ON THE BOUNDEDNESS AND RANGE OF THE EXTENDED HANKEL TRANSFORMATION

BY
P. G. ROONEY

1. Introduction. For $1 \leq p<\infty, \mu \in \mathbb{R}$, let $\mathscr{L}_{\mu, p}$ denote the collection of functions f, measurable on $(0, \infty)$ and such that

$$
\|f\|_{\mu, p}=\left\{\int_{0}^{\infty}\left|x^{\mu} f(x)\right|^{p} d x / x\right\}^{1 / p}<\infty .
$$

Let C_{0} be the collection of functions continuous and compactly supported on $(0, \infty)$; it is known that C_{0} is dense in $\mathscr{L}_{\mu, p}-$ see [2; Lemma 2.2]. If X and Y are Banach spaces, denote by $[X, Y]$ the collection of bounded linear operators from X into Y, abbreviating $[X, X]$ to $[X]$.

In [2] and [3] we studied the Hankel transformation on $\mathscr{L}_{\mu, \mathrm{p}}$. Here if $\nu>-1$, $f \in C_{0}$, the Hankel transformation of order ν, H_{ν} is defined by

$$
\left(H_{\nu} f\right)(x)=\int_{0}^{\infty}(x t)^{1 / 2} J_{\nu}(x t) f(t) d t
$$

and by continuous extension on $\mathscr{L}_{\mu, p}$ when justified. In [2], as an application of a Mellin multiplier technique, we showed that if $1<p<\infty, \gamma(p) \leq \mu<\nu+\frac{3}{2}$, where

$$
\gamma(p)=\max \left(p^{-1}, p^{\prime-1}\right),
$$

then for all $q \geq p$ such that $q^{\prime-1} \leq \mu, H_{\nu} \in\left[\mathscr{L}_{\mu, p}, \mathscr{L}_{1-\mu, q}\right]$, while in [3] we gave a complete description of $H_{\nu}\left(\mathscr{L}_{\mu, p}\right)$.

The Hankel transformation H_{ν} has been extended to $\nu \in \mathbb{R}, \nu \neq-1,-3, \ldots$ follows. For $m \geq 0$, let

$$
J_{\nu, m}(x)=\sum_{k=m}^{\infty} \frac{(-1)^{k}\left(\frac{1}{2} x\right)^{\nu+2 k}}{k!\Gamma(\nu+k+1)}=J_{\nu}(x)-\sum_{k=1}^{m-1} \frac{(-1)^{k}\left(\frac{1}{2} x\right)^{\nu+2 k}}{k!\Gamma(\nu+k+1)}
$$

$J_{\nu, m}$ is sometimes called a "cut" Bessel function. If $\nu \in \mathbb{R}, \nu \neq-1,-3, \ldots$, there is a least integer $m \geq 0$ such that $\nu+2 m>-1$, and then for $f \in C_{0}$, we define

$$
\left(H_{\nu} f\right)(x)=\int_{0}^{\infty}(x t)^{1 / 2} J_{\nu, m}(x t) f(t) d t .
$$

This extended Hankel transformation has been considerably studied; see [1], for example.

Received by the editors August 14, 1978.

Our object in this paper is to obtain the boundedness properties of the extended Hankel transformation on the $\mathscr{L}_{\mu, p}$ spaces, and to characterize its range on these spaces. Our technique will be that of [2], as used in [2; §7] and in [3]. The boundedness is shown in section 2 below, while the range is characterized in section 3 ; section 4 contains some concluding remarks.

The reader should note that $\mathscr{L}_{\mu, \mathrm{p}}$ is slightly different from the space $L_{\mu, \mathrm{p}}$ defined in [2], and make the necessary adjustments in the statements of the theorems of [2].
2. Boundedness. The following theorem gives the boundedness properties of the extended Hankel transformation on the $\mathscr{L}_{\mu, \mathrm{p}}$ spaces, $p>1$.

Theorem 1. Suppose $1<p<\infty, \gamma(p) \leq \mu<\nu+2 m+\frac{3}{2}$. Then for all $q \geq p$ so that $q^{\prime-1} \leq \mu, H_{\nu} \in\left[\mathscr{L}_{\mu, p}, \mathscr{L}_{1-\mu, q}\right]$.

Proof. We may suppose $\nu<-1$; for if $\nu>-1, m=0$ and the result is known-see [2; §7]. Now if $\nu<-1$, then $-1<\nu+2 m<1$; for, as m is the least non-negative integer such that $\nu+2 m>-1$, and if $\nu+2 m>1$, then $\nu+2(m-1)>-1$, a contradiction, while if $\nu+2 m=1$, then the condition $\nu \neq-1,-3, \ldots$, is violated.

We use [2; Theorem 3(a)] with $S_{1}=H_{\nu}, S_{2}=H_{\eta}$ where $\eta=|\nu+2 m|$. Clearly $\eta>-1$. From [1; §§2 and 3], S_{1} and $S_{2} \in\left[\mathscr{L}_{1 / 2}, 2\right]$ and

$$
\omega_{1}(t)=2^{i t} \frac{\Gamma\left(\frac{1}{2}(\nu+1+i t)\right)}{\Gamma\left(\frac{1}{2}(\nu+1-i t)\right)}, \quad \omega_{2}(t)=2^{i t} \frac{\Gamma\left(\frac{1}{2}(\eta+1+i t)\right)}{\Gamma\left(\frac{1}{2}(\eta+1-i t)\right)},
$$

and thus

$$
\frac{\omega_{1}(t)}{\omega_{2}(t)}=\frac{\Gamma\left(\frac{1}{2}(\nu+1+i t)\right) \Gamma\left(\frac{1}{2}(\eta+1-i t)\right)}{\Gamma\left(\frac{1}{2}(\eta+1+i t)\right) \Gamma\left(\frac{1}{2}(\nu+1-i t)\right)} .
$$

Let

$$
m(s)=\frac{\Gamma\left(\frac{1}{2}\left(\nu+\frac{1}{2}+s\right)\right) \Gamma\left(\frac{1}{2}\left(\eta+\frac{3}{2}-s\right)\right)}{\Gamma\left(\frac{1}{2}\left(\eta+\frac{1}{2}+s\right)\right) \Gamma\left(\frac{1}{2}\left(\nu+\frac{3}{2}-s\right)\right)}
$$

Then m is holomorphic in the strip $S=\{s \mid \alpha(m)<\operatorname{Re} s<\beta(m)\}$ where $\alpha(m)=$ $-(2 m+\nu)-\frac{1}{2}$ and $\beta(m)=-(2 m+\nu)+\frac{3}{2}$, since $\eta+\frac{3}{2} \geq-(2 m+\nu)+\frac{3}{2}$. Also since $|\Gamma(x+i y)| \sim \sqrt{ } 2 \pi|y|^{x-1 / 2} e^{-\pi \mid y / 2}$ as $|y| \rightarrow \infty$, uniformly in x for x in any bounded interval, then $|m(\sigma+i t)| \sim 1$ as $|t| \rightarrow \infty$, uniformly in σ for $\sigma_{1} \leq \sigma \leq \sigma_{2}$, where $\alpha(m)<\sigma_{1} \leq \sigma_{2}<\beta(m)$, and hence on the closed strip $\sigma_{1} \leq \operatorname{Re} s \leq \sigma_{2}, m(s)$ is bounded. Further since from [2; p. 1100],

$$
\Gamma^{\prime}(z)=\Gamma(z)\left(\log z-(2 z)^{-1}+O\left(|z|^{-2}\right)\right)
$$

as $z \rightarrow \infty$ in $|\arg z| \leq \pi-\delta$, and m is bounded

$$
\left|m^{\prime}(\sigma+i t)\right|=O\left(|t|^{-2}\right) \quad \text { as } \quad|t| \infty .
$$

Thus $m \in \mathscr{A}$-see [2; Definition 3.1]. Also since $-1<\nu+2 m<1, \alpha(m)<\frac{1}{2}<$ $\beta(m)$.

Now by [2; § 7], if $1<p<\infty, \gamma(p) \leq \mu<\eta+\frac{3}{2}$, then for all $q \geq p$ with $q^{\prime-1} \leq \mu$, $H_{\eta} \in\left[\mathscr{L}_{\mu, p}, \mathscr{L}_{1-\mu, q}\right]$. Hence, by [2; Theorem 3(a)], if the above conditions on p, q and μ are satisfied, and in addition $\nu+2 m-\frac{1}{2}<\mu<+2 m+\frac{3}{2}, \quad H_{\nu} \in$ $\left[\mathscr{L}_{\mu, p}, \mathscr{L}_{1-\mu, q}\right]$. But $\nu+2 m-\frac{1}{2}<\frac{1}{2} \leq \gamma(p)$, and since $\eta \geq \nu+2 m, \nu+2 m+\frac{3}{2} \leq \eta+\frac{3}{2}$. Thus if $1<p<\infty, \gamma(p) \leq \mu<\nu+2 m+\frac{3}{2}$, then for all $q \geq p$ such that $q^{\prime-1} \leq \mu$, $H_{\nu} \in\left[\mathscr{L}_{\mu, p}, \mathscr{L}_{1-\mu, q}\right]$.
3. The range of H_{ν}. We could have said something about the range of H_{ν} already, for [2; Theorem 3(a)] also says that under the conditions of Theorem $1, H_{\nu}\left(\mathscr{L}_{\mu, p}\right) \subseteq H_{\eta}\left(\mathscr{L}_{\mu, p}\right)$, and the range of H_{η} on $\mathscr{L}_{\mu, p}$ was characterized by us recently-see [3]. However, except in one isolated case, we can be much more precise, as the following theorem shows.

Theorem 2. Suppose $1<p<\infty, \gamma(p) \leq \mu<\nu+2 m+\frac{3}{2}, \eta=|\nu+2 m|$. Then except when $\mu=-(\nu+2 m)+\frac{3}{2}, \nu<-1$,

$$
H_{\nu}\left(\mathscr{L}_{\mu, p}\right)=H_{\eta}\left(\mathscr{L}_{\mu, p}\right) .
$$

Proof. For $\nu>-1$, the result is either obvious ($\nu \geq 0$) or contained in [3, Theorem 1]. Hence we may assume $\nu<-1$. The proof for $\nu<-1$ is a continuation of that of Theorem 1, using [2; Theorem 3(c)]. For this we need to study

$$
1 / m(s)=\frac{\Gamma\left(\frac{1}{2}\left(\eta+\frac{1}{2}+s\right)\right) \Gamma\left(\frac{1}{2}\left(\nu+\frac{3}{2}-s\right)\right)}{\Gamma\left(\frac{1}{2}\left(\nu+\frac{1}{2}+s\right)\right) \Gamma\left(\frac{1}{2}\left(\eta+\frac{3}{2}-s\right)\right)}
$$

Now $\Gamma\left(\frac{1}{2}\left(\nu+\frac{3}{2}-s\right)\right)$ is holomorphic in each of the strips $S_{r}=$ $\left\{\nu+2 r-\frac{1}{2}<\operatorname{Re} s<\nu+2 r+\frac{3}{2}\right\}, r=1,2, \ldots$, and in the half-plane $S_{0}=\{\operatorname{Re} s<$ $\left.\nu+\frac{3}{2}\right\}$. The intersection of these strips with the strip S depends on whether $\nu+2 m=0, \nu+2 m>0$, or $\nu+2 m<0$, and thus we must divide our proof into three cases.

Case (i). $\nu+2 m=0$. In this case, $\eta=0$, and $\Gamma\left(\frac{1}{2}\left(\eta+\frac{1}{2}+s\right)\right)$ is holomorphic in $\operatorname{Re} s>-\frac{1}{2}$. Also $S_{m}=S, S_{r} \cap S=\emptyset, r \neq m$. Hence we may take $\alpha\left(m^{-1}\right)=$ $\alpha(m)=-\frac{1}{2}, \beta\left(m^{-1}\right)=\beta(m)=\frac{3}{2}$, and by the same argument as given for m in the proof of Theorem 1, or since m^{-1} is the same function as m with ν and η interchanged, $m^{-1} \in \mathscr{A}$. Thus by [2; Theorem 3(c)], if $1<p<\infty, \gamma(p) \leq \mu<\frac{3}{2}$, $-\frac{1}{2}<\mu<\frac{3}{2}, H_{\nu}\left(\mathscr{L}_{\mu, p}\right)=H_{0}\left(\mathscr{L}_{\mu, p}\right)=H_{\eta}\left(\mathscr{L}_{\mu, p}\right)$. The condition $-\frac{1}{2}<\mu<\frac{3}{2}$ is clearly superfluous since $\gamma(p) \geq \frac{1}{2}$, and thus the result of our Theorem is true in this case.

Case (ii). $\nu+2 m>0$. In this case $\eta=\nu+2 m$, and $\Gamma\left(\frac{1}{2}\left(\eta+\frac{1}{2}+s\right)\right)$ is holomorphic in $\operatorname{Re} s>-(\nu+2 m)-\frac{1}{2}=\alpha(m)$. Also, since $\alpha(m)=-(\nu+2 m)-\frac{1}{2}<$ $\nu+2 m-\frac{1}{2}<-(\nu+2 m)+\frac{3}{2}=\beta(m)$, and since the right hand boundary of S_{m-1}
and the left hand boundary of S_{m} are the lines $\operatorname{Re} s=\nu+2 m-\frac{1}{2}$, it follows that $S_{r} \cap S=\emptyset$ unless $r=m-1$ or $r=m$. Thus there are two possible choices for $\alpha\left(m^{-1}\right)$ and $\beta\left(m^{-1}\right)$ namely $\alpha_{1}\left(m^{-1}\right)=-(\nu+2 m)-\frac{1}{2}, \beta_{1}\left(m^{-1}\right)=\nu+2 m-\frac{1}{2}$, and $\alpha_{2}\left(m^{-1}\right)=\nu+2 m-\frac{1}{2}, \beta_{2}\left(m^{-1}\right)=\nu+2 m+\frac{3}{2}$. Relative to each of the intervals $\alpha_{i}\left(m^{-1}\right)<\operatorname{Re} s<\beta_{j}\left(m^{-1}\right), j=1,2,1 / m \in \mathscr{A}$ by the same argument as in Case (i). Hence by [2; Theorem 3(c)], if $1<p<\infty, \gamma(p) \leq \mu<\nu+2 m+\frac{3}{2}$, and either $\max \left(\nu+2 m-\frac{1}{2}, \quad-(\nu+2 m)-\frac{1}{2}\right)<\mu<\min \left(\nu+2 m+\frac{3}{2}, \quad-(\nu+2 m)+\frac{3}{2}\right) \quad$ or $\max \left(\nu+2 m-\frac{1}{2},-\left(\nu+2 m+\frac{3}{2}\right)<\mu<\nu+2 m+\frac{3}{2}, H_{\nu}\left(\mathscr{L}_{\mu, p}\right)=H_{\eta}\left(\mathscr{L}_{\mu, p}\right)\right.$. But since $\nu+2 m>0$, these last two conditions on μ come down to $\nu+2 m-\frac{1}{2}<\mu<$ $-(\nu+2 m)+\frac{3}{2}$ and $-(\nu+2 m)+\frac{3}{2}<\mu<\nu+2 m+\frac{3}{2}$, and thus since $\nu+2 m-\frac{1}{2}<\frac{1}{2} \leq$ $\gamma(p)$, if $1<p<\infty, \gamma(p) \leq \mu<\nu+2 m+\frac{3}{2}$, then except when $\mu=-(\nu+2 m)+\frac{3}{2}$, $H_{\nu}\left(\mathscr{L}_{\mu, \mathrm{p}}\right)=H_{\eta}\left(\mathscr{L}_{\mu, \mathrm{p}}\right)$, proving the theorem in this case.

Case (iii). $\nu+2 m<0$. In this case $\eta=-(\nu+2 m)$, and $\Gamma\left(\frac{1}{2}\left(\eta+\frac{1}{2}+s\right)\right)$ is holomorphic in $\operatorname{Re} s>\nu+2 m-\frac{1}{2}$. Also since $\alpha(m)=-(\nu+2 m)-\frac{1}{2}<$ $\nu+2 m+\frac{3}{2}<-(\nu+2 m)+\frac{3}{2}=\beta(m)$, and since the right hand boundary of S_{m} and the left hand boundary of S_{m+1} is the line $\operatorname{Re} s=\nu+2 m+\frac{3}{2}$, it follows that $S_{r} \cap S=\emptyset$ unless $r=m$ or $r=m+1$. Thus again there are two possible values of $\alpha\left(m^{-1}\right)$ and $\beta\left(m^{-1}\right)$ namely $\alpha_{1}\left(m^{-1}\right)=\nu+2 m-\frac{1}{2}, \beta_{1}\left(m^{-1}\right)=\nu+2 m+\frac{3}{2}$, and $\alpha_{2}\left(m^{-1}\right)=\nu+2 m+\frac{3}{2}, \beta_{2}\left(m^{-1}\right)=\nu+2 m+\frac{7}{2}$. Relative to each of the intervals $\alpha_{j}<\operatorname{Re} s<\beta_{j}, j=1,2,1 / m \in \mathscr{A}$ by the same argument as in Case (i). Hence by [2; Theorem 3(c)], if $1<p<\infty, \gamma(p) \leq \mu<\nu+2 m+\frac{3}{2}$, and either

$$
\max \left(\nu+2 m-\frac{1}{2},-(\nu+2 m)-\frac{5}{2}\right)<\mu<\min \left(\nu+2 m+\frac{3}{2},-(\nu+2 m)-\frac{1}{2}\right)
$$

or

$$
\max \left(\nu+2 m-\frac{1}{2},-(\nu+2 m)-\frac{1}{2}\right)<\mu<\min \left(\nu+2 m+\frac{3}{2},-(\nu+2 m)+\frac{3}{2}\right),
$$

$H_{\nu}\left(\mathscr{L}_{\mu, p}\right)=H_{\eta}\left(\mathscr{L}_{\mu, p}\right)$. But $\min \left(\nu+2 m+\frac{3}{2},-(\nu+2 m)-\frac{1}{2}\right)=-(\nu+2 m)-\frac{1}{2}<\frac{1}{2} \leq$ $\gamma(p), \max \left(\nu+2 m-\frac{1}{2},-(\nu+2 m)-\frac{1}{2}\right)=-(\nu+2 m)-\frac{1}{2} \leq \gamma(p)$, and $\min (\nu+2 m+$ $\left.\frac{3}{2},-(\nu+2 m)+\frac{3}{2}\right)=\nu+2 m+\frac{3}{2}, \quad$ so that if $1<p<\propto, \quad \gamma(p) \leq \mu<\nu+2 m+\frac{3}{2}$, $H_{\nu}\left(\mathscr{L}_{\mu, p}\right)=H_{\eta}\left(\mathscr{L}_{\mu, p}\right)$, and Case (iii) is proved.

Corollary. $\quad 1<p<\infty, \gamma(p) \leq \mu<\nu+2 m+\frac{3}{2}$, then except in the case $\nu<-1$, $\mu=-(\nu+2 m)+\frac{3}{2}$

$$
H_{\nu}\left(\mathscr{L}_{\mu, p}\right)=\left(I_{\mu-\gamma} F_{c}\right)\left(\mathscr{L}_{\gamma, p}\right),
$$

where for $f \in \mathscr{L}_{\mu, p}$ with $\mu<1$, and $\alpha \geq 0$

$$
\begin{aligned}
\left(I_{\alpha} f\right)(x) & =\frac{2 x^{-\alpha+1}}{\Gamma(\alpha)} \int_{0}^{x}\left(x^{2}-t^{2}\right)^{\alpha-1} f(t) d t, \quad \alpha>0 \\
& =f(x), \quad \alpha=0
\end{aligned}
$$

F_{c} is the Fourier cosine transformation, that is, $F_{c}=H_{-1 / 2}$, and $\gamma=\gamma(p)$.
Proof. This follows from Theorem 2, and [3; Theorem 2].
4. Conclusion. The reader should note that the condition in both theorems that $\gamma(p)<\nu+2 m+\frac{3}{2}$ imposes limitations on the values of p allowed if $\nu+$ $2 m<-\frac{1}{2}$. For example, if $\nu+2 m=-\frac{3}{4}$ the condition becomes $\frac{4}{3}<p<4$.

The exceptional case, $\nu<-1, \mu=-(\nu+2 m)+\frac{3}{2}$, which necessarily implies $\nu+2 m>0$, does not seem amenable to our techniques here, though certainly in this case $H_{\nu}\left(\mathscr{L}_{\mu, p}\right) \subseteq H_{\eta}\left(\mathscr{L}_{\mu, p}\right)$, as mentioned earlier. Since this case corresponds to a pole of $1 / m$, it seems most likely that in this case $H_{\nu}\left(\mathscr{L}_{\mu, p}\right)$ is some proper subset of $H_{n}\left(\mathscr{L}_{\mu, p}\right)$.

References

1. H. Kober, Hankelsche Transformationen, Quart. J. Math. 8 (Ser. 2, 1937), 186-199.
2. P. G. Rooney, A technique for studying the boundedness and extendability of certain types of operators, Can. J. Math. 25 (1973), 1090-1102.
3. -, On the range of the Hankel transformation, Bull. Lond. Math. Soc. 11 (1979), 45-48.

University of Toronto.

