ON THE BOUNDEDNESS AND RANGE OF THE EXTENDED HANKEL TRANSFORMATION

_{ву} P. G. ROONEY

1. Introduction. For $1 \le p < \infty$, $\mu \in \mathbb{R}$, let $\mathscr{L}_{\mu,p}$ denote the collection of functions f, measurable on $(0, \infty)$ and such that

$$||f||_{\mu,p} = \left\{ \int_0^\infty |x^{\mu}f(x)|^p dx/x \right\}^{1/p} < \infty.$$

Let C_0 be the collection of functions continuous and compactly supported on $(0, \infty)$; it is known that C_0 is dense in $\mathscr{L}_{\mu,p}$ —see [2; Lemma 2.2]. If X and Y are Banach spaces, denote by [X, Y] the collection of bounded linear operators from X into Y, abbreviating [X, X] to [X].

In [2] and [3] we studied the Hankel transformation on $\mathscr{L}_{\mu,p}$. Here if $\nu > -1$, $f \in C_0$, the Hankel transformation of order ν , H_{ν} is defined by

$$(H_{\nu}f)(x) = \int_0^\infty (xt)^{1/2} J_{\nu}(xt) f(t) \ dt,$$

and by continuous extension on $\mathscr{L}_{\mu,p}$ when justified. In [2], as an application of a Mellin multiplier technique, we showed that if $1 , <math>\gamma(p) \le \mu < \nu + \frac{3}{2}$, where

$$\gamma(p) = \max(p^{-1}, p'^{-1}),$$

then for all $q \ge p$ such that $q'^{-1} \le \mu$, $H_{\nu} \in [\mathscr{L}_{\mu,p}, \mathscr{L}_{1-\mu,q}]$, while in [3] we gave a complete description of $H_{\nu}(\mathscr{L}_{\mu,p})$.

The Hankel transformation H_{ν} has been extended to $\nu \in \mathbb{R}$, $\nu \neq -1, -3, \ldots$ follows. For $m \ge 0$, let

$$J_{\nu,m}(x) = \sum_{k=m}^{\infty} \frac{(-1)^k (\frac{1}{2}x)^{\nu+2k}}{k! \Gamma(\nu+k+1)} = J_{\nu}(x) - \sum_{k=1}^{m-1} \frac{(-1)^k (\frac{1}{2}x)^{\nu+2k}}{k! \Gamma(\nu+k+1)};$$

 $J_{\nu,m}$ is sometimes called a "cut" Bessel function. If $\nu \in \mathbb{R}$, $\nu \neq -1, -3, \ldots$, there is a least integer $m \ge 0$ such that $\nu + 2m > -1$, and then for $f \in C_0$, we define

$$(H_{\nu}f)(x) = \int_0^\infty (xt)^{1/2} J_{\nu,m}(xt) f(t) dt$$

This extended Hankel transformation has been considerably studied; see [1], for example.

Received by the editors August 14, 1978.

Our object in this paper is to obtain the boundedness properties of the extended Hankel transformation on the $\mathscr{L}_{\mu,p}$ spaces, and to characterize its range on these spaces. Our technique will be that of [2], as used in [2; §7] and in [3]. The boundedness is shown in section 2 below, while the range is characterized in section 3; section 4 contains some concluding remarks.

The reader should note that $\mathscr{L}_{\mu,p}$ is slightly different from the space $L_{\mu,p}$ defined in [2], and make the necessary adjustments in the statements of the theorems of [2].

2. **Boundedness.** The following theorem gives the boundedness properties of the extended Hankel transformation on the $\mathscr{L}_{\mu,p}$ spaces, p > 1.

THEOREM 1. Suppose $1 , <math>\gamma(p) \le \mu < \nu + 2m + \frac{3}{2}$. Then for all $q \ge p$ so that $q'^{-1} \le \mu$, $H_{\nu} \in [\mathscr{L}_{\mu,p}, \mathscr{L}_{1-\mu,q}]$.

Proof. We may suppose $\nu < -1$; for if $\nu > -1$, m = 0 and the result is known—see [2; § 7]. Now if $\nu < -1$, then $-1 < \nu + 2m < 1$; for, as m is the least non-negative integer such that $\nu + 2m > -1$, and if $\nu + 2m > 1$, then $\nu + 2(m-1) > -1$, a contradiction, while if $\nu + 2m = 1$, then the condition $\nu \neq -1, -3, \ldots$, is violated.

We use [2; Theorem 3(a)] with $S_1 = H_{\nu}$, $S_2 = H_{\eta}$ where $\eta = |\nu + 2m|$. Clearly $\eta > -1$. From [1; §§ 2 and 3], S_1 and $S_2 \in [\mathcal{L}_{1/2}, 2]$ and

$$\omega_1(t) = 2^{it} \frac{\Gamma(\frac{1}{2}(\nu+1+it))}{\Gamma(\frac{1}{2}(\nu+1-it))}, \qquad \omega_2(t) = 2^{it} \frac{\Gamma(\frac{1}{2}(\eta+1+it))}{\Gamma(\frac{1}{2}(\eta+1-it))},$$

and thus

$$\frac{\omega_1(t)}{\omega_2(t)} = \frac{\Gamma(\frac{1}{2}(\nu+1+it))\Gamma(\frac{1}{2}(\eta+1-it))}{\Gamma(\frac{1}{2}(\eta+1+it))\Gamma(\frac{1}{2}(\nu+1-it))}.$$

Let

$$m(s) = \frac{\Gamma(\frac{1}{2}(\nu + \frac{1}{2} + s))\Gamma(\frac{1}{2}(\eta + \frac{3}{2} - s))}{\Gamma(\frac{1}{2}(\eta + \frac{1}{2} + s))\Gamma(\frac{1}{2}(\nu + \frac{3}{2} - s))}.$$

Then *m* is holomorphic in the strip $S = \{s \mid \alpha(m) < \text{Re } s < \beta(m)\}$ where $\alpha(m) = -(2m+\nu) - \frac{1}{2}$ and $\beta(m) = -(2m+\nu) + \frac{3}{2}$, since $\eta + \frac{3}{2} \ge -(2m+\nu) + \frac{3}{2}$. Also since $|\Gamma(x+iy)| \sim \sqrt{2\pi} |y|^{x-1/2} e^{-\pi|y|/2}$ as $|y| \to \infty$, uniformly in *x* for *x* in any bounded interval, then $|m(\sigma+it)| \sim 1$ as $|t| \to \infty$, uniformly in σ for $\sigma_1 \le \sigma \le \sigma_2$, where $\alpha(m) < \sigma_1 \le \sigma_2 < \beta(m)$, and hence on the closed strip $\sigma_1 \le \text{Re } s \le \sigma_2$, *m*(*s*) is bounded. Further since from [2; p. 1100],

$$\Gamma'(z) = \Gamma(z)(\log z - (2z)^{-1} + O(|z|^{-2}))$$

as $z \to \infty$ in $|\arg z| \le \pi - \delta$, and *m* is bounded

$$|m'(\sigma+it)| = O(|t|^{-2})$$
 as $|t|^{\infty}$.

https://doi.org/10.4153/CMB-1980-045-8 Published online by Cambridge University Press

Thus $m \in \mathcal{A}$ —see [2; Definition 3.1]. Also since $-1 < \nu + 2m < 1$, $\alpha(m) < \frac{1}{2} < \beta(m)$.

Now by [2; § 7], if $1 , <math>\gamma(p) \le \mu < \eta + \frac{3}{2}$, then for all $q \ge p$ with $q'^{-1} \le \mu$, $H_{\eta} \in [\mathscr{L}_{\mu,p}, \mathscr{L}_{1-\mu,q}]$. Hence, by [2; Theorem 3(a)], if the above conditions on p, qand μ are satisfied, and in addition $\nu + 2m - \frac{1}{2} < \mu < +2m + \frac{3}{2}$, $H_{\nu} \in [\mathscr{L}_{\mu,p}, \mathscr{L}_{1-\mu,q}]$. But $\nu + 2m - \frac{1}{2} < \frac{1}{2} \le \gamma(p)$, and since $\eta \ge \nu + 2m$, $\nu + 2m + \frac{3}{2} \le \eta + \frac{3}{2}$. Thus if $1 , <math>\gamma(p) \le \mu < \nu + 2m + \frac{3}{2}$, then for all $q \ge p$ such that $q'^{-1} \le \mu$, $H_{\nu} \in [\mathscr{L}_{\mu,p}, \mathscr{L}_{1-\mu,q}]$.

3. The range of H_{ν} . We could have said something about the range of H_{ν} already, for [2; Theorem 3(a)] also says that under the conditions of Theorem 1, $H_{\nu}(\mathscr{L}_{\mu,p}) \subseteq H_{\eta}(\mathscr{L}_{\mu,p})$, and the range of H_{η} on $\mathscr{L}_{\mu,p}$ was characterized by us recently—see [3]. However, except in one isolated case, we can be much more precise, as the following theorem shows.

THEOREM 2. Suppose $1 , <math>\gamma(p) \le \mu < \nu + 2m + \frac{3}{2}$, $\eta = |\nu + 2m|$. Then except when $\mu = -(\nu + 2m) + \frac{3}{2}$, $\nu < -1$,

$$H_{\nu}(\mathscr{L}_{\mu,p}) = H_{\eta}(\mathscr{L}_{\mu,p}).$$

Proof. For $\nu > -1$, the result is either obvious ($\nu \ge 0$) or contained in [3, Theorem 1]. Hence we may assume $\nu < -1$. The proof for $\nu < -1$ is a continuation of that of Theorem 1, using [2; Theorem 3(c)]. For this we need to study

$$1/m(s) = \frac{\Gamma(\frac{1}{2}(\eta + \frac{1}{2} + s))\Gamma(\frac{1}{2}(\nu + \frac{3}{2} - s))}{\Gamma(\frac{1}{2}(\nu + \frac{1}{2} + s))\Gamma(\frac{1}{2}(\eta + \frac{3}{2} - s))}.$$

Now $\Gamma(\frac{1}{2}(\nu+\frac{3}{2}-s))$ is holomorphic in each of the strips $S_r = \{\nu+2r-\frac{1}{2} < \operatorname{Re} s < \nu+2r+\frac{3}{2}\}$, r = 1, 2, ..., and in the half-plane $S_0 = \{\operatorname{Re} s < \nu+\frac{3}{2}\}$. The intersection of these strips with the strip S depends on whether $\nu+2m=0$, $\nu+2m>0$, or $\nu+2m<0$, and thus we must divide our proof into three cases.

Case (i). $\nu + 2m = 0$. In this case, $\eta = 0$, and $\Gamma(\frac{1}{2}(\eta + \frac{1}{2} + s))$ is holomorphic in Re $s > -\frac{1}{2}$. Also $S_m = S$, $S_r \cap S = \emptyset$, $r \neq m$. Hence we may take $\alpha(m^{-1}) = \alpha(m) = -\frac{1}{2}$, $\beta(m^{-1}) = \beta(m) = \frac{3}{2}$, and by the same argument as given for *m* in the proof of Theorem 1, or since m^{-1} is the same function as *m* with ν and η interchanged, $m^{-1} \in \mathcal{A}$. Thus by [2; Theorem 3(c)], if $1 , <math>\gamma(p) \le \mu < \frac{3}{2}$, $-\frac{1}{2} < \mu < \frac{3}{2}$, $H_{\nu}(\mathcal{L}_{\mu,p}) = H_0(\mathcal{L}_{\mu,p}) = H_{\eta}(\mathcal{L}_{\mu,p})$. The condition $-\frac{1}{2} < \mu < \frac{3}{2}$ is clearly superfluous since $\gamma(p) \ge \frac{1}{2}$, and thus the result of our Theorem is true in this case.

Case (ii). $\nu + 2m > 0$. In this case $\eta = \nu + 2m$, and $\Gamma(\frac{1}{2}(\eta + \frac{1}{2} + s))$ is holomorphic in Re $s > -(\nu + 2m) - \frac{1}{2} = \alpha(m)$. Also, since $\alpha(m) = -(\nu + 2m) - \frac{1}{2} < \nu + 2m - \frac{1}{2} < -(\nu + 2m) + \frac{3}{2} = \beta(m)$, and since the right hand boundary of S_{m-1}

[September

and the left hand boundary of S_m are the lines Re $s = \nu + 2m - \frac{1}{2}$, it follows that $S_r \cap S = \emptyset$ unless r = m - 1 or r = m. Thus there are two possible choices for $\alpha(m^{-1})$ and $\beta(m^{-1})$ namely $\alpha_1(m^{-1}) = -(\nu + 2m) - \frac{1}{2}$, $\beta_1(m^{-1}) = \nu + 2m - \frac{1}{2}$, and $\alpha_2(m^{-1}) = \nu + 2m - \frac{1}{2}$, $\beta_2(m^{-1}) = \nu + 2m + \frac{3}{2}$. Relative to each of the intervals $\alpha_i(m^{-1}) < \text{Re } s < \beta_i(m^{-1})$, $j = 1, 2, 1/m \in \mathscr{A}$ by the same argument as in Case (i). Hence by [2; Theorem 3(c)], if $1 , <math>\gamma(p) \le \mu < \nu + 2m + \frac{3}{2}$, and either $\max(\nu + 2m - \frac{1}{2}, -(\nu + 2m) - \frac{1}{2}) < \mu < \min(\nu + 2m + \frac{3}{2}, -(\nu + 2m) + \frac{3}{2})$ or $\max(\nu + 2m - \frac{1}{2}, -(\nu + 2m) + \frac{3}{2}) < \mu < \nu + 2m + \frac{3}{2}$, $H_\nu(\mathscr{L}_{\mu,p}) = H_\eta(\mathscr{L}_{\mu,p})$. But since $\nu + 2m > 0$, these last two conditions on μ come down to $\nu + 2m - \frac{1}{2} < \frac{1}{2} < \gamma(p)$, if $1 , <math>\gamma(p) \le \mu < \nu + 2m + \frac{3}{2}$, then except when $\mu = -(\nu + 2m) + \frac{3}{2}$, $H_\nu(\mathscr{L}_{\mu,p}) = H_\eta(\mathscr{L}_{\mu,p})$, proving the theorem in this case.

Case (iii). $\nu + 2m < 0$. In this case $\eta = -(\nu + 2m)$, and $\Gamma(\frac{1}{2}(\eta + \frac{1}{2} + s))$ is holomorphic in Re $s > \nu + 2m - \frac{1}{2}$. Also since $\alpha(m) = -(\nu + 2m) - \frac{1}{2} < \nu + 2m + \frac{3}{2} < -(\nu + 2m) + \frac{3}{2} = \beta(m)$, and since the right hand boundary of S_m and the left hand boundary of S_{m+1} is the line Re $s = \nu + 2m + \frac{3}{2}$, it follows that $S_r \cap S = \emptyset$ unless r = m or r = m + 1. Thus again there are two possible values of $\alpha(m^{-1})$ and $\beta(m^{-1})$ namely $\alpha_1(m^{-1}) = \nu + 2m - \frac{1}{2}$, $\beta_1(m^{-1}) = \nu + 2m + \frac{3}{2}$, and $\alpha_2(m^{-1}) = \nu + 2m + \frac{3}{2}$, $\beta_2(m^{-1}) = \nu + 2m + \frac{7}{2}$. Relative to each of the intervals $\alpha_j < \text{Re } s < \beta_j$, $j = 1, 2, 1/m \in \mathcal{A}$ by the same argument as in Case (i). Hence by [2; Theorem 3(c)], if $1 , <math>\gamma(p) \le \mu < \nu + 2m + \frac{3}{2}$, and either

$$\max(\nu+2m-\frac{1}{2},-(\nu+2m)-\frac{5}{2}) < \mu < \min(\nu+2m+\frac{3}{2},-(\nu+2m)-\frac{1}{2})$$

or

$$\max(\nu+2m-\frac{1}{2},-(\nu+2m)-\frac{1}{2}) < \mu < \min(\nu+2m+\frac{3}{2},-(\nu+2m)+\frac{3}{2}),$$

$$\begin{split} H_{\nu}(\mathcal{L}_{\mu,p}) &= H_{\eta}(\mathcal{L}_{\mu,p}). \quad \text{But} \quad \min(\nu + 2m + \frac{3}{2}, -(\nu + 2m) - \frac{1}{2}) = -(\nu + 2m) - \frac{1}{2} < \frac{1}{2} \leq \gamma(p), \\ \max(\nu + 2m - \frac{1}{2}, -(\nu + 2m) - \frac{1}{2}) &= -(\nu + 2m) - \frac{1}{2} \leq \gamma(p), \\ \max(\nu + 2m - \frac{1}{2}, -(\nu + 2m) - \frac{1}{2}) &= -(\nu + 2m) - \frac{1}{2} \leq \gamma(p), \\ \min(\nu + 2m + \frac{3}{2}, -(\nu + 2m) + \frac{3}{2}) &= \nu + 2m + \frac{3}{2}, \\ \text{so} \quad \text{that} \quad \text{if} \quad 1 < p < \infty, \quad \gamma(p) \leq \mu < \nu + 2m + \frac{3}{2}, \\ H_{\nu}(\mathcal{L}_{\mu,p}) &= H_{\eta}(\mathcal{L}_{\mu,p}), \\ \text{and} \quad \text{Case} \quad (\text{iii)} \text{ is proved.} \end{split}$$

COROLLARY. $1 , <math>\gamma(p) \le \mu < \nu + 2m + \frac{3}{2}$, then except in the case $\nu < -1$, $\mu = -(\nu + 2m) + \frac{3}{2}$

$$H_{\nu}(\mathscr{L}_{\mu,p}) = (I_{\mu-\gamma}F_c)(\mathscr{L}_{\gamma,p}),$$

where for $f \in \mathscr{L}_{\mu,p}$ with $\mu < 1$, and $\alpha \ge 0$

$$(I_{\alpha}f)(x) = \frac{2x^{-\alpha+1}}{\Gamma(\alpha)} \int_0^x (x^2 - t^2)^{\alpha-1} f(t) dt, \qquad \alpha > 0.$$

= $f(x), \qquad \alpha = 0,$

 F_c is the Fourier cosine transformation, that is, $F_c = H_{-1/2}$, and $\gamma = \gamma(p)$.

Proof. This follows from Theorem 2, and [3; Theorem 2].

4. **Conclusion.** The reader should note that the condition in both theorems that $\gamma(p) < \nu + 2m + \frac{3}{2}$ imposes limitations on the values of p allowed if $\nu + 2m < -\frac{1}{2}$. For example, if $\nu + 2m = -\frac{3}{4}$ the condition becomes $\frac{4}{3} .$

The exceptional case, $\nu < -1$, $\mu = -(\nu + 2m) + \frac{3}{2}$, which necessarily implies $\nu + 2m > 0$, does not seem amenable to our techniques here, though certainly in this case $H_{\nu}(\mathscr{L}_{\mu,p}) \subseteq H_{\eta}(\mathscr{L}_{\mu,p})$, as mentioned earlier. Since this case corresponds to a pole of 1/m, it seems most likely that in this case $H_{\nu}(\mathscr{L}_{\mu,p})$ is some proper subset of $H_{\eta}(\mathscr{L}_{\mu,p})$.

References

1. H. Kober, Hankelsche Transformationen, Quart. J. Math. 8 (Ser. 2, 1937), 186-199.

2. P. G. Rooney, A technique for studying the boundedness and extendability of certain types of operators, Can. J. Math. 25 (1973), 1090-1102.

3. —, On the range of the Hankel transformation, Bull. Lond. Math. Soc. 11 (1979), 45-48.

UNIVERSITY OF TORONTO.