
f �1j ð0Þ 6¼ f0g, the real strict transform Zj meets some EuðjÞ at a real point, say
Qj . De¢ne

DR
S ¼

[
j

ðsjNþmuðjÞNÞ;

where the union is taken over all j with f �1j ð0Þ 6¼ f0g . Thus we have

THEOREM IIIR. For K ¼ R, Að f Þ ¼ DG [ DH [ DR
S [ f1g:

EXAMPLE 4.2. Consider the function of Example 1.3, f ðx; yÞ ¼ x4 þ y6, inRfx; yg.
The resolution tree (Figure 2) gives

DG ¼ 4N [ 6N [ 12N ¼ 4N [ 6N;

DH ¼ f4Nþ 12Ng [ f6Nþ 12Ng; DR
S ¼ ;:

Hence Að f Þ ¼ 4N [ 6N [ f1g .

We next compute the Fukui invariant of a degenerate function, using our formula.

Figure 1.

Figure 2.
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EXAMPLE 4.3. Let f : ðK2; 0Þ ! ðK; 0Þ, K ¼ R or C, be a polynomial function
de¢ned by

f ðx; yÞ ¼ x15 þ 3x12y2 þ 3x9y4 þ x6y6 þ 2x3y10 þ y14:

Note that

x15 þ 3x12y2 þ 3x9y4 þ x6y6 ¼ x6ðx3 þ y2Þ3;

x6y6 þ 2x3y10 þ y14 ¼ ðx3 þ y4Þ2y6:

We consider the resolution tree (Figure 3). Here, E 0
i means Eiþ6, i ¼ 2; 3; 4; 5 . We

have used the notation E 0
i to clarify our resolution process. In the real case, the strict

transforms Z4, Z5 do not appear. The resolution tree gives:

DG ¼ 12N [ 14N [ 28N [ 42N [ 44N [ 46N [ 48N [ 15N [ 30N

[ 33N [ 36N;

DH ¼ ð12Nþ 42NÞ [ ð28Nþ 42NÞ [ ð14Nþ 28NÞ [ ð42Nþ 44NÞ

[ ð44Nþ 46NÞ [ ð46Nþ 48NÞ [ ð12Nþ 30NÞ [ ð15Nþ 30NÞ

[ ð30Nþ 33NÞ [ ð33Nþ 36NÞ;

DS ¼ ðNþ 48NÞ [ ðNþ 36NÞ:

Figure 3.
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Hence,

Að f Þ ¼ 12N [ 14N [ 15N [ 33N [ ðNþ 36NÞ [ f1g

¼ f12; 14; 15; 24; 28; 30; 33; 36; 37; 38; . . .g [ f1g:

In this case, Að f Þ is stably unit-interval-like.
We can also compute thisAð f Þ by the orthodoxmethod as in Example 2.1. But it is

complicated. In fact, it is not so easy to ¢nd an arc l by which 37 2 Að f Þ is attained.
Let lðtÞ ¼ ðX ðtÞ;Y ðtÞÞ be an analytic arc de¢ned by

X ðtÞ ¼ at2; Y ðtÞ ¼ t3 þ b2t5 þ b3t6;

where a3 ¼ �1, 4b32 ¼ 1 and b3 6¼ 0 . Then Oð f � lÞ ¼ 37.

5. Stable Interval-Likeness

We ¢rst consider the case n ¼ 2 . We keep the notations in Section 4. Namely, f ðx; yÞ
is factored into irreducible components f ðx; yÞ ¼

Qk
j¼1 fjðx; yÞ

sj ; and
P: ðX ;EÞ ! ðK2; 0Þ is a simpli¢cation of f �1ð0Þ, where E ¼ P�1ð0Þ is the union
of the exceptional divisors E1; . . . ;EN . Then mi is the multiplicity of Ei,
1W iWN, and sj is the multiplicity of the strict transform Zj of f �1j ð0Þ, 1W jW k .
If Ei \ Ej 6¼ ;, i 6¼ j, we de¢ne

gij ¼ ðmi;mjÞ; GE ¼
[

fgijg;

where the union is taken over all pairs ði; jÞ, i 6¼ j, with Ei \ Ej 6¼ ; . For each strict
transform Zj meeting some EuðjÞ, de¢ne

gj ¼ ðsj;muðjÞÞ; GS ¼
[k
j¼1

fgjg:

When K ¼ R, we need the following interpretation: GS consists only of those gj for
which f �1j ð0Þ 6¼ f0g .
In the case where f �1ð0Þ ¼ f0g and the simpli¢cation is given by one blow-up, the

resolution tree consists of only one exceptional divisor. Let m be the multiplicity.
Then Að f Þ ¼ mN [ f1g, thus Að f Þ is stably interval-like. In this case, set G ¼ fmg .
In the case where f �1ð0Þ 6¼ f0g or the simpli¢cation cannot be given by only one

blow-up, each exceptional divisor intersects another exceptional divisor or some
strict transform. In other words, GE or GS is not empty. Set G ¼ GE [ GS .
We can characterise the stable interval-likeness as follows:

THEOREM IV. Let d denote the greatest common divisor of the numbers in G. Then
Að f Þ is stably interval-like if and only if d 2 G . In particular, Að f Þ is stably
unit-interval-like if and only if 1 2 G .
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Let M ¼
SN
i¼1 fmig and M0 ¼

Sk
j¼1 fmuðjÞg . The next corollary follows imme-

diately from Theorem IV.

COROLLARY V. Let d0 denote the greatest common divisor of the numbers in GS .
Suppose that every mi 2M nM0 is divisible by some gj 2 GS . Then Að f Þ is stably
interval-like if and only if d0 2 GS .

This corollary may not be so useful in the real case, because GS may be empty.

EXAMPLE 5.1. Take a homogeneous form

f ðx; yÞ ¼ ða1xþ b1yÞ
s1 . . . ðakxþ bkyÞ

sk ; aibj � ajbi 6¼ 0 ði 6¼ jÞ:

There is only one exceptional divisor in the resolution tree, whose multiplicity is
s ¼ s1 þ � � � þ sk . In this case, M ¼M0 ¼ fsg . Thus M nM0 is empty and
GS ¼

Sk
j¼1 fðs; sjÞg . By Corollary V, Að f Þ is stably interval-like if and only if

d0 ¼ GCDððs; s1Þ; . . . ; ðs; skÞÞ 2 GS . Let r ¼ GCDðs1; . . . ; skÞ . It follows from
Observation (2.3) that Að f Þ is stably interval-like if and only if r 2 GS .

Using a criterion for stable interval-likeness in Example (5.1), we can easily
construct negative examples to Question (1.5). We give an example different from
Example 2.1:

EXAMPLE 5.2. Let f : ðC2; 0Þ ! ðC; 0Þ be a homogeneous polynomial function
de¢ned by

f ðx; yÞ ¼ ðx� yÞ2ðx� 2yÞ3ðx� 3yÞ25:

Then s ¼ 2þ 3þ 25 ¼ 30 and r ¼ GCDð2; 3; 25Þ ¼ 1 . It follows that
r =2 GS ¼ f2; 3; 5g . Therefore Að f Þ is not stably interval-like.

As seen in Example 5.1, stable interval-likeness is determined by fs1; . . . ; skg in the
homogeneous case. It is natural to ask if this is valid in general. The answer is no.
Namely, stable interval-likeness cannot be determined merely by fs1; . . . ; skg .

EXAMPLE 5.3. Let f : ðK2; 0Þ ! ðK; 0Þ be a polynomial function de¢ned by

f ðx; yÞ ¼ ðx2 þ y3Þ2ðx2 þ y5Þ3:

The resolution tree (Figure 4) gives

M nM0 ¼ f10; 18; 21g; GS ¼ fð2; 30Þ; ð3; 42Þg ¼ f2; 3g:

Thus m 2M nM0 is divisible by some g 2 GS . On the other hand,
d0 ¼ ð2; 3Þ ¼ 1 =2 GS . It follows from Corollary V that Að f Þ is not stably
interval-like.
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EXAMPLE 5.4. Let f : ðK2; 0Þ ! ðK; 0Þ be a polynomial function de¢ned by

f ðx; yÞ ¼ ðx2 þ y3Þ2ðxþ yÞ3:

The resolution tree (Figure 5) gives 1 ¼ ð3; 7Þ 2 G . By Theorem IV, Að f Þ is stably
unit-interval-like.

We next consider the general case. Let f : ðKn; 0Þ ! ðK; 0Þ be an analytic function
germ, K ¼ R or C, and let P: ðX ;EÞ ! ðKn; 0Þ be a simpli¢cation of f �1ð0Þ .
For the simpli¢cation P, we de¢ne C in the same way as in Section 3. For
I ¼ ði1; . . . ; ipÞ 2 C, set

MI ¼ GCDðmi1 ; . . . ;mip Þ:

Then we have

Figure 4.

Figure 5.
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THEOREM VI. Let d denote the greatest common divisor of the numbers in
fMI j I 2 Cg . Then Að f Þ is stably interval-like if and only if d 2 fMI j I 2 Cg .

Theorem IV, Corollary V, Example 5.1 and Theorem VI are criteria for stable
interval-likeness. We call them GCD tests.
Attention should be paid to the fact that although the statements of the tests are

the same for the real and the complex cases, the actual meaning in each case is quite
different.
Thus, let us take an analytic function with real coef¢cients. When considered as a

complex analytic function, it has a (complex) resolution tree which, in general,
can contain many more exceptional divisors than the real resolution tree. As a result,
the complex Fukui set can be much larger than the real Fukui set; the former can be
easily stably interval-like while the latter is not.
This explains why stably interval-like examples are much more numerous in the

complex case than in the real case.

6. Proofs of Theorems IV and VI

Before starting the proofs of Theorems IV and VI, we prepare some lemmas and
recall the notion of the conductor of two positive integers.

LEMMA 6.1. Let t1; . . . ; tq be positive integers such that

tjX 2; 1W jW q and GCDðt1; . . . ; tqÞ ¼ 1:

Then t1N [ � � � [ tqN is not stably interval-like in our sense.
Proof. Assume that t1N [ � � � [ tqN is stably interval-like. Then there are positive

integers k; d such that

ðt1N [ � � � [ tqNÞ \NX kt1���tq ¼ fkt1 . . . tq; kt1 . . . tq þ d; kt1 . . . tq þ 2d; . . .g:

ð6:2Þ

Set A ¼ ðt1N [ � � � [ tqNÞ \NX kt1���tq . For simplicity, let t1 ¼ minðt1; . . . ; tqÞ .
Then d ¼ t1 . Since GCDðt1; . . . ; tqÞ ¼ 1, there is j; 2W jW q, such that tj is not
divisible by t1 . Then there is a positive integer m such that
mt1 < tj < ðmþ 1Þt1 . By (6.2),

kt1 . . . tq þmt1 ¼ kt1 . . . tq þmd 2 A;

kt1 . . . tq þ ðmþ 1Þt1 ¼ kt1 . . . tq þ ðmþ 1Þd 2 A;

kt1 . . . tq þ tj =2 A:

On the other hand, kt1 � � � tq þ tj ¼ ðkt1 � � � tj�1tjþ1 � � � tq þ 1Þtj 2 A . This is a
contradiction.

The next lemma follows from this lemma.
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LEMMA 6.3. Let d; t1; . . . ; tq be positive integers such that

tjX 2; 1W jW q; and GCDðt1; . . . ; tqÞ ¼ 1:

Then t1dN [ � � � [ tqdN is not stably interval-like.

Let a; b be positive integers such that ða; bÞ ¼ d . It is well-known that there is a
positive integer c such that

ðaNþ bNÞ \NX c ¼ fc; cþ d; cþ 2d; . . . g:

The smallest integer c for which this holds is called the conductor of a and b .

Proof of Theorem IV.We prove the complex case. The real case follows similarly,
because Theorem IV is obvious when f �1ð0Þ ¼ f0g and the simpli¢cation is given
by one blow-up. Let us consider the complex case. Each exceptional divisor intersects
another exceptional divisor or some strict transform. By Theorem IIIC,

Að f Þ ¼ DG [ DH [ DS [ f1g:

Let e be an arbitrary element of Að f Þ . By the de¢nition of G, e is divisible by some
ai 2 G . Therefore e is divisible by d, where d is the greatest common divisor of the
numbers in G .
We ¢rst show that d 2 G implies the stable interval-likeness of Að f Þ . By

assumption, there is ai 2 G such that ai ¼ d . Then there is gij 2 GE with gij ¼ d
or gj 2 GS with gj ¼ d . Assume that gij ¼ d . In case gj ¼ d, the argument is similar.
Let c be the conductor of mi and mj . Then

ðmiNþmjNÞ \NX c ¼ fc; cþ d; cþ 2d; . . .g:

It follows from the divisibility of any element of Að f Þ by d that

Að f Þ \NX c ¼ fc; cþ d; cþ 2d; . . . g:

Therefore Að f Þ is stably interval-like.
We next show the converse. Let G ¼ GE [ GS ¼ fa1; . . . ; aqg . It is obvious in case

q ¼ 1 . Therefore we assume that qX 2 . Set I ¼ fði; jÞ j gij 2 GEg:
Let cij be the conductor of mi and mj for ði; jÞ 2 I , and let cj be the conductor of sj

and muðjÞ for 1W jW k . Then

ðmiNþmjNÞ \NX cij ¼ cij þ gijðf0g [NÞ;

ðsjNþmuðjÞNÞ \NX cj ¼ cj þ gjðf0g [NÞ:

Note that each gij or gj is some av 2 G . Set

B ¼
Y
ði;jÞ2I

cij
Yk
j¼1

cj:
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Then

Að f Þ \NXB ¼
[
ði;jÞ2I

gijN

 !
[

[k
j¼1

gjN

 ! !
\NXB ¼

[q
i¼1

aiN

 !
\NXB:

Set ai ¼ tid for 1W iW q . Then

Að f Þ \NXB ¼ d
[q
i¼1

tiN

 !
\NXB

such that GCDðt1; . . . ; tqÞ ¼ 1 . If Að f Þ is stably interval-like, then dð
Sq
i¼1 tiNÞ is

also stably interval-like. Therefore it follows from Lemma 6.3 that there is i0,
1W i0W q, such that ti0 ¼ 1 . Then ai0 ¼ ti0d ¼ d, namely, d 2 G .

Proof of Theorem VI.Using the following lemma, we can show this theorem in the
same way as above.

LEMMA 6.4. Let a1; . . . ; ar be positive integers, and let d ¼ GCDða1; . . . ; arÞ . There
is a positive integer c such that

ða1Nþ � � � þ arNÞ \NX c ¼ fc; cþ d; cþ 2d; . . .g:

7. The Fukui Invariants with Sign

Let f : ðRn; 0Þ ! ðR; 0Þ be an analytic function germ, and let
P: ðXR;ERÞ ! ðRn; 0Þ, ER ¼ P�1ð0Þ, be a simpli¢cation of f �1ð0Þ in the sense
of Section 3. As in Section 3, we can likewise de¢ne DR ¼ DR

1 [ � � � [DR
s ,

CR � 2s, DR
I ðI 2 CRÞ, the multiplicities mR

i and OI ð f Þ .
Let us put

Pð f Þ ¼ fx 2 X j f �PðxÞ > 0g; Nð f Þ ¼ fx 2 X j f �PðxÞ < 0g;

C
þ
¼ fI 2 C j DR

I \ ER \ Pð f Þ 6¼ ;g; C
�
¼ fI 2 C j DR

I \ ER \Nð f Þ 6¼ ;g;

where the overlines indicate the closures in X .
Recall that an arc through 0 2 Rn is the germ of a real analytic map l: U ! Rn

with lð0Þ ¼ 0, where U denotes a neighbourhood of 0 2 R . An arc l through 0
is nonnegative (resp. nonpositive) for f if f � lðtÞX 0 (resp. W 0) in a positive half
neighbourhood ½0; dÞ � U . Then we de¢ne the Fukui invariants with sign by

Aþð f Þ ¼ fOð f � lÞ j l is a nonnegative arc through 0 for f g;

A�ð f Þ ¼ fOð f � lÞ j l is a nonpositive arc through 0 for f g;

respectively. It is obvious that Að f Þ ¼ Aþð f Þ [ A�ð f Þ .

Remark 7.1. Fukui [3] introduced a set Anð f Þ of blow-analytic equivalence classes
of real analytic function germs j: ðX ;DÞ ! ðR; 0Þ, where X are n-dimensional
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manifolds and D are compact subspaces such that f �P is not a zero divisor. Our
Að f Þ is obtained from Fukui’s A1ð f Þ forgetting the sign and Aþð f Þ (resp.
A�ð f Þ) can be interpreted as the set of Fukui’s ½ðkÞþ� 2 A1ð f Þ (resp.
½ðkÞ�� 2 A1ð f Þ). Fukui gave a formula to compute A1ð f Þ for a nondegenerate
function.

Using an argument similar to the proof of Theorem I, we can show the following.

THEOREM VII. Let f : ðRn; 0Þ ! ðR; 0Þ be an analytic function. Then we have

Aþð f Þ ¼
[
I2Cþ

OI ð f Þ; A�ð f Þ ¼
[
I2C�

OI ð f Þ:

EXAMPLE 7.2. Let f ; g: ðR2; 0Þ ! ðR; 0Þ be polynomial functions de¢ned by

f ðx; yÞ ¼ x3 þ y8 and gðx; yÞ ¼ x3 � y8:

Then Að f Þ ¼ AðgÞ ¼ f3; 6; 8; 9; 12; 15; 16; 18; 21; 24; 25; 26; . . .g [ f1g . Therefore,
by merely using Að f Þ, we cannot distinguish the blow-analytic types of f and g .
We consider the resolution trees of f and gwith sign (Figures 6 and 7). By Theorem

VII, we have 8 2 Aþð f Þ; 8 =2 A�ð f Þ; 8 =2 AþðgÞ; 8 2 A�ðgÞ . Therefore f and g are
not blow-analytically equivalent.
The functions in Example 7.2 are nondegenerate. Thus, we can distinguish f from

g, using the Fukui’s result on A1ð f Þ . But Theorem VII is also applicable in the
degenerate case.

8. A Formula for Að f Þ Using the Tree-Model

Take a germ of holomorphic function

f ðx; yÞ ¼ Hmðx; yÞ þHmþ1ðx; yÞ þ � � �

Figure 6.
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which is mini-regular in x of order m, namely, Hmð1; 0Þ 6¼ 0 . The Newton^Puiseux
factorisation has the form

f ðx; yÞ ¼ ðunitÞ
Ym
i¼1

ðx� biðyÞÞ;

where the roots bi are fractional power series with OyðbðyÞÞX 1 .
Given a fractional power series gðyÞ, OyðgÞX 1, we can write, as in Zariski [10],

gðyÞ ¼ a1yþ � � � þ b1ym1=d1 þ � � � þ b2ym2=d1d2 þ � � � þ bgymg=d1���dg þ � � � ;

where bi 6¼ 0, di > 1, ðmi; diÞ ¼ 1, 1W iW g, to expose the Puiseux characteristic
sequence fðm1; d1Þ; . . . ; ðmg; dgÞg . We call mi=d1 � � � di the ith characteristic exponent
of g . For convenience, we set m0 ¼ d0 ¼ 1 and also call 1 ¼ m0=d0 the 0th charac-
teristic exponent. We write, as abreviation, Dk ¼ d0 � � � dk .
Take g1ðyÞ and g2ðyÞ . Their order of contact is de¢ned by

Oðg1; g2Þ ¼ Oyðg1ðyÞ � g2ðyÞÞ:

Take a positive rational number q 2 Q
þ . We say g1 and g2 are congruent modulo q,

written as g1 � g2 mod q, if Oðg1; g2ÞX q . This equivalence relation gives rise to
a lattice of subsets of fb1; . . . ; bmg, as follows:
Take any bi . Then take any bj and let

B ¼ fbk j Oðbk; biÞXOðbj; biÞg:

The lattice, by de¢nition, consists of all B obtained in this manner. It is partially
ordered by the inclusion of sets.
In [7], this lattice is called the tree-model of f ðx; yÞ and B is called a bar. The

number of bi in B is the multiplicity of B, denoted by mðBÞ . We also call

hðBÞ ¼ minfOðbj; bkÞ j bj; bk 2 Bg

the height of B.

Figure 7.
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EXAMPLE 8.1. Consider a function de¢ned by f ðx; yÞ ¼ ðx� y2Þðx2 � y3Þðx2 � y5Þ .
The tree model is shown in Figure 8 with hðB1Þ ¼ 3=2, mðB1Þ ¼ 5, hðB2Þ ¼ 2,
mðB2Þ ¼ 3, hðB3Þ ¼ 5=2, mðB3Þ ¼ 2.

Note that by taking bi ¼ bj, we obtain a bar of height1, whose multiplicity is that
of the root bi . In Example 8.1, there are 5 bars of height 1, with multiplicity 1.
In the following, we shall de¢ne two sets of integers, ÎIðBÞ and ĴJðBÞ, for each bar B,

then prove the next result.

THEOREM VIII. Let f ðx; yÞ be a holomorphic function mini-regular in x of order m .
Then we have

Að f Þ ¼ mN [
[
B

ðÎIðBÞ [ ĴJðBÞÞ

 !
[ f1g:

Take a bar B . Take any bi 2 B . Let bB denote bi with all terms ye, eX hðBÞ,
omitted. We call bB the truncation of B .
The largest characteristic exponent of bB is called the characteristic of B, denoted

by charðBÞ . Note that charðBÞ < hðBÞ . In Example 8.1, charðBiÞ ¼ 1; i ¼ 1; 2; 3:
If B � B0 with B 6¼ B0 and there is no other bar in between, we call B0 a postbar of

B .

ASSERTION 8.2 (proved in Section 9). Every bar Bmust be one of the following three
kinds:

First kind. For all (postbar) B0, charðB0Þ ¼ hðBÞ .
Second kind. For all B0, charðB0Þ ¼ charðBÞ .
Third kind. There is a unique (postbar) B�, charðB�Þ ¼ charðBÞ and

charðB0Þ ¼ hðBÞ for all B0 6¼ B� .

In Example 8.1, B3 is of the ¢rst kind, B2 the second kind and B1 the third kind.

Figure 8.
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Take any gðyÞ . We de¢ne the following function:

MgðrÞ ¼ number of bi such that Oðg; biÞX r; 0 < r < 1:

This is an integer-valued, decreasing, step function.
Let us take bB as g . The resulting function will be written simply as MBðrÞ,

0 < r < 1 .
Take any bar B . Let us write

charðBÞ ¼
mk�1

d1 . . . dk�1
; di > 1; ðdi; miÞ ¼ 1;

and then write

hðBÞ ¼
mk

d1 . . . dk�1dk
; dkX 1:

Note that if dk ¼ 1, then B is of the second kind. The converse is also true as
we shall see in Section 9. Note also that bBðyÞ is a ¢nite series and bBðt

Dk�1Þ is a
polynomial in t.
Take a postbar B0 of B . We can write

hðB0Þ ¼ hðBÞ þ
m0

d1 . . . dkd 0
; d 0 X 1; ðm0; d 0Þ ¼ 1:

Suppose that B is of the ¢rst kind. Then, clearly, OðbB; bjÞ ¼ hðBÞ for all bj 2 B .
Using Abel’s identity, we ¢nd

Z hðBÞ

0
MBðrÞ dr ¼ Oyð f ðbBðyÞ; yÞÞ ¼

1
Dk�1

Otð f ðbBðt
Dk�1 Þ; tDk�1ÞÞ:

Hence the following numbers

JðBÞ ¼ Dk�1

Z hðBÞ

0
MBðrÞ dr; IðBÞ ¼ Dk

Z hðBÞ

0
MBðrÞ dr

are integers. We de¢ne

ĴJðBÞ ¼ JðBÞN ðintegral multiplesÞ:

We also de¢ne

ÎIðB;B0Þ ¼ dIðBÞ þ mmðB0Þ j dX 1; mX 1;
m
d
<

m0

d 0

� �
;

and, taking union over all postbars B0, ÎIðBÞ ¼
S
B0 ÎIðB;B0Þ:

Next, suppose that B is of the second kind. We still de¢ne IðBÞ, JðBÞ as above.
Since dk ¼ 1, they are integers. We also de¢ne ÎIðBÞ, ĴJðBÞ as above.
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Finally, suppose that B is of the third kind. In this case,

charðBÞ ¼ charðB�Þ ¼
mk�1

d1 . . . dk�1
;

charðB0Þ ¼ hðBÞ ¼
mk

d1 . . . dk
ðB0 6¼ B�Þ:

We still de¢ne IðBÞ as above. This is clearly an integer. We also de¢ne ÎIðB;B0Þ

and ÎIðBÞ as above. As for ĴJðBÞ, the de¢nition is more subtle, the reason
being that Dk�1

R hðBÞ
0 MBðrÞ dr may not be an integer. (In Example 8.1,R hðB1Þ

0 MB1 ðrÞ dr ¼ 5� 3=2 .) Let us write

hðB�Þ ¼ charðBÞ þ
m�

d1 . . . dk�1d�
; d� X 1;

and rewrite

hðBÞ ¼ charðBÞ þ
�mm

d1 . . . dk�1 �dd
;

where, of course, �dd ¼ dk, �mm ¼ mk � mk�1dk.

ASSERTION 8.3. The number

JðBÞ ¼ Dk�1

Z hðBÞ

0
MBðrÞ dr� ðhðBÞ � charðBÞÞmðB�Þ

� �

is an integer.

We then de¢ne

ĴJðBÞ ¼ dJðBÞ þ mmðB�Þ j dX 1; mX 1;
�mm
�dd
W

m
d
<

m�

d�

� �
:

This completes the de¢nitions of ÎIðBÞ and ĴJðBÞ .

EXAMPLE 8.4. Consider xp � yq, p < q . There is only one bar of ¢nite height, q=p,
which is of the ¢rst kind,

Aðxp � yqÞ ¼ pN [ qN [ ðpqNþNÞ [ f1g:

Next, consider xðx2 � y3Þ . This time the bar is of the third kind,

mðBÞ ¼ 3; IðBÞ ¼ 9; JðBÞ ¼ 4;

ÎIðBÞ ¼ 9NþN; ĴJðBÞ ¼ f4d þ m j 1=2W m=d < 1g ¼ f5; 6; 7; . . .g:
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Hence

Aðx3 � xy3Þ ¼ f3; 5; 6; 7; � � �g [ f1g:

9. Proofs of Assertions 8.2 and 8.3

Take a weighted homogeneous form, W ðx; yÞ, say with weights wðxÞ ¼ q, wðyÞ ¼ p,
ðp; qÞ ¼ 1 . Suppose that 1 < p < q . Then

W ðx; yÞ ¼ axeye
0
Y
i

ðxp � ciyqÞ
ei ; ci 6¼ 0; a 6¼ 0:

Ignoring the factor ye
0

, all roots have the form x ¼ cyq=p and characteristic exponent
q=p, with one exception: if e > 0, then x ¼ 0 is a root with characteristic exponent 1.
If p ¼ 1, the above is no longer true, all roots have characteristic exponent 1.
Assertion 8.2 is basically a consequence of the above phenomenon.
Let us take a bar B with truncation bB and

charðBÞ ¼
mk�1

d0 � � � dk�1
; hðBÞ ¼

mk
d0 � � � dk

ðdkX 1Þ:

There is a polynomial fðzÞ of degree mðBÞ, having the following property. Take
any root b of fðzÞ ¼ 0, (b ¼ 0 allowed,) say of multiplicity m0 . Then there are exactly
m0 elements bj in B of the form

bBðyÞ þ by
hðBÞ þ term of order > hðBÞ:

More precisely, fðzÞ can be obtained as follows:
Consider X ¼ x� bðyÞ, Y ¼ y, and

F ðX ;Y Þ ¼ f ðX þ bBðY Þ;Y Þ ¼
X

cijX iY
j
D; D ¼ Dk�1:

Let us plot a dot at ði; j=DÞ for every cij 6¼ 0, then construct the Newton polygon of F .
(In [9], this is called the Newton polygon of f relative to the arc x ¼ bBðyÞ .) There is a
Newton edge EB with angle YB, associated to B, such that tanYB ¼ hðBÞ . Let us
collect terms of F on EB:

FBðX ;Y Þ ¼
X

cijX iY
j
D; i;

j
D

� 
2 EB:

This is a weighted homogeneous form with weights wðX Þ ¼ mk and wðY Þ ¼ Dk .
Putting Y ¼ 1, we obtain fðzÞ ¼ FBðz; 1Þ:
In Example 8.1, for B2, F ¼ �X 3Y 3 þ X2Y 5, and fðzÞ ¼ z2ð1� zÞ . The root z ¼ 0

leads to x ¼ �y5=2, and z ¼ 1 leads to x ¼ y2 .
Now, in case dk ¼ 1, hðBÞ is not a new characteristic exponent, B is a bar of the

second kind. In case dk > 1 and X is not a factor of F, B is of the ¢rst kind, while
if X is a factor, B is of the third kind.
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Turning to Assertion 8.3, let us consider f �ðx; yÞ ¼
Q
j ðx� bjðyÞÞ; where the

product is taken over all bj which are conjugate to some root in B� . We know
f � is a holomorphic function of x, y, and so is the quotient ~ff ðx; yÞ ¼ f ðx; yÞ=f �ðx; yÞ .
Take any g, letM�

g and ~MMg denote respectively the step functions for g de¢ned for
f � and ~ff . Of course,

MgðrÞ ¼ ~MMgðrÞ þM
�
g ðrÞ; 0 < r < 1:

In the tree-model of ~ff , ~BB ¼ B � B� is a bar of the ¢rst kind. Hence,
Dk�1

R hðBÞ
0

~MM ~BBðrÞ dr is an integer. Note that B
� is a bar of the tree-model of f �, hence

Dk�1
R charðB�Þ

0 M
�
B� ðrÞ dr is also an integer. The following identity is obvious:Z hðBÞ

0
MBðrÞ dr� ðhðBÞ � charðBÞÞmðB�Þ

¼

Z hðBÞ

0

~MM ~BBðrÞ drþ
Z charðBÞ

0
M

�
B� ðrÞ dr;

whence JðBÞ is an integer.

10. Proof of Theorem VIII

Take gðyÞ . We write Oðg; f Þ ¼ maxfOðg; biÞ j 1W iWmg . Let BL denote the largest
bar in the lattice, mðBLÞ ¼ m .
Take any g with Oðg; f Þ ¼ m=dW hðBLÞ . Then, clearly, dOyðf ðgðyÞ; yÞÞ ¼ mm . This

kind of g gives rise to numbers in mN . Taking m ¼ d ¼ 1 gives m 2 Að f Þ, hence
mN � Að f Þ .
Now, take g with Oðg; f Þ > hðBLÞ . Choose bi such that Oðg; f Þ ¼ Oðg; biÞ . Then

choose a bar B whose height hðBÞ is largest such that bi 2 B and Oðg; f ÞX hðBÞ.

Case 1. B is a bar of the ¢rst kind, hðBÞ ¼ mk=d0 � � � dk.

Let us ¢rst examine a very special case, namely, Oðg; f Þ ¼ hðBÞ and hðBÞ is not a
characteristic exponent of g . (For instance, take bB and g � 0 in Example 8.1.)
The situation is modelled in Figure 9.

Figure 9.
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When we omit all terms ye, e > hðBÞ, in gðyÞ, we obtain bB . We can take bB to be g .
Then we ¢nd

JðBÞ ¼ Dk�1Oyð f ðbBðyÞ; yÞÞ 2 Að f Þ:

Let ms=d0 � � � ds be the largest characteristic exponent of g . Then

DsOyð f ðgðyÞ; yÞÞ ¼ DsOyðf ðbBðyÞ; yÞÞ

is just a multiple of JðBÞ . Thus, this kind of g gives rise to multiples of JðBÞ .
Next, suppose that Oðg; bjÞ ¼ hðBÞ for all bj 2 B, and hðBÞ is a characteristic

exponent of g, as illustrated in Figure 10. (In Example 8.1, take B3 and
gðyÞ ¼ 2y5=2.) In this case, Dk is the smallest integer for which ~ggðtDkÞ is integral
in t . Here ~gg denotes g with terms ye, e > hðBÞ, omitted. We have

DkOyðf ð~ggðyÞ; yÞÞ ¼ dkJðBÞ:

Therefore, this kind of g also gives rise to multiples of IðBÞ ¼ dkJðBÞ .
Finally, consider the case Oðg; biÞ > hðBÞ . There is a postbar B0, containing bi and

Oðg; biÞ < hðB
0Þ, as illustrated in Figure 11. We can write

Oðg; biÞ ¼ hðBÞ þ
m

d0 . . . dkd
; dX 1;

hðB0Þ ¼ hðBÞ þ
m0

d0 . . . dkd 0
; d 0 X 1;

Figure 10.

Figure 11.
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where 0 < m=d < m0=d 0 . Let ~gg be g with terms ye, e > Oðg; biÞ, omitted. Then dDk is
the smallest integer for which ~ggðtdDk Þ is integral. Therefore

Oyðf ð~ggðyÞ; yÞÞ ¼
Z hðBÞ

0
MBðrÞ drþ

m
Dkd

mðB0Þ;

and

dDkOyðf ð~ggðyÞ; yÞÞ ¼ dIðBÞ þ mmðB0Þ:

This number and its multiples are in ÎIðB;B0Þ . All numbers in ÎIðBÞ can be realised in
this way.
Case 2. B is of the second kind.

This case is similar and simpler. First suppose that Oðg; bjÞ ¼ hðBÞ for all bj 2 B .
Then g gives rise to JðBÞ and its multiples. Now suppose that Oðg; bjÞ > hðBÞ .
Let us take B0 as before. Then g gives rise to numbers in ÎIðB;B0Þ . All numbers
in ÎIðBÞ can be attained in this way.

Case 3. B is of the third kind.

The subtle case is where bi 2 B
�, Oðg; biÞX hðBÞ . Let us write

Oðg; biÞ ¼ charðB�Þ þ
m

d0 � � � dk�1d
; dX 1:

Then

Oyð f ðgðyÞ; yÞÞ ¼
Z hðBÞ

0
MBðrÞ drþ ðOðg; biÞ � hðBÞÞmðB

�Þ

¼

Z hðBÞ

0
MBðrÞ dr� ðhðBÞ � charðB�ÞÞmðB�Þ

� �

þ
m

d0 . . . dk�1d
mðB�Þ:

It follows that ĴJðBÞ � Að f Þ, and every number of ĴJðBÞ can be realised in this way.
Now suppose thatOðg; bjÞ ¼ hðBÞ for all bj 2 B . If bi =2B�, then we can replace it by

some bj 2 B . The proof is therefore reduced to the previous case.
Finally, suppose that bi =2B� andOðg; biÞ > hðBÞ . This case is similar to Cases 1 and

2, g leads to the numbers in ÎIðBÞ.
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